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PREFACE

Pharmaceutical Statistics was first published in 1984, and the need for a book with practical
applications to pharmaceutical research, simply explained, was fulfilled. The success of
the book has been illustrated not only by its extensive worldwide distribution but also by
publication of several books with similar themes. I take this as a compliment, for, as is
said, “Imitation is the highest form of flattery.” This has been most gratifying, because
my initial objective was to help spread the use of statistics in pharmaceutical processes
by presenting it in a simplified manner that can be understood by the pharmaceutical
scientist.

This newest edition includes some significant additions. Most important is the inclu-
sion of a coauthor, Charles (Chuck) Bon. Chuck has extensive practical experience as a
chemist and statistician. His assistance in preparing the 4th edition adds some new dimen-
sions, and new thoughts to the book. Another important addition is the inclusion of SAS
and Microsoft Excel programs to analyze many of the examples in the book. Also, a
CD-ROM is included that may be used to analyze these examples. This should be useful
as a practical teaching tool.

A new chapter on simulation techniques should help scientists adopt this useful ap-
proach to solving complex statistical and probabilistic concepts.

The new edition also updates and revises topics included in the previous edition.
Discussion and examples are expanded for topics related to GMPs, validation, and quality
control. These include stability of drug products, including shelf-life prediction, prediction
of overage, and a discussion of bracketing and matrix designs. Process validation and
validation of assays are presented in further detail with up-to-date concepts. Other related
topics that have new presentations include concepts of content uniformity and release
targets.

This edition also contains more detailed and current discussion of procedures and
analyses in bioequivalence studies, including replicate designs and individual bioequiva-
lence. Further discussion and detailed presentations for crossover designs are also included.

The chapter on clinical studies has been expanded. More detail is presented for interim
analyses, group sequential methods, multiple tests and endpoints, carry-forward analysis,
and intent to treat.

v



vi Preface

Other topics that have been updated with additional coverage include nonparametric
tests, optimization, and sample size considerations. A new discussion of averaging has
been added to the Appendix and statistical tables have been updated and expanded.

We have also decided to omit the chapter on consumer testing. Most of the material
in this chapter is discussed elsewhere in the book, albeit in different context. Previous
editions of the book may be used for those interested in this subject.

With these additions, the 4th edition is even more comprehensive than previous edi-
tions. One of my aims when first developing this book was to have a book available that
would be as complete as possible, to serve as my personal reference. This edition brings
me closer to this ultimate aim.

As usual, I thank the many friends and colleagues who have made this effort possible
and so rewarding. I will always remember my mentors, Dr. John Fertig and Dr. Takeru
Higuchi, since deceased. I thank Chuck Bon for agreeing to help update this new edition.
I thank Jenny Chen for redoing my hand-drawn figures. And finally, I thank all my students
who have been with me through the good and hard times.

Sanford Bolton
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1

BASIC DEFINITIONS AND CONCEPTS

Statistics has its own vocabulary. Many of the terms that comprise statistical nomenclature
are familiar: some commonly used in everyday language, with perhaps, somewhat different
connotations. Precise definitions are given in this chapter so that no ambiguity will exist
when the words are used in subsequent chapters. Specifically, such terms as discrete and
continuous variables, frequency distribution, population, sample, mean, median, standard
deviation, variance, coefficient of variation (CV), range, accuracy, and precision are intro-
duced and defined. The methods of calculation of different kinds of means, the median,
standard deviation, and range are also presented. When studying any discipline, the initial
efforts are most important. The first chapters of this book are important in this regard.
Although most of the early concepts are relatively simple, a firm grasp of this material
is essential for understanding the more difficult material to follow.

1.1 VARIABLES AND VARIATION

Variables are the measurements, the values, which are characteristic of the data collected
in experiments. These are the data that will usually be displayed, analyzed, and interpreted
in a research report or publication. In statistical terms, these observations are more correctly
known as random variables. Random variables take on values, or numbers, according to
some corresponding probability function. Although we will wait until Chapter 3 to discuss
the concept of probability, for the present we can think of a random variable as the typical
experimental observation that we, as scientists, deal with on a daily basis. Because these
measurements may take on different values, repeat measurements observed under appar-
ently identical conditions do not, in general, give the identical results (i.e., they are usually
not exactly reproducible). Duplicate determinations of serum concentration of a drug 1
hr after an injection will not be identical no matter if the duplicates come from (a) the
same blood sample or (b) from separate samples from two different persons or (c) from
the same person on two different occasions. Variation is an inherent characteristic of
experimental observations. To isolate and to identify particular causes of variability re-

1
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quires special experimental designs and analysis. Variation in observations is due to a
number of causes. For example, an assay will vary depending on:

1. The instrument used for the analysis
2. The analyst performing the assay
3. The particular sample chosen
4. Unidentified, uncontrollable background error, commonly known as ‘‘noise’’

This inherent variability in observation and measurement is a principal reason for the
need of statistical methodology in experimental design and data analysis. In the absence of
variability, scientific experiments would be short and simple: interpretation of experimental
results from well-designed experiments would be unambiguous. In fact, without variability,
single observations would often be sufficient to define the properties of an object or a
system. Since few, if any, processes can be considered absolutely invariant, statistical
treatment is often essential for summarizing and defining the nature of data, and for making
decisions or inferences based on these variable experimental observations.

1.1.1 Continuous Variables

Experimental data come in many forms*. Probably the most commonly encountered vari-
ables are known as continuous variables. A continuous variable is one that can take on
any value within some range or interval (i.e., within a specified lower and upper limit).
The limiting factor for the total number of possible observations or results is the sensitivity
of the measuring instrument. When weighing tablets or making blood pressure measure-
ments, there are an infinite number of possible values that can be observed if the measure-
ment could be made to an unlimited number of decimal places. However, if the balance,
for example, is sensitive only to the nearest milligram, the data will appear as discrete
values. For tablets targeted at 1 g and weighed to the nearest milligram, the tablet weights
might range from 900 to 1100 mg, a total of 201 possible integral values (900, 901, 902,
903, …, 1098, 1099, 1100). For the same tablet weighed on a more sensitive balance, to
the nearest 0.1 mg, values from 899.5 to 1100.4 might be possible, a total of 2010 possible
values, and so on.

Often, continuous variables cannot be easily measured but can be ranked in order of
magnitude. In the assessment of pain in a clinical study of analgesics, a patient can have
a continuum of pain. To measure pain on a continuous numerical scale would be difficult.
On the other hand, a patient may be able to differentiate slight pain from moderate pain,
moderate pain from severe pain, and so on. In analgesic studies, scores are commonly
assigned to pain severity, such as no pain � 0, slight pain � 1, moderate pain � 2, and
severe pain � 3. Although the scores cannot be thought of as an exact characterization
of pain, the value 3 does represent more intense pain than the values 0, 1, or 2. The scoring
system above is a representation of a continuous variable by discrete ‘‘scores’’ which can
be rationally ordered or ranked from low to high. This is commonly known as a rating
scale, and the ranked data are on an ordinal scale. The rating scale is an effort to quantify
a continuous, but subjective, variable.

* For a further discussion of different kinds of variables, see Sec. 15.1 in Chapter 15, Nonparametric
Methods.
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1.1.2 Discrete Variables

In contrast to continuous variables, discrete variables can take on a countable number of
values. These kinds of variables are commonly observed in biological and pharmaceutical
experiments and are exemplified by measurements such as the number of anginal episodes
in 1 week or the number of side effects of different kinds after drug treatment. Although not
continuous, discrete data often have values associated with them which can be numerically
ordered according to their magnitude, as in the examples given earlier of a rating scale
for pain and the number of anginal episodes per week.

Discrete data that can be named (nominal), categorized into two or more classes, and
counted are called categorical variables, or attributes; for example, the attributes may be
different side effects resulting from different drug treatments or the presence or absence
of a defect in a finished product. These kinds of data are frequently observed in clinical and
pharmaceutical experiments and processes. A finished tablet classified in quality control as
‘‘defective’’ or ‘‘not defective’’ is an example of a categorical or attribute type of variable.
In clinical studies, the categorization of a patient by sex (male or female) or race is a
classification according to attributes. When calculating ED50 or LD50, animals are catego-
rized as ‘‘responders’’ or ‘‘non-responders’’ to various levels of a therapeutic agent, a
categorical response. These examples describe variables that cannot be ordered. A male
is not associated with a higher or lower numerical value than a female.

Continuous variables can always be classified into discrete classes where the classes
are ordered. For example, patients can be categorized as ‘‘underweight,’’ ‘‘normal
weight,’’ or ‘‘overweight’’ based on criteria such as those listed in Metropolitan Life
Insurance tables of ‘‘Desirable Weights for Men and Women’’[1]. In this example, ‘‘over-
weight’’ represents a condition that is greater than ‘‘underweight.’’

Thus we can roughly classify data as:

1. Continuous (blood pressure, weight)
2. Discrete, associated with numbers and ordered (number of anginal episodes per

week)
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3. Attributes: categorical, ordered (degree of overweight)
4. Attributes: categorical, not ordered (male or female)

1.2 FREQUENCY DISTRIBUTIONS AND CUMULATIVE FREQUENCY
DISTRIBUTIONS

1.2.1 Frequency Distributions

An important function of statistics is to facilitate the comprehension and meaning of large
quantities of data by constructing simple data summaries. The frequency distribution is
an example of such a data summary, a table or categorization of the frequency* of occur-
rence of variables in various class intervals. Sometimes a frequency distribution of a set
of data is simply called a ‘‘distribution.’’ For a sampling of continuous data, in general,
a frequency distribution is constructed by classifying the observations (variables) into a
number of discrete intervals. For categorical data, a frequency distribution is simply a
listing of the number of observations in each class or category, such as 20 males and 30
females entered in a clinical study. This procedure results in a more manageable and
meaningful presentation of the data.

Table 1.1 is a tabulation of serum cholesterol changes resulting from the administration
of a cholesterol-lowering agent to a group of 156 patients. The data are presented in the
order in which results were reported from the clinic.

A frequency distribution derived from the 156 cholesterol values is shown in Table
1.2. This table shows a tabulation of the frequency, or number, of occurrences of values
that fall into the various class intervals of ‘‘serum cholesterol changes.’’ Clearly, the
condensation of the data as shown in the frequency distribution in Table 1.2 allows for a
better ‘‘feeling’’ of the experimental results than do the raw data represented by the

* The frequency is the number of observations in a specified interval or class: for example, tablets
weighing between 300 and 310 mg, or the number of patients who are female.
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Table 1.1 Serum Cholesterol Changes (mg %) for 156 Patients After Administration of
a Drug Tested for Cholesterol-Lowering Effecta

17 �12 25 �37 �29 �39
�22 0 �22 �63 34 �31
�64 �12 �49 5 �8 33
�50 �7 16 �11 �38 �17

0 �9 �21 1 2 �30
�32 �34 �14 �18 5 6

24 �6 �49 �8 �49 �37
�25 �12 14 10 �41 �66
�31 35 21 �19 �27 17

�6 �17 �6 1 �28 40
�31 17 �54 �27 �16 16
�44 10 �3 �3 5 6
�19 9 �10 �20 �9 �8
�10 �11 11 �39 19 �32

4 �15 �18 35 6 20
46 24 �27 �19 5 �60
27 23 �22 �1 12 �27

�13 �39 39 �34 �97 �26
38 14 �47 8 26 �15

�62 12 �53 11 21 �47
�54 �11 �5 0 55 34
�69 �11 �44 20 �50 19

0 �25 �24 �4 14 2
�34 16 �23 �71 �58 9

9 2 �2 �58 13 14
17 �13 �22 �3 �17 1

aA negative number means a decrease and a positive number means an increase.

Table 1.2 Frequency Distribution of Serum Cholesterol
Changes (Data Taken from Table 1.1)

Class interval Frequency

�100 to �81 (�100.5 to �80.5) 1
�80 to �61 (�80.5 to �60.5) 6
�60 to �41 (�60.5 to �40.5) 16
�40 to �21 (�40.5 to �20.5) 31
�20 to �1 (�20.5 to �0.5) 40
�0 to �19 (�0.5 to �19.5) 43

�20 to �39 (�19.5 to �39.5) 16
�40 to �59 (�39.5 to �59.5) 3
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individual 156 results. For example, one can readily see that most of the patients had a
lower cholesterol value in response to the drug (a negative change) and that most of the
data lie between �60 and �19 mg %.

When constructing a frequency distribution, two problems must be addressed. The
first problem is how many classes or intervals should be constructed, and the second
problem is the specification of the width of each interval (i.e., specifying the upper and
lower limit of each interval). There are no definitive answers to these questions. The
choices depend on the nature of the data and good judgment. The number of intervals
chosen should result in a table that considerably improves the readability of the data. The
following rules of thumb are useful to help select the intervals for a frequency table:

1. Choose intervals that have significance in relation to the nature of the data. For
example, for the cholesterol data, intervals such as 18 to 32 would be cumbersome
and confusing. Intervals of width 10 or 20, such as those in Tables 1.2 and 1.3,
are more easily comprehended and manipulated arithmetically.

2. Try not to have too many empty intervals (i.e., intervals with no observations).
The half of the total number of intervals that contain the least number of observa-
tions should contain at least 10% of the data. The intervals with the least number
of observations in Table 1.2 are the first two intervals (�100 to �81 and �80
to �61) and the last two intervals (�20 to �39 and �40 to �59) (one-half
of the eight intervals), which contain 26 or 17% of the 156 observations.

3. Eight to twenty intervals are usually adequate.

Table 1.3 shows the same 156 serum cholesterol changes in a frequency table with
16 intervals. Which table gives you a better feeling for the results of this study, Table 1.2
or Table 1.3? (See also Exercise Problem 3.)

Table 1.3 Frequency Distribution
of Serum Cholesterol Changes
Using 16 Class Intervals

Class Interval Frequency

�100 to �91 1
�90 to �81 0
�80 to �71 1
�70 to �61 5
�60 to �51 6
�50 to �41 10
�40 to �31 14
�30 to �21 17
�20 to �11 22
�10 to �1 18

0 to �9 22
�10 to �19 21
�20 to �29 9
�30 to �39 7
�40 to �49 2
�50 to �59 1
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The width of all of the intervals, in general, should be the same. This makes the table
easy to read and allows for simple computations of statistics such as the mean and standard
deviation. The intervals should be mutually exclusive so that no ambiguity exists when
classifying values. In Table 1.2 and 1.3 we have defined the intervals so that a value can
only be categorized in one class interval. In this way, we avoid problems that can arise
when observations are exactly equal to the boundaries of the class intervals. If the class
intervals were defined so as to be continuous, such as �100 to �90, �90 to �80, �80
to �70, and so on, one must define the class to which a borderline value belongs, either
the class below or the class above, a priori. For example, a value of �80 might be defined
to be in the interval �80 to �70.

Another way to construct the intervals is to have the boundary values have one more
‘‘significant figure’’ than the actual measurements so that none of the values can fall on
the boundaries. The extra figure is conveniently chosen as 5. In the cholesterol example,
measurements were made to the nearest mg %; all values are whole numbers. Therefore,
two adjacent values can be no less different than 1 mg %, �10 and �11, for example.
The class intervals could then have a decimal of 0.5 at the boundaries, which means that
no value can fall exactly on a boundary value. The intervals in parentheses in Table 1.2
were constructed in this manner. This categorization, using an extra figure that is halfway
between the two closest possible values, makes sense from another point of view. After
rounding off, a value of �20 can be considered to be between 19.5 and 20.5, and would
naturally be placed in the interval 19.5 to 39.5, as shown in Table 1.2.

1.2.2 Stem-and-Leaf Plot

An expeditious and compact way of summarizing and tabulating large amounts of data,
by hand, known as the stem-and-leaf method [2], is best illustrated with an example. We
will use the data from Table 1.1 to demonstrate the procedure.

An ordered series of integers is conveniently chosen (see below) to cover the range
of values. The integers consist of the first digit(s) of the data, as appropriate, and are
arranged in a vertical column, the ‘‘stem.’’ By adding another digit(s) to one of the integers
in the stem column (the ‘‘leaves’’), we can tabulate the data in class intervals as in a
frequency table. For the data of Table 1.1, the numbers range from approximately �100
to �60. The stem is conveniently set up as follows:

�10 �7 �4 �1 �1 �4
� 9 �6 �3 �0 �2 �5
� 8 �5 �2 �0 �3 �6

In this example, the stem is the first digit(s) of the number and the leaf is the last digit.
The first value in Table 1.1 is 17. Therefore, we place a 7 (leaf) next to the �1 in the
stem column. The next value in Table 1.1 is �22. We place a 2 (leaf) next to �2 in the
stem column; and so on. Continuing this process for each value in Table 1.1 results in
the following stem-and-leaf diagram.
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�10
� 9 7
� 8
� 7 1
� 6 4 2 9 3 6 0
� 5 0 4 4 3 8 0 8
� 4 4 9 9 7 4 1 9 7
� 3 2 1 1 4 4 9 7 9 4 8 9 1 0 7 2
� 2 2 5 5 2 1 7 2 4 3 2 7 0 9 7 8 6 7
� 1 9 0 3 2 2 2 7 1 5 1 1 3 4 0 8 1 8 9 9 6 7 7 5
� 0 6 7 9 6 6 3 5 2 8 3 1 4 3 8 9 8
� 0 0 4 0 9 0 9 2 5 1 1 8 0 2 5 5 6 5 6 6 2 9 1
� 1 7 7 0 7 4 2 6 6 4 1 0 1 9 2 6 4 3 7 6 9 4
� 2 4 7 4 3 5 1 0 1 0
� 3 8 9 9 5 4 3 4
� 4 6 0
� 5 5
� 6

This is a list of all of the values in Table 1.1. The distribution of this data set is easily
visualized with no further manipulation. However, if necessary, one can easily construct
a frequency distribution from the configuration of data resulting from the stem-and-leaf
tabulation. (Note that all categories in this particular example can contain as many as 10
different numbers except for the �0 category, which can contain only nine numbers, �1
to �9 inclusive. This ‘‘anomaly’’ occurs because of the presence of both positive and
negative values and the value 0. In this example, 0 is arbitrarily assigned a positive value.)
In addition to the advantages of this tabulation noted above, the data is in the form of a
histogram, which is a common way of graphically displaying data distributions (see Chap-
ter 2).

1.2.3 Cumulative Frequency Distributions

A large set of data can be conveniently displayed using a cumulative frequency table or
plot. The data are first ordered and, with a large data set, may be arranged in a frequency
table with n class intervals. The frequency, often expressed as a proportion (or percentage),
of values equal to or less than a given value, Xi, is calculated for each specified value of
Xi, where Xi is the upper point of the class interval (i � 1 to n). A plot of the cumulative
proportion versus X can be used to determine the proportion of values that lie in some
interval, i.e., between some specified limits. The cumulative distribution for the tablet
potencies in Table 1.4 is shown in Table 1.5 and plotted in Fig. 1.1. The cumulative
proportion represents the proportion of values less than or equal to Xi (e.g., 29% of the
values are less than or equal to 98.5). Also, for example, from an inspection of Fig. 1.1,
one can estimate the proportion of tablets with potencies between 100 and 105 mg inclu-
sive, equal to approximately 0.48 (0.91 at 105 mg minus 0.43 at 100 mg). (See also
Exercise Problem 5.)

The cumulative distribution is a very important concept in statistics. In particular, the
application of the cumulative normal distribution, which is concerned with continuous
data, will be discussed in Chapter 3. A more detailed account of the construction and
interpretation of frequency distributions is given in Refs. 3–5.
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Table 1.4 Frequency Distribution of
Tablet Potencies

Frequency

Potency (mg) Wa
i Xb

i

89.5–90.5 1 90
90.5–91.5 0 91
91.5–92.5 2 92
92.5–93.5 1 93
93.5–94.5 5 94
94.5–95.5 1 95
95.5–96.5 2 96
96.5–97.5 7 97
97.5–98.5 10 98
98.5–99.5 8 99
99.5–100.5 13 100

100.5–101.5 17 101
101.5–102.5 13 102
102.5–103.5 9 103
103.5–104.5 0 104
104.5–105.5 0 105
105.5–106.5 5 106
106.5–107.5 4 107
107.5–108.5 0 108
108.5–109.5 0 109
109.5–110.5 2 110

�Wi � 100

aWt is the frequency.
bXt is the midpoint of the interval.

1.3 SAMPLE AND POPULATION

Understanding the concepts of samples and populations is important when discussing
statistical procedures. Samples are usually a relatively small number of observations taken
from a relatively large population or universe. The sample values are the observations,
the data, obtained from the population. The population consists of data with some clearly
defined characteristic(s). For example, a population may consist of all patients with a
particular disease, or tablets from a production batch. The sample in these cases could
consist of a selection of patients to participate in a clinical study, or tablets chosen for a
weight determination. The sample is only part of the available data. In the usual experimen-
tal situation, we make observations on a relatively small sample in order to make inferences
about the characteristics of the whole, the population. The totality of available data is the
population or universe. When designing an experiment, the population should be clearly
defined so that samples chosen are representative of the population. This is important in
clinical trials, for example, where inferences to the treatment of disease states are crucial.
The exact nature or character of the population is rarely known, and often impossible to
ascertain, although we can make assumptions about its properties. Theoretically, a popula-
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Table 1.5 Cumulative Frequency Distribution of Tablet
Potencies (Taken from Table 1.4)

Potency, Cumulative Cumulative
Xt (mg)a frequency (� X) proportion

90.5 1 0.01
92.5 3 0.03
93.5 4 0.04
94.5 9 0.09
95.5 10 0.10
96.5 12 0.12
97.5 19 0.19
98.5 29 0.29
99.5 37 0.37

100.5 50 0.50
101.5 67 0.67
102.5 80 0.80
103.5 89 0.89
106.5 94 0.94
107.5 98 0.98
110.5 100 1.00

aXt is the upper point of the class interval in Table 1.4, excluding null
intervals.

Figure 1.1 Cumulative proportion plot for data in Table 1.5 (tablet potencies).



11Basic Definitions and Concepts

Table 1.6 Examples of Samples and Populations

Population Sample

Tablet batch
Normal males between ages 18 and 65

years available to hospital
Sprague – Dawley weaning rats

Analysts working for company X

Persons with diastolic blood pressure
between 105 and 120 mmHg in the
United States

Serum cholesterol levels of one patient

Twenty tablets taken for content uniformity
Twenty-four subjects selected for a phase I clinical

study
100 rats selected to test possible toxic effects of a

new drug candidate
Three analysts from a company to test a new assay

method
120 patients with diastolic pressure between 105

and 120 mmHg to enter clinical study to compare
two antihypertensive agents

Blood samples drawn once a week for 3 months
from a single patient

tion can be finite or infinite in the number of its elements. For example, a finished package
contains a finite number of tablets; all possible tablets made by a particular process, past,
present, and future, can be considered infinite in concept. In most of our examples, the
population will be considered to be infinite, or at least very large compared to the sample
size. Table 1.6 shows some populations and samples, examples which should be familiar
to the pharmaceutical scientist.

1.3.1 Population Parameters and Sample Statistics

‘‘Any measurable characteristic of the universe is called a parameter’’ [6]. For example,
the average weight of a batch of tablets or the average blood pressure of hypertensive
persons in the United States are parameters of the respective populations. Parameters are
generally denoted by Greek letters; for example, the mean of the population is denoted
as �. Note that parameters are characteristic of the population, and are values that are
usually unknown to us.

Quantities derived from the sample are called sample statistics. Corresponding to the
true average weight of a batch of tablets is the average weight for the small sample taken
from the population of tablets. We should be very clear about the nature of samples.
Emphasis is placed here (and throughout this book) on the variable nature of such sample
statistics. A parameter, for example, the mean weight of a batch of tablets, is a fixed value;
it does not vary. Sample statistics are variable. Their values depend on the particular
sample chosen and the variability of the measurement. The average weight of 10 tablets
will differ from sample to sample because:

1. We choose 10 different tablets at each sampling.
2. The balance (and our ability to read it) is not exactly reproducible from one

weighing to another.

An important part of the statistical process is the characterization of a population by
estimating its parameters. The parameters can be estimated by evaluating suitable sample
statistics. The reader will probably have little trouble in understanding that the average
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weight of a sample of tablets (a sample statistic) estimates the true mean weight (a parame-
ter) of the batch. This concept is elucidated and expanded in the remaining sections of
this chapter.

1.4 MEASURES DESCRIBING THE CENTER OF DATA
DISTRIBUTIONS

1.4.1 The Average

Probably the most familiar statistical term in popular use is the average, denoted by X̄ (X
bar). The average is also commonly known as the mean or arithmetic average. The average
is a summarizing statistic and is a measure of the center of a distribution, particularly
meaningful if the data are symmetrically distributed below and above the average. Symbol-
ically, the mean is equal to

(1.1)
X

N

i
i

N

=
∑

1

the sum of the observations divided by the number of observations. �N
i�1Xi is the sum of

the N values, each denoted by Xi, (X1, X2, …, Xn), where i can take on the values 1, 2, 3,
4, …, N*. The average of the values 7, 11, 6, 5, and 4 is

7 11 6 5 4

5
6 6

+ + + + = .

This is an unweighted average, each value contributing equally to the average.

1.4.2 Other Kinds of Averages

When averaging observations, we usually think of giving each observation equal weight.
The usual formula for the average (� Xi/N) gives each value equal weight. If we believe
that the values to be averaged do not carry the same weight, then we should use a weighted
average. The average of 3 cholesterol readings, 210, 180 and 270 is (660)/3 � 220.
Suppose that the value of 210 is really the average of two values (200 and 220), we might
want to consider giving this value twice as much weight as the other two values, resulting
in an average

[ ] / .210 210 180 270 4 217 5+ + + =

or

[ ] /[ ] .2 210 180 270 2 1 1 217 5× + + + + =

The formula for a weighted average, X̄w is

(1.2)W X Wi i i∑ ∑( ) ( )
where Wi is the weight assigned to the value Xi. The weights for the calculation of a

* For the most part, when using summation notation in this book, we will not use the full notation,
such as �N

i�1 Xi, but rather � X, the i notation being implied, unless otherwise stated.
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weighted average are often the number of observations associated with the values Xi. This
concept is illustrated for the calculation of the average for data categorized in the form
of a frequency distribution. Table 1.4 shows a frequency distribution of 100 tablet poten-
cies. The frequency is the number of observations of tablets in a given class interval, as
defined previously. The frequency or number of tablets in a ‘‘potency’’ interval is the
weight used in the computation of the weighted average. The value X associated with the
weight is taken as the midpoint of the interval; for example, for the first interval, 89.5 to
90.5, X1 � 90. Applying Eq. (1.2), the weighted average is � WiXi/� Wi:

1 90 0 91 2 92 1 93 5 94 4 107 2 110

1 0 2 1 5 4 2

× + × + × + × + × + + × + ×
+ + + + + +

. . .

. . .

which equals 10,023/100 � 100.23 mg.
It is not always obvious when to use a weighted average, and one should have a

substantial knowledge of the circumstances and nature of the data in order to make this
decision. In the previous example, if the 210 value (the average of two observations) came
from one patient and the other values were single observations from two different patients,
one may not want to use a weighted average. The reasoning in this example may be that
this average is meant to represent the true average cholesterol of these three patients, each
of whom have different cholesterol levels. There does not seem to be a good reason to
give twice as much weight to the ‘‘210’’ patient because that patient happened to have
two readings. This may be more clearly seen if the patient had 100 readings and the other
two patients only a single reading. The unweighted average would be very close to the
average of the patient with the 100 readings and would not represent the average of the
three patients. In this example, the average of three values (one value for each patient)
would be a better representation of the average, [210 � 180 � 270]/3 � 220.

If the 4 values were obtained from one patient where the 210 average came from one
laboratory and the other two values from two different laboratories, the following reasoning
might be useful to understand how to treat the data properly. If the different laboratories
used the same analytical method that was expected to yield the same result, a weighted
average would be appropriate (give twice the weight to the 210 value). If the laboratories
have different methods that give different results for the same sample, an unweighted
average may be more appropriate.

The distribution of particle size of a powdered blend is often based on the logarithm
of the particle size (See Chapter 10, Sect. 10.1.1). The quantity (weight) of powder in a
given interval of particle size may be considered a weighting factor when computing the
average particle size. Table 1.7 shows the particle size distribution (frequency distribution)
of a powder, where the class intervals are based on the logarithm of the sieve size fractions.
The weighted average can be calculated as:

(1.3)Xw

_

( ) ( )= ×∑ ∑weight log sieve size weights

The weight is the percentage of powder found for a given particle size (or interval
of sieve sizes). Note that for this example, the sieve size is taken as the midpoint of the
untransformed class (sieve size) interval.

From Eq. (1.3), Weighted Average � 376.7595/100.0 � 3.7676. Since sieve size is
in log terms, the antilog of 3.7676 � 43.3 is an estimate of the average particle size. (For
more advanced methods of estimating the parameters of particle size distributions, see
Refs. 10 and 11.)
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Table 1.7 Distribution of Particle Size of Powder

Midpoint Log sieve
sieve size size (Y) Weight (W) (WT) � (Y)

10a 2.3026 19.260 44.3478
30 3.4012 24.015 81.6797
50 3.1920 22.240 87.0034
70 4.2485 7.525 31.9699
90 4.4998 6.515 29.3163

150b 5.0106 20.445 102.4424
SUM 100.00 376.7595

a10 is for sieve size less than 20, i.e., between 0 and 20.
b150 is substituted for �100.

The calculation of the variance of a weighted average is dependent on the nature of
the weighted average and an experienced statistician should be consulted if necessary (see
SAS manual for options). This more advanced concept is discussed further in Sect. 1.5.5.

Two other kinds of averages that are sometimes found in statistical procedures are
the geometric and harmonic means. The geometric mean is defined as

X X X Xn
n1 2 3⋅ ⋅ ⋅ ⋅ ⋅

or the nth root of the product of n observations.
The geometric mean of the numbers 50, 100, and 200 is

50 100 200 1 000 000 1003 3⋅ ⋅ = =, ,

If a measurement of population growth shows 50 at time 0, 100 after one day, and
200 after 2 days, the geometric mean (100) is more meaningful than the arithmetic mean
(116.7). The geometric mean is always less than or equal to the arithmetic mean, and is
meaningful for data with logarithmic relationships. (See also Section 15.1.1.) Note that
the logarithm of 3�50 ⋅ 100 ⋅ 200 is equal to [log 50 � log 100 � log 200]/3, which is

the average of the logarithms of the observations. The geometric mean is the antilog of
this average (the antilog of the average is 100).

The harmonic mean is the appropriate average following a reciprocal transformation
(Chapter 10). The harmonic mean is defined as

N

Xi1/∑
For the 3 observations 2, 4, and 8 (N � 3), the harmonic mean is

3

1 2 1 4 1 8
3 429

/ / /
.

+ +
=

1.4.3 The Median

Although the average is the most often used measure of centrality, the median is also a
common measure of the center of a data set. When computing the average, very large or
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Figure 1.2 Average illustrated as balancing forces.

very small values can have a significant effect on the magnitude of the average. For
example, the average of the numbers 0, 1, 2, 3, and 34 is 8. The arithmetic average acts
as the fulcrum of a balanced beam, with weights placed at points corresponding to the
individual values, as shown in Fig. 1.2. The single value 34 needs four values, 0, 1, 2,
and 3, as a counterbalance.

The median represents the center of a data set, without regard for the distance of each
point from the center. The median is that value which divides the data in half, half the
values being less than and half the values greater than the median value. The median is
easily obtained when the data are ranked in order of magnitude. The median of an odd
number of different* observations is the middle value. For 2N � 1 values, the median is
the (N � 1)th ordered value. The median of the data 0, 1, 2, 3, and 34 is the third (middle)
value, 2(N � 2, 2N � 1 � 5 values). By convention, the median for an even number
of data points is considered to be the average of the two center points. For example, the
median of the numbers, 0, 1, 2, and 3 is the average of the center points, 1 and 2, equal
to (1 � 2)/2 � 1.5. The median is often used as a description of the center of a data set
when the data have an asymmetrical distribution. In the presence of either extremely high
or extremely low outlying values, the median appears to describe the distribution better
than does the average. The median is more stable than the average in the presence of
extreme observations. A very large or very small value has the same effect on the calcula-
tion of the median as any other value, larger or smaller than the median, respectively. On
the other hand, as noted previously, very large and very small values have a significant
effect on the magnitude of the mean.

The distribution of individual yearly incomes, which have relatively few very large
values (the multimillionaires), serves as a good example of the use of the median as a
descriptive statistic. Because of the large influence of these extreme values, the average
income is higher than one might expect on an intuitive basis. The median income, which
is less than the average income, represents a figure that is readily interpreted; that is, one-
half of the population earns more (or less) than the median income.

The distribution of particle sizes for bulk powders used in pharmaceutical products
is often skewed. In these cases, the median is a better descriptor of the centrality of the
distribution than is the mean [7]. The median is less efficient than the mean as an estimate
of the center of a distribution; that is, the median is more variable [8]. For most of the
problems discussed in this book, we will be concerned with the mean rather than the
median as a measure of centrality.

The median is also known as the 50th percentile of a distribution. To compute percen-
tiles, the data are ranked in order of magnitude, from smallest to largest. The nth percentile

* If the median value is not unique, that is, two or more values are equal to the median, the median
is calculated by interpolation [3].
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denotes a value below which n percent of the data are found, and above which (100 �
n) percent of the data are found. The 10th, 25th, and 75th percentiles represent values
below which 10%, 25%, and 75%, respectively, of the data occur. For the tablet potencies
shown in Table 1.5, the 10th percentile is 95.5 mg; 10% of the tablets contain less than
95.5 mg and 90% of the tablets contain more than 95.5 mg of drug. The 25th, 50th, and
75th percentiles are also known as the first, second, and third quartiles, respectively.

The mode is less often used as the central, or typical, value of a distribution. The
mode is that value which occurs with the greatest frequency. For a symmetrical distribution
that peaks in the center, such as the normal distribution (see Chapter 3) the mode, median,
and mean are identical. For data skewed to the right (e.g., incomes), which contain a
relatively few very large values, the mean is larger than the median, which is larger than
the mode (see Fig. 10.1, Chapter 10).

1.5 MEASUREMENT OF THE SPREAD OF DATA

The mean (or median) alone gives no insight or information about the spread or range of
values that comprise a data set. For example, a mean of five values equal to 10 may be
comprised of the numbers

0 5 10 15 20 5 10 10 10 15, , , , , , , ,and or and

The mean, coupled with the standard deviation or range, is a succinct and minimal descrip-
tion of a group of experimental observations or a data distribution. The standard deviation
and the range are measures of the spread of the data; the larger the magnitude of the
standard deviation or range, the more spread out the data are. A standard deviation of 10
implies a wider range of values than a standard deviation of 3, for example.

1.5.1 Range

The range, denoted as R, is the difference between the smallest and the largest values in
the data set. For the data in Table 1.1, the range is 152, from �97 to �55 mg %. The
range is based on only two values, the smallest and largest, and is more variable than the
standard deviation (i.e., it is less stable).

1.5.2 Standard Deviation and Variance

The standard deviation, denoted as s.d. or S, is calculated as

(1.4)X X

N

−( )
−

∑ 2

1

where N is the number of data points (or sample size) and � (X � X̄)2 is the sum of
squares of the differences of each value from the mean, X̄. The standard deviation is more
difficult to calculate than is the range.

Consider a group of data points: 101.8, 103.2, 104.0, 102.5, and 103.5. The mean is
103.0. Details of the calculation of the standard deviation are shown in Table 1.8. The
difference between each value and the mean is calculated: X � X̄. These differences are
squared, (X � X̄)2, and summed. The sum of the squared differences divided by N � 1
is calculated, and the square root of this result is the standard deviation.
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Table 1.8 Calculation of the Standard Deviation

X X̄ X – X̄ (X – X̄)2

101.8 103 �1.2 1.44
103.2 103 0.2 0.04
104.0 103 1.0 1.00
102.5 103 �0.5 0.25
103.5 103 0.5 0.25

∑ X � 515 ∑ (X – X̄)2 � 2.98

Σ
s d

X X

N
= −

−
= =

−

1

2 98

4
0 86

2

. .
( ) .

.

With the accessibility of electronic calculators and computers, it is rare, nowadays,
to hand-compute a mean and standard deviation (or any other calculation, for that matter).
Nevertheless, when computing the standard deviation by hand (or with the help of a
calculator), a well-known shortcut computing formula is recommended. The shortcut is
based on the identity

( )X X X
X

N
− = −

( )− ∑∑∑ 2 2

2

Therefore,

(1.5)s.d. =
X2 − ( )

−
ΣX N

N

2

1

/Σ

where � X2 is the sum of each value squared and (� X)2 is the square of the sum of all
the values [(� X)2/N is also known as the correction term]. We will apply this important
formula, Eq. (1.5), to the data above to illustrate the calculation of the standard deviation.
This result will be compared to that obtained by the more time-consuming method of
squaring each deviation from the mean (Table 1.8).

( ) . . . . .

.

X X− = + + + + −

=

∑ 2 2 2 2 2 2
2

101 8 103 2 104 0 102 5 103 5
515

5
2 98

−

The standard deviation is �2.98/4 � 0.86, as before.

The variance is the square of the standard deviation, often represented as S2. The
variance is calculated as:

(1.6)S
X X

N
2

2

1
=

−
−

∑ −
( )

In the example of the data in Table 1.8, the variance, S2, is
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2 98

4
0 745

.
.=

A question that often puzzles new students of statistics is: Why use N � 1 rather than N
in the denominator in the expression for the standard deviation or variance [Eqs. (1.4)
and (1.6)]?

The variance of the population, a parameter traditionally denoted as �2 (sigma
squared), is calculated as*

(1.7)σ2
2

=
−∑ −

( )X X

N

where N is the number of all possible values in the population. The use of N � 1 rather
than N in the calculation of the variance of a sample (a sample statistic) makes the sample
variance an unbiased estimate of the population variance. Because the sample variance is
variable (a random variable), in any given experiment, S2 will not be exactly equal to the
true population variance, �2. However, in the long run, S2 (calculated with N � 1 in the
denominator) will equal �2, on the average. ‘‘On the average’’ means that if samples of
size N were repeatedly randomly selected from the population, and the variance calculated
for each sample, the averages of these calculated variance estimates would equal �2. Note
that the sample variance is an estimate of the true population variance �2.

If S2 estimates �2 on the average, the sample variance is an unbiased estimate of the
population variance. It can be proven that the sample variance calculated with N � 1 in
the denominator is an unbiased estimate of �2. To try to verify this fact by repeating
exactly the same laboratory or clinical experiment (if the population variance were known)
would be impractical. However, for explanatory purposes, it is often useful to illustrate
certain theorems by showing what would happen upon repeated sampling from the same
population. The concept of the unbiased nature of the sample variance can be demonstrated
using a population that consists of three values: 0, 1, and 2. The population variance,
� (X � X̄)2/3, is equal to 2/3 [see Eq. (1.7)]. Using the repeated sample approach noted
above, samples of size 2 are repeatedly selected at random from this population. The first
choice is replaced before selection of the second choice so that each of the three values
has an equal chance of being selected on both the first and second selection. (This is
known as sampling with replacement.) The following possibilities of samples of size 2
are equally likely to be chosen:

0 1 1 0 0 2 2 0 1 2 2 1 1 1 2 2 0 0, ; , ; , ; , ; , ; , ; , ; , ; ,

The sample variance† of these nine pairs are [� (X � X̄)2 /(N � 1)] 0.5, 0.5, 2, 2, 0.5,
0.5, 0, 0, and 0, respectively. The average of the nine equally likely possible variances is

0 5 0 5 2 2 0 5 0 5 0 0 0

9

6

9

2

3

. . . .+ + + + + + + + = =

exactly equal to the population variance. This demonstrates the unbiased character of the

* Strictly speaking, this formula is for a population with a finite number of data points.
† For samples of size 2, the variance is simply calculated as the square of the difference of the

values divided by 2, d2/2. For example, the variance of 0 and 1 is (1 � 0)2/2 � 0.5.
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sample variance. The sample standard deviation [Eq. (1.4)] is not an unbiased estimate
of the population standard deviation, �, which for a finite population is calculated as

(1.8)
( )X X

N

−
−∑ 2

The observed variance is not dependent on the sample size. The sample variance will
equal the true variance ‘‘on the average,’’ but the variability of the estimated variance
decreases as the sample size increases. The unbiased nature of a sample estimate of a
population parameter, such as the variance or the mean, is a desirable characteristic. X̄,
the sample estimate of the true population mean, is also an unbiased estimate of the true
mean. (The true mean is designated by the Greek letter �. In general, population parameters
are denoted by Greek letters as noted previously.)

One should be aware that some calculators which have a built-in function for calculat-
ing the standard deviation use N in the denominator of the formula for the standard devia-
tion. As we have emphasized above, this is correct for the calculation of the population
standard deviation (or variance), and will be close to the calculation of the sample standard
deviation when N is large.

The value of N � 1 is also known as the degrees of freedom for the sample (later
we will come across situations where degrees of freedom are less than N � 1). The
concept of degrees of freedom (denoted as d.f.) is very important in statistics, and we will
have to know the degrees of freedom for the variance estimates used in statistical tests to
be described in subsequent chapters.

1.5.3 Coefficient of Variation

The variability of data may often be better described as a relative variation rather than as
an absolute variation, such as that represented by the standard deviation or range. One
common way of expressing the variability, which takes into account its relative magnitude,
is the ratio of the standard deviation to the mean, s.d./X̄. This ratio, often expressed as a
percentage, is called the coefficient of variation, abbreviated as C.V., or R.S.D., the relative
standard deviation. A coefficient of variation of 0.1 or 10% means that the s.d. is one-
tenth of the mean. This way of expressing variability is useful in many situations. It puts
the variability in perspective relative to the magnitude of the measurements and allows a
comparison of the variability of different kinds of measurements. For example, a group
of rats of average weight 100 g and s.d. of 10 g has the same relative variation (C.V.) as
a group of animals with average weight 70 g and standard deviation of 7 g. Many measure-
ments have an almost constant C.V., the magnitude of the s.d. being proportional to the
mean. In biological data, the coefficient of variation is often between 20 and 50%, and
one would not be surprised to see an occasional C.V. as high as 100% or more. The
relatively large C.V. observed in biological experiments is due mostly to ‘‘biological
variation,’’ the lack of reproducibility in living material. On the other hand, the variability
in chemical and instrumental analyses of drugs is usually relatively small. Thus it is not
unusual to find a C.V. of less than 1% for some analytical procedures.

1.5.4 Standard Deviation of the Mean (Standard Error of the Mean)

The standard deviation is a measure of the spread of a group of individual observations,
a measure of their variability. In statistical procedures to be discussed in this book, we



20 Chapter 1

Table 1.9 Means of Potencies
of Five Sets of 100 Tablets
Selected from a Production
Batch

Sample Mean potency

1 99.84
2 100.23
3 100.50
4 100.96
5 100.07

are more concerned with making inferences about the mean of a distribution rather than
with individual values. In these cases, the variability of the mean rather than the variability
of individual values is of interest. The sample mean is a random variable, just as the
individual values that comprise the mean are variable. Thus repeated sampling of means
from the same population will result in a distribution of means which has its own mean
and standard deviation.

The standard deviation of the mean, commonly known as the standard error of the
mean, is a measure of the variability of the mean. For example, the average potency of
the 100 tablets shown in Table 1.4 may have been determined to estimate the average
potency of the population, in this case, a production batch. An estimate of the variability
of the mean value would be useful. The mean tablet potency is 100.23 mg and the standard
deviation is 3.687. To compute the standard deviation of the mean (also designated as
Sx̄), we might assay several more sets of 100 tablets and calculate the mean potency of
each sample. This repeated sampling would result in a group of means, each composed
of 100 tablets, with different values, such as the five means shown in Table 1.9. The
standard deviation of this group of means can be calculated in the same manner as the
individual values are calculated [Eq. (1.4)]. The standard deviation of these five means
is 0.431. We can anticipate that the s.d. of the means will be considerably smaller than
the s.d. calculated from the 100 individual potencies. This fact is easily comprehended if
one conceives of the mean as ‘‘averaging out’’ the extreme individual values that may
occur among the individual data. The means of very large samples taken from the same
population are very stable, tending to cluster closer together than the individual data, as
illustrated in Table 1.9.

Fortunately, we do not have to perform real or simulated sampling experiments, such
as weighing five sets of 100 tablets each, to obtain replicate data in order to estimate the
s.d. of means. Statistical theory shows that the standard deviation of mean values is equal
to the standard deviation calculated from the individual data divided by �N, where N is

the sample size*:

(1.9)S
S

N
X =

* The variance of a mean, S 2
X̄, is S2/N.
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The standard deviation of the numbers shown in Table 1.4 is 3.687. Therefore, the standard
deviation of the mean for the potencies of 100 tablets shown in Table 1.4 is estimated as
S/�N � 3.687/�100 � 0.3687. This theory verifies our intuition; the s.d. of means is
smaller than the s.d. of the individual data points. The student should not be confused by
the two estimates of the standard deviation of the mean illustrated above. In the usual
circumstance, the estimate is derived as S/�N (0.3687 in this example). The data in Table
1.3 were used only to illustrate the concept of a standard deviation of a mean. In any
event, the two estimates are not expected to agree exactly; after all, Sx̄ is also a random
variable and only estimates the true value, �/�N.

As the sample size increases, the standard deviation of the mean becomes smaller
and smaller. We can reduce the s.d. of the mean, Sx̄, to a very small value by increasing
N. Thus means of very large samples hardly vary at all. The concept of the standard
deviation of the mean is important, and the student will find it well worth the extra effort
made to understand the meaning and implications of Sx̄.

1.5.5 Variance of a Weighted Average*

The general formula for the variance of a weighted average is

(1.10)S w s ww i i i
2 2 2 2

= ( ) ( )∑ ∑
where s 2

i is the variance of the ith observation. To compute the variance of the weighted
mean, we would need to have an estimate of the variance of each observation.

If the weights of the observations are taken to be 1/s 2
i (the reciprocal of the variance,

a common situation), then s 2
w �1/� (1/s 2

i ). This formula can be applied to the calculation
of the variance of the grand average of a group of i means where the variance of the
individual observations is constant, equal to s2. (We know that the variance of the grand
average is s2/N, where N � � ni). The variance of each mean, s 2

i , is s2/ni, where ni is the
number of observations in group i. In this example, the weights are considered to be the
reciprocal of the variance, and s 2

w � 1/� (ni/s2) � s2/� ni. Of course, we need to know
s2 (or have an estimate) in order to calculate (or estimate) the variance of the average.
An estimate of the variance, s2, in this example is � ni(Yi � Ȳw)2 /(N � 1), where the ni

act as the weights and N is the number of observations.
The following calculation can be used to estimate the variance where a specified

number of observations is available as a measure of the weight (as in a set of means).
The variance of a set of weighted data can be estimated as follows:

(1.11)estimated variance = −( ) −( )∑ ∑w Y Y wi i w i

2
1

where wi is the weight associated with Yi, and Ȳw � weighted average of Y.
A shortcut formula is

(1.12)wY w Y w wi i i i i i
2 2

1( )− ( ) ( )



 −( )∑∑ ∑ ∑

Example:

* This is a more advanced topic.
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Table 1.10 Data for Calculation of Variance of a Weighted Mean

Weight Weight 
Number of particles � �

Midpoint � weight midpoint midpoint2

Diameter m Yi wi wiYi wiY i
2

0–10 5 25 125 625
10–20 15 35 525 7875
30–40 35 15 525 18375
40–60 50 25 1250 62500

SUM 100 2425 89375

The diameters of 100 particles were measured with the results shown in Table 1.10.
From Eq. (1.12), the variance is estimated as [89375 � (2425)2/100]/99 � 308.8.

SD � �308.8 � 17.6. The SD of the mean is 17.6/�100 � 1.76. Note: The weighted

average is 2425/100 � 24.25.
In this example, it makes sense to divide the corrected sum of squares by (N � 1),

because this sum of squares is computed using data from 100 particles. In some cases,
the computation of the variance is not so obvious.

1.6 CODING

From both a practical and a theoretical point of view, it is useful to understand how the
mean and standard deviation of a group of numbers are affected by certain arithmetic
manipulations, particularly adding a constant to, or subtracting a constant from each value;
and multiplying or dividing each value by a constant.

Consider the following data to exemplify the results described below:

2 3 5 10

5

12 67

3 56

2

, , ,

.

.

Mean

Variance

Standard deviation

= =

= =
= =

−
X

S

S

1. Addition or subtraction of a constant will cause the mean to be increased or
decreased by the constant, but will not change the variance or standard deviation. For
example, adding �3 to each value results in the following data:

5 6 8 13

8

3 56

, , ,

.

X

S

−
=
=

Subtracting 2 from each value results in
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0 1 3 8

3

3 56

, , ,

.

X

S

−
=
=

This property may be used to advantage when hand calculating the mean and standard
deviation of very large or cumbersome numbers. Consider the following data:

1251 1257 1253 1255, , ,

Subtracting 1250 from each value we obtain

1 7 3 5

4

2 58

, , ,

.

X

S

−
=
=

To obtain the mean of the original values, add 1250 to the mean obtained above, 4. The
standard deviation is unchanged. For the original data

X

S

−
= + =
=

1250 4 1254

2 58.

This manipulation is expressed in Eq. (1.13) where Xi represents one of n observations
from a population with variance �2. C is a constant and X̄ is the average of the Xi’s.

(1.13)
Average

Variance

( ) ( ) /

( )

X C X C n X C

X C

i i

i

+ = + = +

+ =
∑ −

σ2

2. If the mean of a set of data is X̄ and the standard deviation is S; multiplying or
dividing each value by a constant k results in a new mean of kX̄ or X̄/k, respectively, and
a new standard deviation of kS or S/k, respectively. Multiplying each of the original values
above by 3 results in

6 9 15 30

15 3 5

10 68 3 3 56

, , ,

( )

. ( . )

X

S

−
= ×
= ×

Dividing each value by 2 results in

1 1 5 2 5 5

2 5 5 2

1 78 3 56 2

, . , . ,

. ( / )

. ( . / )

X

S

−
=
=

In general,

(1.14)
Average

Variance

( )

( )

C X C X

C X C

i

i

⋅ =

⋅ =

−

2 2σ

These results can be used to show that a set of data with mean X̄ and standard deviation
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equal to S can be converted to data with a mean of 0 and a standard deviation of 1 (as in
the ‘‘standardization’’ of normal curves, discussed in Sect. 3.4.1). If the mean is subtracted
from each value, and this result is divided by S, the resultant data have a mean of 0 and
a standard deviation of 1. The transformation is

(1.15)
X X

S

−
−

Standard scores are values that have been transformed according to Eq. (1.15) [9]. For
the original data, the first value 2 is changed to (2 � 5)/3.56 equal to �0.84. The interested
reader may verify that transforming the values in this way results in a mean of 0 and a
s.d. of 1.

1.7 PRECISION, ACCURACY, AND BIAS

When dealing with variable measurements, the definitions of precision and accuracy, often
obscure and not distinguished in ordinary usage, should be clearly defined from a statistical
point of view.

1.7.1 Precision

In the vocabulary of statistics, precision refers to the extent of variability of a group of
measurements observed under similar experimental conditions. A precise set of measure-
ments is compact. Observations, relatively close in magnitude, are considered to be precise
as reflected by a small standard deviation. (Note that means are more precisely measured
than individual observations according to this definition). An important, sometimes elusive
concept is that a precise set of measurements may have the same mean as an imprecise
set. In most experiments with which we will be concerned, the mean and standard deviation
of the data are independent (i.e., they are unrelated). Fig. 1.3 shows the results of two
assay methods, each performed in triplicate. Both methods have an average result of 100%,
but method II is more precise.

Figure 1.3 Representation of two analytical methods with the same accuracy but different
precisions.
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1.7.2 Accuracy

Accuracy refers to the closeness of an individual observation or mean to the true value.
The ‘‘true’’ value is that result which would be observed in the absence of error (e.g., the
true mean tablet potency or the true drug content of a preparation being assayed). In the
example of the assay results shown in Fig. 1.3, both methods are apparently equally
accurate (or inaccurate).

Figure 1.4 shows the results of two dissolution methods for two formulations of the
same drug, each formulation replicated four times by each method. The objective of the
in vitro dissolution test is to simulate the in vivo oral absorption of the drug from the two
dosage-form modifications. The first dissolution method, A, is very precise but does not
give an accurate prediction of the in vivo results. According to the dissolution data for
method A, we would expect that formulation I would be more rapidly and extensively
absorbed in vivo. The actual in vivo results depicted in Fig. 1.4 show the contrary result.
The less precise method, method B in this example, is a more accurate predictor of the
true in vivo results. This example is meant to show that a precise measurement need not
be accurate, nor an accurate measurement precise.

Of course, the best circumstance is to have data that are both precise and accurate.
If possible, we should make efforts to improve both the accuracy and precision of experi-
mental observations. For example, in drug analysis, advanced electronic instrumentation
can greatly increase the accuracy and precision of assay results.

Figure 1.4 In vitro dissolution results for two formulations using two different methods
and in vivo blood level versus time results. Methods A and B, in vitro; C, in vivo.
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1.7.3 Bias

Accuracy can also be associated with the term bias. The notion of bias has been discussed
in Sect. 1.4 in relation to the concept of unbiased estimates (e.g., the mean and variance).
The meaning of bias in statistics is similar to the everyday definition in terms of ‘‘fairness.’’
An accurate measurement, no matter what the precision, can be thought of as unbiased,
because an accurate measurement is a ‘‘fair’’ estimate of the true result. A biased estimate
is systematically either higher or lower than the true value. A biased estimate can be
thought of as giving an ‘‘unfair’’ notion of the true value. For example, when estimating
the average result of experimental data, the mean, X̄, represents an estimate of the true
population parameter, �, and in this sense is considered accurate and unbiased. An average
blood pressure reduction of 10 mmHg due to an antihypertensive agent, derived from data
from a clinical study of 200 patients, can be thought of as an unbiased estimate of the
true blood pressure reduction due to the drug, provided that the patients are appropriately
selected at ‘‘random.’’ The true reduction in this case is the average reduction that would
be observed if the antihypertensive effect of the drug were known for all members of the
population (e.g., all hypertensive patients). The outcome of a single experiment, such as
the 10 mmHg reduction observed in the 200 patients above, will in all probability not be
identical to the true mean reduction. But the mean reduction as observed in the 200 patients
is an accurate and unbiased assessment of the population average. A biased estimate is
one which, on the average, does not equal the population parameter. In the example cited
above for hypertensives, a biased estimate would result if for all patients one nurse took

Figure 1.5 Bias in determining the effect of an antihypertensive drug.
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all the measurements before therapy and another nurse took all measurements during
therapy, and each nurse had a different criterion or method for determining blood pressure.
See Fig. 1.5 for a clarification as to why this procedure leads to a biased estimate of the
drug’s effectiveness in reducing blood pressure. If the supine position results in higher
blood pressure than the sitting position, the results of the study will tend to show a bias
in the direction of too large a blood pressure reduction.

The statistical estimates that we usually use, such as the mean and variance, are
unbiased estimates. Bias often results from (a) the improper use of experimental design;
(b) improper choice of samples; (c) unconscious bias, due to lack of blinding, for example;
or (d) improper observation and recording of data, such as that illustrated in Fig. 1.5.

1.8 THE QUESTION OF SIGNIFICANT FIGURES

The question of significant figures is an important consideration in statistical calculations
and presentations. In general, the ordinary rules for retaining significant figures are not
applicable to statistical computations. Contrary to the usual rules for retaining significant
figures, one should retain as many figures as possible when performing statistical calcula-
tions, not rounding off until all computations are complete.

The reason for not rounding off during statistical computations is that untenable an-
swers may result when using computational procedures which involve taking differences
between values very close in magnitude if values are rounded off prior to taking differences.
This may occur when calculating ‘‘sums of squares’’ (the sum of squared differences from
the mean) using the shortcut formula, Eq. (1.4), for the calculation of the variance or
standard deviation. The shortcut formula for � (X � X̄)2 is � X2 � (� X)2/N, which
cannot be negative, and will be equal to zero only if all the data have the same value. If
the two terms, � X2 and (� X)2/N, are very similar in magnitude, rounding off before taking
their difference may result in a zero or negative difference. This problem is illustrated by
calculating the standard deviation of the three numbers, 1.19, 1.20, and 1.21. If the squares
of these numbers are first rounded off to two decimal places, the following calculation of
the standard deviation results:

S
X X N

N
= ∑ − ∑

−
= + + −

= − =

( ) / . . . . /

. .

2 2 2

1

1 42 1 44 1 46 3 6 3

2

4 32 4 32

2
0

The correct standard deviation calculated without rounding off is 0.01.
Computers and calculators carry many digits when performing calculations and do

not round off further unless instructed to do so. These instruments retain as many digits
as their capacity permits through all arithmetic computations. The possibility of rounding
off, even considering the large capacity of modern computers, can cause unexpected prob-
lems in sophisticated statistical calculations, and must be taken into account in preparing
statistical software programs. These problems can usually be overcome by using special
programming techniques.

At the completion of the calculations, as many figures as are appropriate to the situa-
tion can be presented. Common sense and the usual rules for reporting significant figures
should be applied (see Ref. 7 for a detailed discussion of significant figures). Sokal and
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Rohlf [7] recommend that, if possible, observations should be measured with enough
significant figures so that the range of data is between 30 and 300 possible values. This
flexible rule results in a relative error of less than 3%. For example, when measuring
diastolic blood pressure, the range of values for a particular group of patients might be
limited to 60 to 130 mmHg. Therefore, measurements to the nearest mmHg would result
in approximately 70 possible values, and would be measured with sufficient accuracy
according to this rule. If the investigator can make the measurement only in intervals of
2 mmHg (e.g., 70 and 72 mmHg can be measured, but not 71 mmHg), we would have
35 possible data points, which is still within the 30 to 300 suggested by this rule of thumb.
Of course, rules should not be taken as ‘‘written in stone.’’ All rules should be applied
with judgment.

Common sense should be applied when reporting average results. For example, report-
ing an average blood pressure reduction of 7.42857 for 14 patients treated with an antihy-
pertensive agent would not be appropriate. As noted above, most physicians would say
that blood pressure is rarely measured to within 2 mmHg. Why should one bother to report
any decimals at all for the average result? When reporting average results, it is generally
good practice to report the average with a precision that is ‘‘reasonable’’ according to the
nature of the data. An average of 7.4 mmHg would probably suffice for this example. If
the average were reported as 7 mmHg, for example, it would appear that too much informa-
tion is suppressed.

KEY TERMS

Accuracy Precision
Attributes Random variable
Average (X̄) Range
Bias Ranking
Coding Rating scale
Coefficient of variation (C.V.) Sample
Continuous variables Significant figures
Correction term (C.T.) Standard deviation (s.d., S, SD)
Cumulative distribution Standard error of the mean (Sx̄)
Degrees of freedom (d.f.) Standard score
Discrete variables Treatment
Frequency distribution Unbiased sample
Geometric mean Universe
Harmonic mean Variability
Mean (X̄) Variable
Median Weighted average
Population

EXERCISES

1. List three experiments whose outcomes will result in each of the following kinds
of variables.
(a) Continuous variables
(b) Discrete variables
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(c) Ordered variables
(d) Categorical (attribute) variables

2. What difference in experimental conclusions, if any, would result if the pain scale
discussed in Sect. 1.1 were revised as: no pain � 6, slight pain � 4, moderate
pain � 2, and severe pain � 0? (Hint: See Sect. 1.6.)

3. (a) Construct a frequency distribution containing 10 class intervals from the data
in Table 1.1.
(b) Construct a cumulative frequency plot based on the frequency distribution

from part (a).
4. What is the average result based on the frequency distribution in part (a) of problem

3? Use a weighted-average procedure.
5. From Fig. 1.1, what proportion of tablets have potencies between 95 and 105 mg?

What proportion of tablets have a potency greater than 105 mg?
6. Calculate the average and standard deviation of (a) the first 20 values in Table

1.1, and (b) the last 20 values in Table 1.1. If these data came from two different
clinical investigators, would you think that the differences in these two sets of
data can be attributed to differences in clinical sites? Which set, the first or last,
is more precise? Explain your answer.

7. What are the median and range of the first 20 values in Table 1.1.?
8. (a) If the first value in Table 1.1 were �100 instead of �17, what would be the

values of the median and range for the first 20 values?
(b) Using the first value as 100, calculate the mean, standard deviation, and

variance. Compare the results for these first 20 values to the answers obtained
in Problem 6.

**9. Given the following sample characteristics, describe the population from which
the sample may have been derived. The mean is 100, the standard deviation is
50, the median is 75, and the range is 125.

**10. If the population average for the cholesterol reductions shown in Table 1.1 were
somehow known to be 0 (the drug does not affect cholesterol levels on the average),
would you believe that this sample of 156 patients gives an unbiased estimate of
the true average? Describe possible situations in which these data might yield (a)
biased results; (b) unbiased results.

**11. Calculate the average standard deviation using the sampling experiment shown
in Sect. 1.5.2 for samples of size 2 taken from a population with values of 0, 1,
and 2 (with replacement). Compare this result with the population standard devia-
tion. Is the sample standard deviation an unbiased estimate of the population
standard deviation?

12. Describe another situation that would result in a biased estimate of blood pressure
reduction as discussed in Sect. 1.7.3 (see Fig. 1.5).

13. Verify that the standard deviation of the values 1.19, 1.20, and 1.21 is 0.01 (see
Sect. 1.8). What is the standard deviation of the numbers 2.19, 2.20, and 2.21?
Explain the result of the two calculations above.

14. For the following blood pressure measurements: 100, 98, 101, 94, 104, 102, 108,
108, calculate (a) the mean, (b) the standard deviation, (c) the variance, (d) the
coefficient of variation, (e) the range, and (f) the median.

** The double asterisk indicates optional, more difficult problems.
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**15. Calculate the standard deviation of the grouped data in Table 1.2. (Hint: S2 �
[� Ni X2

i � (� NiXi)2/(� Ni)]/(� Ni � 1); see Ref. 3. Ni � frequency per group
with midpoint Xi.)

16. Compute the arithmetic mean, geometric mean, and harmonic mean of the follow-
ing set of data.

3, 5, 7, 11, 14, 57

If these data were observations on the time needed to cure a disease, which mean
would you think to be most appropriate?

17. If the weights are 2, 1, 1, 3, 1, and 2 for the numbers 3, 5, 7, 11, 14, and 57
(exercise 16), compute the weighted average and variance.
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DATA GRAPHICS

‘‘The preliminary examination of most data is facilitated by the use of diagrams. Diagrams
prove nothing, but bring outstanding features readily to the eye; they are therefore no
substitute for such critical tests as may be applied to the data, but are valuable in suggesting
such tests, and in explaining the conclusions founded upon them’’ This quote is from
Ronald A. Fisher, the father of modern statistical methodology [1]. Tabulation of raw data
can be thought of as the initial and least refined way of presenting experimental results.
Summary tables, such as frequency distribution tables, are much easier to digest and can
be considered a second stage of refinement of data presentation. Summary statistics such
as the mean, median, variance, standard deviation, and the range are concise descriptions
of the properties of data, but much information is lost in this processing of experimental
results. Graphic methods of displaying data are to be encouraged and are important adjuncts
to data analysis and presentation. Graphical presentations clarify and also reinforce conclu-
sions based on formal statistical analyses. Finally, the researcher has the opportunity to
design aesthetic graphical presentations that command attention. The popular cliché ‘‘A
picture is worth a thousand words’’ is especially apropos to statistical presentations. We
will discuss some key concepts of the various ways in which data are depicted graphically.

2.1 INTRODUCTION

The diagrams and plots that we will be concerned with in our discussion of statistical
methods can be placed broadly into two categories:

1. Descriptive plots are those whose purpose is to transmit information. These in-
clude diagrams describing data distributions such as histograms and cumulative
distribution plots (see Chapter 1, Sec. 1.2.3). Bar charts and pie charts are exam-
ples of popular modes of communicating survey data or product comparisons.

2. Plots that describe relationships between variables usually show an underlying,
but unknown analytic relationship between the variables that we wish to describe
and understand. These relationships can range from relatively simple to very

31
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Figure 2.1 Beer’s law plot illustrating a linear relationship between two variables.

complex, and may involve only two variables or many variables. One of the
simplest relationships, but probably the one with greatest practical application,
is the straight-line relationship between two variables, as shown in the Beer’s
law plot in Fig. 2.1. Chapter 7 is devoted to the analysis of data involving variables
that have a linear relationship.

When analyzing and depicting data that involve relationships, we are often presented
with data in pairs (X, Y pairs). In Fig. 2.1, the optical density Y and the concentration X
are the data pairs. When considering the relationship of two variables, X and Y, one variable
can often be considered the response variable, which is dependent on the selection of the
second or causal variable. The response variable Y (optical density in our example), is
known as the dependent variable. The value of Y depends on the value of the independent
variable, X (drug concentration). Thus, in the example in Fig. 2.1, we think of the value
of optical density as being dependent on the concentration of drug.

2.2 THE HISTOGRAM

The histogram, sometimes known as a bar graph, is one of the most popular ways of
presenting and summarizing data. All of us have seen bar graphs, not only in scientific
reports but also in advertisements and other kinds of presentations illustrating the distribu-
tion of scientific data. The histogram can be considered as a visual presentation of a
frequency table. The frequency, or proportion, of observations in each class interval is
plotted as a bar, or rectangle, where the area of the bar is proportional to the frequency
(or proportion) of observations in a given interval. An example of a histogram is shown
in Fig. 2.2, where the data from the frequency table in Table 1.2 have been used as the
data source. As is the case with frequency tables, class intervals for histograms should be
of equal width. When the intervals are of equal width, the height of the bar is proportional
to the frequency of observations in the interval. If the intervals are not of equal width,
the histogram is not easily or obviously interpreted, as shown in Fig. 2.2B.

The choice of intervals for a histogram depends on the nature of the data, the distribu-
tion of the data, and the purpose of the presentation. In general, rules of thumb similar to
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Figure 2.2 Histogram of data derived from Table 1.2.

that used for frequency distribution tables (Sec. 1.2) can be used. Eight to twenty equally
spaced intervals usually are sufficient to give a good picture of the data distribution.

2.3 CONSTRUCTION AND LABELING OF GRAPHS

Proper construction and labeling of graphs are crucial elements in graphic data representa-
tion. The design and actual construction of graphs are not in themselves difficult. The
preparation of a good graph, however, requires careful thought and competent technical
skills. One needs not only a knowledge of statistical principles, but also, in particular,
computer and drafting competency. There are no firm rules for preparing good graphical
presentations. Mostly, we rely on experience and a few guidelines. Both books and research
papers have addressed the need for a more scientific guide to optimal graphics which,
after all, is measured by how well the graph communicates the intended messages(s) to
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the individuals who are intended to read and interpret the graphs. Still, no rules will cover
all situations. One must be clear that no matter how well a graph or chart is conceived,
if the draftmanship and execution is poor, the graph will fail to achieve its purpose.

A ‘‘good’’ graph or chart should be as simple as possible, yet clearly transmit its
intended message. Superfluous notation, confusing lines or curves, and inappropriate draft-
manship (lettering, etc.) that can distract the reader are signs of a poorly constructed
graph. The books Statistical Graphics, by C. F. Schmid [2], and The Visual Display of
Quantitative Information by Edward Tufte [3] are recommended for those who wish to
study examples of good and poor renderings of graphic presentations. For example, Schmid
notes that visual contrast should be intentionally used to emphasize important characteris-
tics of the graph. Here, we will present a few examples to illustrate the recommendations
for good graphic presentation as well as examples of graphs that are not prepared well or
fail to illustrate the facts fairly.

Figure 2.3 shows the results of a clinical study that was designed to compare an active
drug to a placebo for the treatment of hypertension. This graph was constructed from the
X, Y pairs, time and blood pressure, respectively. Each point on the graph (�, �) is the
average blood pressure for either drug or placebo at some point in time subsequent to the
initiation of the study.

Proper construction and labeling of the typical rectilinear graph should include the
following considerations:

1. A title should be given. The title should be brief and to the point, enabling the
reader to understand the purpose of the graph without having to resort to reading the text.
The title can be placed below or above the graph as in Fig. 2.3.

2. The axes should be clearly delineated and labeled. In general, the zero (0) points
of both axes should be clearly indicated. The ordinate (the Y axis) is usually labeled with
the description parallel to the Y axis. Both the ordinate and abcissa (X axis) should be
each appropriately labeled and subdivided in units of equal width (of course, the X and
Y axes almost always have different subdivisions). In the example in Fig. 2.3, note the

Figure 2.3 Blood pressure as a function of time in a clinical study comparing drug and
placebo with a regimen of one tablet per day. �, placebo (average of 45 patients); �, drug
(average of 50 patients).
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units of mmHg and weeks for the ordinate and abcissa, respectively. Grid lines may be
added (see Fig. 2.4E) but, if used, should be kept to a minimum, not be prominent and
should not interfere with the interpretation of the figure.

3. The numerical values assigned to the axes should be appropriately spaced so as
to nicely cover the extent of the graph. This can easily be accomplished by trial and error
and a little manipulation. The scales and proportions should be constructed to present a
fair picture of the results and should not be exaggerated so to prejudice the interpretation.
Sometimes it may be necessary to skip or omit some of the data to achieve this objective.
In these cases, the use of a ‘‘broken line’’ is recommended to clearly indicate the range
of data not included in the graph (see Fig. 2.4).

4. If appropriate, a key explaining the symbols used in the graph should be used.
For example, at the bottom of Fig. 2.3, the key defines � as the symbol for placebo and
� for drug. In many cases, labeling the curves directly on the graph (Fig. 2.4) results in
more clarity.

5. In situations where the graph is derived from laboratory data, inclusion of the
source of the data (name, laboratory notebook number, and page number, for example)
is recommended.

Usually graphs should stand on their own, independent of the main body of the text.
Examples of various ways of plotting data, derived from a study of exercise time at

various time intervals after administration of a single dose of two long-acting nitrate
products to anginal patients, is shown in Fig. 2.4A–E. All of these plots are accurate
representations of the experimental results, but each gives the reader a different impression.
It would be wrong to expand or contract the axes of the graph, or otherwise distort the
graph, in order to convey an incorrect impression to the reader. Most scientists are well
aware of how data can be manipulated to give different impressions. If obvious deception
is intended, the experimental results will not be taken seriously.

When examining the various plots in Fig. 2.4, one could not say which plot best
represents the meaning of the experimental results without knowledge of the experimental
details, in particular the objective of the experiment, the implications of the experimental
outcome, and the message that is meant to be conveyed. For example, if an improvement
of exercise time of 120 sec for one drug compared to the other is considered to be significant
from a medical point of view, the graphs labeled A, C, and E in Fig. 2.4 would all seem
appropriate in conveying this message. The graphs labeled B and D show this difference
less clearly. On the other hand, if 120 sec is considered to be of little medical significance,
B and D might be a better representation of the data.

Note that in plot A of Fig. 2.4, the ordinate (exercise time) is broken, indicating that
some values have been skipped. This is not meant to be deceptive, but is intentionally
done to better show the differences between the two drugs. As long as the zero point and
the break in the axis are clearly indicated, and the message is not distorted, such a procedure
is entirely acceptable.

Figures 2.4B and 2.5 are exaggerated examples of plots that may be considered not
to reflect accurately the significance of the experimental results. In Fig. 2.4B, the clinically
significant difference of approximately 120 sec is made to look very small, tending to
diminish drug differences in the viewer’s mind. Also, fluctuations in the hourly results
appear to be less than the data truly suggest. In Fig. 2.5, a difference of 5 sec in exercise
time between the two drugs appears very large. Care should be taken when constructing
(as well as reading) graphs so that experimental conclusions come through clear and true.
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Figure 2.4 Various graphs of the same data presented in different ways. Exercise time
at various times after administration of single doses of two nitrate products. � � Drug
I, � � Drug II.
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Figure 2.5 Exercise time at various times after administration of two nitrate products.
•, product I; �, product II.

6. If more than one curve appears on the same graph, a convenient way to differen-
tiate the curves is to use different symbols for the experimental points (e.g., �, �, �, �,
�) and, if necessary, connecting the points in different ways (e.g., —.—.—., … …,
–.–.–.–). A key or label is used, which is helpful in distinguishing the various curves, as
shown in Figs. 2.3 to 2.6. Other ways of differentiating curves include different kinds of
cross-hatching and use of different colors.

7. One should take care not to place too many curves on the same graph, as this
can result in confusion. There are no specific rules in this regard. The decision depends
on the nature of the data, and how the data look when they are plotted. The curves graphed

Figure 2.6 Plot of dissolution of four successive batches of a commercial tablet product.
� � batch I, • � batch II, � � batch 3, � � batch 4.
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Figure 2.7 Plot of dissolution time of five different commercial formulations of the
same drug. • � product A, � � product B, � � product C, � � product D, � �
product E.

Figure 2.8 Individual plots of dissolution of the five formulations shown in Fig. 2.7.
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in Fig. 2.7 are cluttered and confusing. The curves should be presented differently or
separated into two or more graphs. Figure 2.8 is a clearer depiction of the dissolution
results of the five formulations shown in Fig. 2.7.

8. The standard deviation may be indicated on graphs as shown in Fig. 2.9. However,
when the standard deviation is indicated on a graph (or in a table, for that matter), it
should be made clear whether the variation described in the graph is an indication of the
standard deviation (S) or the standard deviation of the mean (Sx̄). The standard deviation
of the mean, if appropriate, is often preferable to the standard deviation not only because
the values on the graph are mean values, but because Sx̄ is smaller than the s.d., and
therefore less cluttering. Overlapping standard deviations, as shown in Fig. 2.10, should
be avoided, as this representation of the experimental results is usually more confusing
than clarifying.

9. The manner in which the points on a graph should be connected is not always
obvious. Should the individual points be connected by straight lines, or should a smooth
curve that approximates the points be drawn through the data? (See Fig. 2.11.) If the
graphs represent functional relationships, the data should probably be connected by a
smooth curve. For example, the blood level versus time data shown in Fig. 2.11 are
described most accurately by a smooth curve. Although, theoretically, the points should
not be connected by straight lines as shown in Fig. 2.11A, such graphs are often depicted
this way. Connecting the individual points with straight lines may be considered acceptable
if one recognizes that this representation is meant to clarify the graphical presentation, or
is done for some other appropriate reason. In the blood-level example, the area under the
curve is proportional to the amount of drug absorbed. The area is often computed by the
trapezoidal rule [4], and depiction of the data as shown in Fig. 2.11A makes it easier to
visualize and perform such calculations.

Figure 2.12 shows another example in which connecting points by straight lines is
convenient but may not be a good representation of the experimental outcome. The straight
line connecting the blood pressure at zero time (before drug administration) to the blood

Figure 2.9 Plot of exercise time as a function of time for an antianginal drug showing
mean values and standard error of the mean.
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Figure 2.10 Graph comparing two antianginal drugs which is confusing and cluttered
because of the overlapping standard deviations. •, drug A; �, drug B.

pressure after 2 weeks of drug administration suggests a gradual decrease (a linear de-
crease) in blood pressure over the 2-week period. In fact, no measurements were made
during the initial 2-week interval. The 10-mmHg decrease observed after 2 weeks of
therapy may have occurred before the 2-week reading (e.g., in 1 week, as indicated by
the dashed line in Fig. 2.12). One should be careful to ensure that graphs constructed in
such a manner are not misinterpreted.

2.4 SCATTER PLOTS (CORRELATION DIAGRAMS)

Although the applications of correlation will be presented in some detail in Chap. 7, we will
introduce the notion of scatter plots (also called correlation diagrams or scatter diagrams) at

Figure 2.11 Plot of blood level versus time data illustrating two ways of drawing the
curves.
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Figure 2.12 Graph of blood pressure reduction with time of antihypertensive drug illus-
trating possible misinterpretation that may occur when points are connected by straight
lines.

this time. This type of plot or diagram is commonly used when presenting results of
experiments. A typical scatter plot is illustrated in Fig. 2.13. Data are collected in pairs
(X and Y) with the objective of demonstrating a trend or relationship (or lack of relationship)
between the X and Y variables. Usually, we are interested in showing a linear relationship
between the variables (i.e., a straight line). For example, one may be interested in demon-
strating a relationship (or correlation) between time to 80% dissolution of various tablet
formulations of a particular drug and the fraction of the dose absorbed when human
subjects take the various tablets. The data plotted in Fig. 2.13 show pictorially that as

Figure 2.13 Scatter plot showing the correlation of dissolution time and in vivo absorp-
tion of six tablet formulations. �, formulation A; �, formulation B; •, formulation C;
�, formulation D; �, formulation E; �, formulation F.
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dissolution increases (i.e., the time to 80% dissolution decreases) in vivo absorption in-
creases. Scatter plots involve data pairs, X and Y, both of which are variable. In this
example, dissolution time and fraction absorbed are both random variables.

2.5 SEMILOGARITHMIC PLOTS

Several important kinds of experiments in the pharmaceutical sciences result in data such
that the logarithm of the response (Y) is linearly related to an independent variable, X.
The semilogarithmic plot is useful when the response (Y) is best depicted as proportional
changes relative to changes in X, or when the spread of Y is very large and cannot be
easily depicted on a rectilinear scale. Semilog graph paper has the usual equal interval
scale on the X axis and the logarithmic scale on the Y axis. In the logarithmic scale, equal
intervals represent ratios. For example, the distance between 1 and 10 will exactly equal
the distance between 10 and 100 on a logarithmic scale. In particular, first-order kinetic
processes, often apparent in drug degradation and pharmacokinetic systems, show a linear
relationship when log C is plotted versus time. First-order processes can be expressed by
the following equation:

(2.1)log log
.

C C
kt= −0 2 3

where

C � concentration at time t
C0 � concentration at time 0

k � first-order rate constant
t � time

log � logarithm to the base 10

Table 2.1 shows blood-level data obtained after an intravenous injection of a drug described
by a one-compartment model [3].

Figure 2.14 shows two ways of plotting the data in Table 2.1 to demonstrate the
linearity of the log C versus t relationship.

1. Figure 2.14A shows a plot of log C versus time. The resulting straight line is a
consequence of the relationship of log concentration and time as shown in Eq.
(2.1). This is an equation of a straight line with the Y intercept equal to log C0

Table 2.1 Blood Levels After Intravenous Injection of
Drug

Time after Blood level, Log blood
injection, t (hr) C (�g/mL) level

0 20 1.301
1 10 1.000
2 5 0.699
3 2.5 0.398
4 1.25 0.097
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Figure 2.14 Linearizing plots of data from Table 2.1. Plot A: log C vs. time; plot B:
semilog plot.

and a slope equal to �k/2.3. Straight-line relationships are discussed in more
detail in Chapter 8.

2. Figure 2.14B shows a more convenient way of plotting the data of Table 2.1,
making use of semilog graph paper. This paper has a logarithmic scale on the Y
axis and the usual arithmetic, linear scale on the X axis. The logarithmic scale is
constructed so that the spacing corresponds to the logarithms of the numbers on
the Y axis. For example, the distance between 1 and 2 is the same as that between
2 and 4. (Log 2–log 1) is equal to (log 4–log 2). The semilog graph paper depicted
in Fig. 2.14B is two-cycle paper. The Y (log) axis has been repeated two times.
The decimal point for the numbers on the Y axis is accommodated to the data.
In our example, the data range from 1.25 to 20 and the Y axis is adjusted accord-
ingly, as shown in Fig. 2.14B. The data may be plotted directly on this paper
without the need to look up the logarithms of the concentration values.

2.6 OTHER DESCRIPTIVE FIGURES

Most of the discussion in this chapter has been concerned with plots that show relationships
between variables such as blood pressure changes following two or more treatments,
or drug decomposition as a function of time. Often occasions arise in which graphical
presentations are better made using other more pictorial techniques. These approaches
include the popular bar and pie charts. Schmid [2] differentiates bar charts into two categor-
ies, (a) column charts in which there is a vertical orientation and bar charts in which the
bars are horizontal. In general, the bar charts are more appropriate for comparison of
categorical variables, whereas the column chart is used for data showing relationships
such as comparisons of drug effect over time.

Bar charts are very simple but effective visual displays. They are usually used to
compare some experimental outcome or other relevant data where the length of the bar
represents the magnitude. There are many variations of the simple bar chart [2]; an example
is shown in Figure 2.15. In Fig. 2.15A, patients are categorized as having a good, fair, or
poor response. Forty percent of the patients had a good response, 35% had a fair response,
and 25% had a poor response.
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Figure 2.15 Graphical representation of patient responses to drug therapy.



45Data Graphics

Figure 2.15B shows bars in pairs to emphasize the comparative nature of two treat-
ments. It is clear from this diagram that Treatment X is superior to Treatment Y. Figure
2.15C is another way of displaying the results shown in Fig. 2.15B. Which chart do you
think better sends the message of the results of this comparative study, Fig. 2.15B or
2.15C? One should be aware that the results correspond only to the length of the bar. If
the order in which the bars are presented is not obvious, displaying bars in order of
magnitude is recommended. In the example in Fig. 2.15, the order is based on the nature
of the results, ‘‘Good,’’ ‘‘Fair,’’ and ‘‘Poor.’’ Everything else in the design of these charts
is superfluous and the otherwise principal objective is to prepare an aesthetic presentation
that emphasizes but does not exaggerate the results. For example, the use of graphic
techniques such as shading, cross-hatching, and color, tastefully executed, can enhance
the presentation.

Column charts are prepared in a similar way to bar charts. As noted above, whether
or not a bar or column chart is best to display data is not always clear. Data trends over
time usually are best shown using columns. Figure 2.16 shows the comparison of exercise
time for two drugs using a column chart. This is the same data used to prepare Fig. 2.4A
(also, see Exercise Problem 8 at the end of this chapter).

Pie charts are popular ways of presenting categorical data. Although the principles
used in the construction of these charts are relatively simple, thought and care are necessary
to convey the correct message. For example, dividing the circle into too many categories
can be confusing and misleading. As a rule of thumb, no more than 6 sectors should be
used. Another problem with pie charts is that it is not always easy to differentiate two
segments that are reasonably close in size, whereas in the bar graph, values close in size
are easily differentiated, since length is the critical feature.

The circle (or pie) represents 100%, or all of the results. Each segment (or slice of
pie) has an area proportional to the area of the circle, representative of the contribution
due to the particular segment. In the example shown in Fig. 2.17A, the pie represents the

Figure 2.16 Exercise time for two drugs in the form of a column chart using data of
Fig. 2.4A.
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Figure 2.17 Examples of pie charts.

anti-inflammatory drug market. The slices are proportions of the market accounted for by
major drugs in this therapeutic class. These charts are frequently used for business and
economic descriptions, but can be applied to the presentation of scientific data in appropri-
ate circumstances. Figure 2.17B shows the proportion of patients with good, fair, and poor
responses to a drug in a clinical trial (see also Fig. 2.15).

Of course, we have not exhausted all possible ways of presenting data graphically.
We have introduced the cumulative plot in Sec. 1.2.3. Other kinds of plots are the stick
diagram (analogous to the histogram) and frequency polygon [5]. The number of ways in
which data can be presented is limited only by our own ingenuity. An elegant pictorial
presentation of data can ‘‘make’’ a report or government submission. On the other hand,
poor presentation of data can detract from an otherwise good report. The book Statistical
Graphics by Calvin Schmid is recommended for those who wish detailed information on
the presentation of graphs and charts.

KEY TERMS

Bar charts Independent variables
Bar graphs Key
Column charts Pie charts
Correlation Scatter plots
Data pairs Semilog plots
Dependent variables
Histogram

EXERCISES

1. Plot the following data, preparing and labeling the graph according to the guidelines
outlined in this chapter. These data are the result of preparing various modifications
of a formulation and observing the effect of the modifications on tablet hardness.
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Formulation modification

Starch (%) Lactose (%) Tablet hardness (kg)

10 5 8.3
10 10 9.1
10 15 9.6
10 20 10.2
5 5 9.1
5 10 9.4
5 15 9.8
5 20 10.4

(Hint: Plot these data on a single graph where the Y axis is tablet hardness and the
X axis is lactose concentration. There will be two curves, one at 10% starch and the
other at 5% starch.)

2. Prepare a histogram from the data of Table 1.3. Compare this histogram to that shown
in Fig. 2.2A. Which do you think is a better representation of the data distribution?

3. Plot the following data and label the graph appropriately.

X: response Y: response
Patient to product A to product B

1 2.5 3.8
2 3.6 2.4
3 8.9 4.7
4 6.4 5.9
5 9.5 2.1
6 7.4 5.0
7 1.0 8.5
8 4.7 7.8

What conclusion(s) can you draw from this plot if the responses are pain relief scores,
where a high score means more relief?

4. A batch of tables was shown to have 70% with no defects, 15% slightly chipped,
10% discolored, and 5% dirty. Construct a pie chart from these data.

5. The following data from a dose-response experiment, a measure of physical activity,
is the response of five animals at each of three doses.

Dose (mg) Responses

1 8, 12, 9, 14, 6
2 16, 20, 12, 15, 17
4 20, 17, 25, 27, 16

Plot the individual data points and the average at each dose versus (a) dose; (b) log
dose.
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6. The concentration of drug in solution was measured as a function of time:

Time (weeks) Concentration

0 100
4 95
8 91
26 68
52 43

(a) Plot concentration versus time.
(b) Plot log concentration versus time.

7. Plot the following data and label the axes appropriately.

X: Cholesterol Y: Triglycerides
Patient (mg %) (mg %)

1 180 80
2 240 180
3 200 70
4 300 200
5 360 240
6 240 200

X: Tablet Y: Tablet
Tablet potency (mg) weight (mg)

1 5 300
2 6 300
3 4 280
4 5 295
5 6 320
6 4 290

8. Which figure do you think best represents the results of the exercise time study, Fig.
2.16 or Fig. 2.4A? If the presentation were to be used in a popular nontechnical
journal read by laymen and physicians, which figure would you recommend?
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INTRODUCTION TO PROBABILITY: THE
BINOMIAL AND NORMAL PROBABILITY
DISTRIBUTIONS

The theory of statistics is based on probability. Some basic definitions and theorems are
introduced in this chapter. This elementary discussion leads to the concept of a probability
distribution, a mathematical function that assigns probabilities for outcomes in its domain.
The properties of (a) the binomial distribution, a discrete distribution, and (b) the normal
distribution, a continuous distribution, are presented. The normal distribution is the basis
of modern statistical theory and methodology. One of the chief reasons for the pervasion
of the normal distribution in statistics is the central limit theorem, which shows that means
of samples from virtually all probability distributions tend to be normal for large sample
sizes. Also, many of the probability distributions used in statistical analyses are based on
the normal distribution. These include the t, F, and Chi-square distributions. The binomial
distribution is applicable to experimental results that have two possible outcomes, such
as pass or fail in quality control, or cured or not cured in a clinical drug study. With a
minimal understanding of probability, one can apply statistical methods intelligently to
the simple but prevalent problems that crop up in the analysis of experimental data.

3.1 INTRODUCTION

Most of us have an intuitive idea of the meaning of probability. The meaning and use of
probability in everyday life is a subconscious integration of experience and knowledge
that allows us to say, for example: ‘‘If I purchase this car at my local dealer, the convenience
and good service will probably make it worthwhile despite the greater initial cost of the
car.’’ From a statistical point of view, we will try to be more precise in the definition of
probability. The Random House Dictionary of the English Language defines probability
as ‘‘The likelihood of an occurrence expressed by the ratio of the actual occurrences to
that of all possible occurrences; the relative frequency with which an event occurs, or is
likely to occur.’’ Therefore, the probability of observing an event can be defined as the
proportion of such events which will occur in a large number of observations or experimen-
tal trials.

49
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The approach to probability is often associated with odds in gambling or games of
chance, and picturing probability in this context will help its understanding. When placing
a bet on the outcome of a coin toss, the game of ‘‘heads and tails,’’ one could reasonably
guess that the probability of a head or tail is one-half (1/2) or 50%. One-half of the
outcomes will be heads and one-half will be tails. Do you think that the probability of
observing a head (or tail) on a single toss of the coin is exactly 0.5 (50%)? Probably not;
a probability of 50% would result only if the coin is absolutely balanced. The only way
to verify the probability is to carry out an extensive experiment, tossing a coin a million
times or more and counting the proportion of heads or tails that result.

The gambler who knows that the odds in a game of craps favor the ‘‘house’’ will
lose in the long run. Why should a knowledgeable person play a losing game? Other than
for psychological reasons, the gambler may feel that a reasonably good chance of winning
on any single bet is worth the chance, and maybe ‘‘Lady Luck’’ will be on his side.
Probability is a measure of uncertainty. We may be able to predict accurately some average
result in the long run, but the outcome of a single experiment cannot be anticipated with
certainty.

3.2 SOME BASIC PROBABILITY

The concept of probability is ‘‘probably’’ best understood when discussing discontinuous
or discrete variables. These variables have a countable number of outcomes. Consider an
experiment in which only one of two possible outcomes can occur. For example, the result
of treatment with an antibiotic is that an infection is either cured or not cured within 5
days. Although this situation is conceptually analogous to the coin-tossing example, it
differs in the following respect. For the coin-tossing example, the probability can be
determined by a rational examination of the nature of the experiment. If the coin is bal-
anced, heads and tails are equally likely; the probability of a head is equal to the probability
of a tail � 0.5. In the case of the antibiotic cure, however, the probability of a cure is
not easily ascertained a priori, i.e., prior to performing an experiment. If the antibiotic
were widely used, based on his or her own experience, a physician prescriber of the product
might be able to give a good estimate of the probability of a cure for patients treated with
the drug. For example, in the physician’s practice, he or she may have observed that
approximately three of four patients treated with the antibiotic are cured. For this physician,
the probability that a patient will be cured when treated with the antibiotic is 75%.

A large multicenter clinical trial would give a better estimate of the probability of
success after treatment. A study of 1000 patients might show 786 patients cured; the
probability of a cure is estimated as 0.786 or 78.6%. This does not mean that the exact
probability is 0.786. The exact probability can be determined only by treating the total
population and observing the proportion cured, a practical impossibility in this case. In
this context, it would be fair to say that exact probabilities are nearly always unknown.

3.2.1 Some Elementary Definitions and Theorems

0 1≤ ≤P A( )1. (3.1)

where P(A) is the probability of observing event A. The probability of any event or experi-
mental outcome, P(A), cannot be less than 0 or greater than 1. An impossible event has
a probability of 0. A certain event has a probability of 1.
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2. If events A, B, C, … are mutually exclusive, the probability of observing A or B
or C … is the sum of the probabilities of each event, A, B, C, … . If two or more events
are ‘‘Mutually exclusive,’’ the events cannot occur simultaneously, i.e., if one event is
observed, the other event(s) cannot occur. For example, we cannot observe both a head
and a tail on a single toss of a coin.

(3.2)P A B C P A P B P C( ) ( ) ( ) ( )or or … …= + + +

An example frequently encountered in quality control illustrates this theorem. Among
1,000,000 tablets in a batch, 50,000 are known to be flawed, perhaps containing specks
of grease. The probability of finding a randomly chosen tablet with specks is 50,000/
1,000,000 � 0.05 or 5%. The process of randomly choosing a tablet is akin to a lottery.
The tablets are well mixed, ensuring that each tablet has an equal chance of being chosen.
While blindfolded, one figuratively chooses a single tablet from a container containing
the 1,000,000 tablets (see Chapter 4 for a detailed discussion of random sampling). A
gambler making an equitable bet would gives odds of 19 to 1 against a specked tablet
being chosen (1 of 20 tablets is specked). Odds are defined as

P A

P A

( )

( )1−

There are other defects among the 1,000,000 tablets. Thirty thousand, or 3%, have
chipped edges and 40,000 (4%) are discolored. If these defects are mutually exclusive,
the probability of observing any one of these events for a single tablet is 0.03 and 0.04,
respectively (see Fig. 3.1A). According to Eq. (3.2), the probability of choosing an unac-
ceptable tablet (specked, chipped, or discolored) at random is 0.05 � 0.03 � 0.04 �
0.12, or 12%. (The probability of choosing an acceptable tablet is 1 � 0.12 � 0.88.)

P A P B P C( ) ( ) ( )+ + + =… 13. (3.3)

where A, B, C, … are mutually exclusive and exhaust all possible outcomes.
If the set of all possible experimental outcomes are mutually exclusive, the sum of

the probabilities of all possible outcomes is equal to 1. This is equivalent to saying that
we are certain that one of the mutually exclusive outcomes will occur.

The four events in Fig. 3.1 do not all have to be mutually exclusive. In general:
4. If two events are not mutually exclusive,

(3.4)P A B P A P B P A B( ) ( ) ( ) ( )or and= + −

Note that if A and B, are mutually exclusive, P(A and B) � 0, and for two events, A and
B, Eqs. (3.2) and (3.4) are identical. (A and B) means the simultaneous occurrence of A
and B. (A or B) means that A or B or both A and B occur. For example, some tablets with
chips may also be specked. If 20,000 tablets are both chipped and specked in the example
above, one can verify that 60,000 tablets are specked or chipped.

P P specked P chipped

P

( ) ( ) ( )

(

specked or chipped

specked or chipp

= +
− eed)

. . . .= + − =0 05 0 03 0 02 0 06

The probability of finding a specked or chipped tablet is 0.06. Thirty thousand tablets are
only specked, 10,000 tablets are only chipped, and 20,000 tablets are both specked and
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Figure 3.1 Probability distribution for tablet attributes.

chipped; a total of 60,000 tablets specked or chipped. The distribution of tablet attributes
under these conditions is shown in Fig. 3.2. (Also, see Exercise Problem 23.)

With reference to this example of tablet attributes, we can enumerate all possible
mutually exclusive events. In the former case, where each tablet was acceptable or had
only a single defect, there are four possible outcomes (specked, chipped edges, discolored,
and acceptable tablets). These four outcomes and their associated probabilities make up
a probability distribution, which can be represented in several ways, as shown in Fig. 3.1.
The distribution of attributes where some tablets may be both specked and chipped is
shown in Fig. 3.2. The notion of a probability distribution is discussed further later in this
chapter (Sec. 3.3).

5. The multiplicative law of probability states that

(3.5)P A B P A B P B( ) ( ) ( )and =
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Figure 3.2 Distribution of tablet attributes where attributes are not all mutually exclusive.

where P(A|B) is known as the conditional probability of A given that B occurs. In the
present example, the probability that a tablet will be specked given that the tablet is chipped
is [from Eq. (3.5)]

P
P

P
( )

( )

(

.

.

specked chipped
specked and chipped

chipped)
=

= 0 02

0 003

2

3
=

Referring to Fig. 3.2, it is clear that 2/3 of the chipped tablets are also specked. Thus the
probability of a tablet being specked given that it is also chipped is 2/3.

3.2.2 Independent Events

In games of chance, such as roulette, the probability of winning (or losing) is theoretically
the same on each turn of the wheel, irrespective of prior outcomes. Each turn of the wheel
results in an independent outcome. The events, A and B, are said to be independent if a
knowledge of B does not affect the probability of A. Mathematically, two events are
independent if
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(3.6)P A B P A( ) ( )=

Substituting Eq. (3.6) into Eq. (3.5), we can say that if

(3.7)P A B P A P B( ) ( ) ( )and =

then A and B are independent. When sampling tablets for defects, if each tablet is selected
at random and the batch size is very large, the sample observations may be considered
independent. Thus, in the example of tablet attributes shown in Fig. 3.4, the probability
of selecting an acceptable tablet (A) followed by a defective tablet (B) is

(0.88)(0.12) � 0.106

The probability of selecting two tablets, both of which are acceptable, is 0.88 � 0.88 �
0.7744.

3.3 PROBABILITY DISTRIBUTIONS—THE BINOMIAL
DISTRIBUTION

To understand probability further, one should have a notion of the concept of a probability
distribution, introduced in Sec. 3.2. A probability distribution is a mathematical representa-
tion (function) of the probabilities associated with the values of a random variable.

For discrete data, the concept can be illustrated using the simple example of the
outcome of antibiotic therapy introduced earlier in this chapter. In this example, the out-
come of a patient following treatment can take on one of two possibilities: a cure with a
probability of 0.75 or a failure with a probability of 0.25. Assigning the value 1 for a cure
and 0 for a failure, the probability distribution is simply:

f

f

( ) .

( ) .

1 0 75

0 0 25

=
=

Figure 3.3 shows the probability distribution for this example, the random variable

Figure 3.3 Probability distribution of a binomial outcome based on a single observation.
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Table 3.1 Some Examples of Binomial Data in Pharmaceutical Research

Experiment or process Dichotomous data

LD50 determination

ED50 determination

Sampling for defects

Clinical trials
Formulation modification

Animals live or die after dosing. Determine dose that kills 50% of
animals.

Drug is effective or not effective. Determine dose that is effective
in 50% of animals.

In quality control, product is sampled for defects. Tablets are
acceptable or unacceptable.

Treatment is successful or not successful.
A. Palatability preference for old and new formulation.
B. New formulation is more or less available in crossover design.

being the outcome of a patient treated with the antibiotic. This is an example of a binomial
distribution. Another example of a binomial distribution is the coin tossing game, heads
or tails where the two outcomes have equal probability, 0.5. This binomial distribution
(p � 0.5) has application in statistical methods, preference tests (Chapter 14, Sec. 14.2.1)
and the sign test (Chapter 15, Sec. 15.2), for example.

When a single observation can be dichotomized, that is, the observation can be placed
into one of two possible categories, the binomial distribution can be used to define the
probability characteristics of one or more such observations. The binomial distribution is
a very important probability distribution in applications in pharmaceutical research. The
few examples noted in Table 3.1 reveal its pervading presence in pharmaceutical processes.

3.3.1 Some Definitions

A binomial trial is a single binomial experiment or observation. The treatment of a single
patient with the antibiotic is a binomial trial. The trial must result in only one of two
outcomes, where the two outcomes are mutually exclusive. In the antibiotic example, the
only possible outcomes are that a patient is either cured or not cured. In addition, only
one of these outcomes is possible after treatment. A patient cannot be both cured and not
cured after treatment. Each binomial trial must be independent. The result of a patient’s
treatment does not influence the outcome of the treatment for a different patient. In another
example, when randomly sampling tablets for a binomial attribute, chipped or not chipped,
the observation of a chipped tablet does not depend upon or influence the outcome observed
for any other tablet.

The binomial distribution is completely defined by two parameters: (a) the probability
of one or the other outcome, and (b) the number of trials or observations, N. Given these
two parameters, we can calculate the probability of any specified number of successes in
N trials. For the antibiotic example, the probability of success is 0.75. With this information,
we can calculate the probability that 3 of 4 patients will be cured (N � 4). We could also
calculate this result, given the probability of failure (0.25). The probability of 3 of 4
patients being cured is exactly the same as the probability of 1 of 4 patients not being
cured.

The probability of success (or failure) lies between 0 and 1. The probability of failure
(the complement of a success) is 1 minus the probability of success [1 � P(success)].



56 Chapter 3

Since the outcome of a binomial trial must be either success or failure, P(success) �
P(failure) � 1 [see Eq. (3.3)].

The standard deviation of a binomial distribution with probability of success, p, and
N trials is �pq/N,, where q � 1 � p. The s.d. of the proportion of successes of antibiotic
treatment in 16 trials is �0.75 � 0.25/16 � 0.108. (Also see Sec. 3.3.2 in Chap. 3).

The probability of the outcome of a binomial experiment consisting of N trials can
be computed from the expansion of the expression

(3.8)( )p q N+

where p is defined as the probability of success and q is the probability of failure. For
example, consider the outcomes that are possible after three tosses of a coin. There are
four (N � 1) possible results

1. Three heads
2. Two heads and one tail
3. Two tails and one head
4. Three tails

For the outcome of the treatment of three patients in the antibiotic example, the four
possible results are

1. Three cures
2. Two cures and one failure
3. Two failures and one cure
4. Three failures
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The probabilities of these events can be calculated from the individual terms from the
expansion of (p � q)N, where N � 3, the number of binomial trials.

( )p q p p q pq q+ = + + +3 3 2 2 33 3

If p � q � 1/2, as is the case in coin-tossing, then

p3 � (1/2)3 � 1/8 � P(three heads)

3p2q � 3/8 � P(two heads and one tail)

3pq2 � 3/8 � P(two tails and one head)

q3 � 1/8 � P(three tails)

If p � 0.75 and q � 0.25, as is the case for the antibiotic example, then

p3 � (0.75)3 � 0.422 � P(3 cures)

3p2q � 3(0.75)2(0.25) � 0.422 P(2 cures and 1 failure)

3pq2 � 3(0.75)(0.25)2 � 0.141 P(1 cure and 2 failures)

q3 � (0.25)3 � 0.016 � P(3 failures)

The sum of the probabilities of all possible outcomes of three patients being treated or 3
sequential coin tosses is equal to 1 (e.g., 1/8 � 3/8 � 3/8 � 1/8 � 1).

This is true of any binomial experiment because (p � q)N must equal 1 by definition
(i.e., p � q � 1). The probability distribution of the coin-tossing experiment with N �
3 is shown in Fig. 3.4. Note that this is a discrete distribution. The particular binomial

Figure 3.4 Probability distribution of binomial with p � 0.5 and N � 3.
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distribution shown in the figure is comprised of only four possible outcomes (the four
sticks).

A gambler looking for a fair game, one with equitable odds, would give odds of 7
to 1 on a bet that three heads would be observed in three tosses of a coin. The payoff
would be eight dollars (including the dollar bet) for a one-dollar bet. A bet that either
three heads or three tails would be observed would have odds of 3 to 1. (The probability
of either three heads or three tails is 1/4 � 1/8 � 1/8.)

To calculate exact probabilities in the binomial case, the expansion of the binomial,
(p � q)N can be generalized by a single formula:

(3.9)Probability of successes in  trials =X N
N

X
p q

N

X

x N X



















−

iis defined as
N

X N X

!

!( )!−

(Remember that 0! is equal to 1.)
Consider the binomial distribution with p � 0.75 and N � 4 for the antibiotic example.

This represents the distribution of outcomes after treating four patients. There are five
possible outcomes:

No patients are cured
One patient is cured
Two patients are cured
Three patients are cured
Four patients are cured

The probability that three of four patients are cured can be calculated from Eq. (3.9)

4

3
0 75 0 25

4 3 2 1

1 3 2 1
0 42188 0 25 0 4213 1







 = ⋅ ⋅ ⋅

⋅ ⋅ ⋅
=( . ) ( . ) ( . )( . ) . 888

The meaning of this particular calculation will be explained in detail in order to gain
some insight into solving probability problems. There are four ways in which three patients
can be cured and one patient not cured (see Table 3.2). Denoting the 4 patients as A, B,
C, and D, the probability that patients A, B, and C are cured and patient D is not cured
is equal to

(3.10)( . )( . )( . )( . ) .0 75 0 75 0 75 0 25 0 1055=

where 0.25 is the probability that patient D will not be cured. There is no reason why any
of the four possibilities shown in Table 3.2 should occur more or less frequently than any
other (i.e., each possibility is equally likely). Therefore, the probability that the antibiotic

Table 3.2 Four Ways in Which 3 of 4 Patients are Cured

1 2 3 4

Patients cured A, B, C A,B,D A, C, D B, C, D
Patients not cured D C B A
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will successfully cure exactly three patients is four times the probability calculated in Eq.
(3.10):

4 0 1055 0 422( . ) .=

The expression ( 4
3 ) represents a combination, a selection of three objects, disregarding

order, from four distinct objects. The combination, 4
3 , is equal to 4, and, as we have just

demonstrated, there are four ways in which three cures can be obtained from 4 patients.
Each one of these possible outcomes has a probability of (0.75)3(0.25)1. Thus, the probabil-
ity of three cures in four patients is

4 0 75 0 253 1( . ) ( . )

as before.
The probability distribution based on the possible outcomes of an experiment in which

four patients are treated with the antibiotic (the probability of a cure is 0.75) is shown in
Table 3.3 and Fig. 3.5. Note that the sum of the probabilities of the possible outcomes
equals 1, as is also shown in the cumulative probability function plotted in Fig. 3.5B. The
cumulative distribution is a nondecreasing function starting at a probability of zero and
ending at a probability of 1. Figures 3.1 and 3.2, describing the distribution of tablet
attributes in a batch of tablets, are examples of other discrete probability distributions.

Statistical hypothesis testing, a procedure for making decisions based on variable data
is based on probability theory. In the following example, we use data observed in a coin
tossing game to decide whether or not we believe the coin to be loaded (biased).

You are an observer of a coin-tossing game and you are debating whether or not you
should become an active participant. You note that only one head occurred among 10
tosses of the coin. You calculate the probability of such an event because it occurs to you
that one head in 10 tosses of a coin is very unlikely; something is amiss (a ‘‘loaded’’
coin!). Thus, if the probability of a head is 0.5, the chances of observing one head in 10
tosses of a coin is less than 1 in 100 (Exercise Problem 18). This low probability suggests
a coin that is not balanced. However, you properly note that the probability of any single
event or outcome (such as one head in 10 trials) is apt to be small if N is sufficiently
large. You decide to calculate the probability of this perhaps unusual result plus all other
possible outcomes which are equally or less probable. In our example, this includes possi-
bilities of no heads in 10 tosses, in addition to one or no tails in 10 tosses. These four

Table 3.3 Probability
Distribution for Outcomes of
Treating Four Patients with an
Antibiotic

Outcome Probability

No cures 0.00391
One cure 0.04688
Two cures 0.21094
Three cures 0.42188
Four cures 0.31641
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Figure 3.5 Probability distribution graph for outcomes of treating four patients with an
antibiotic.

probabilities (no heads, one head, no tails, and one tail) total approximately 2.2%. This
is strong evidence in favor of a biased coin. Such a decision is based on the fact that the
chance of obtaining an event as unlikely or less likely than one head in 10 tosses is about
1 in 50 (2.2%) if the coin is balanced. You might wisely bet on tails on the next toss.
You have made a decision: ‘‘The coin has a probability of less than 0.5 of showing heads
on a single toss.’’

The probability distribution for the number of heads (or tails) in 10 tosses of a coin
(p � 0.5 and N � 10) is shown in Fig. 3.6. Note the symmetry of the distribution.
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Figure 3.6 Probability distribution for p � 0.5 and N � 10.

Although this is a discrete distribution, the ‘‘sticks’’ assume a symmetric shape similar
to the normal curve. The two unlikely events in each ‘‘tail’’ (i.e., no heads or tails or one
head or one tail) have a total probability of 0.022. The center and peak of the distribution
is observed to be at X � 5, equal to Np, the number of trials times the probability of
success. (See also Appendix Table IV.3, p � 0.5, N � 10.)

The application of binomial probabilities can be extended to more practical problems
than gambling odds for the pharmaceutical scientist. When tablets are inspected for attri-
butes or patients treated with a new antibiotic, we can apply a knowledge of the properties
of the binomial distribution to estimate the true proportion or probability of success, and
make appropriate decisions based on these estimates.

3.3.2 Summary of Properties of the Binomial Distribution

1. The binomial distribution is defined by N and p. With a knowledge of these
parameters, the probability of any outcome of N binomial trials can be calculated from
Eq. (3.9). We have noted that the sum of all possible outcomes of a binomial experiment
with N trials is 1, which conforms to the notion of a probability distribution.

2. The results of a binomial experiment can be expressed either as the number of
successes or as a proportion. Thus, if six heads are observed in 10 tosses of a coin, we
can also say that 60% of the tosses are heads. If 16 defective tablets are observed in a
random sample of 1000 tablets, we can say that 1.6% of the tablets sampled are defective.
In terms of proportions, the true mean of the binomial population is equal to the probability
of success, p. The sample proportion (0.6 in the coin-tossing example and 0.016 in the
example of sampling for defective tablets) is an estimate of the true proportion.

3. The variability of the results of a binomial experiment is expressed as a standard
deviation. For example, when inspecting tablets for the number of defectives, a different
number of defective tablets will be observed depending on which 1000 tablets happen to
be chosen. This variation, dependent on the particular sample inspected, is also known as
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sampling error. The standard deviation of a binomial distribution can be expressed in two
ways, depending on the manner in which the mean is presented (i.e., as a proportion or
as the number of successes). The standard deviation in terms of proportion of successes
is

(3.11)
pq

N

In terms of number of successes, the standard deviation is

(3.12)Npq

where N is the sample size, the number of binomial trials. As shown in Eqs. (3.11) and
(3.12), the standard deviation is dependent on the value of p for binomial variables. The
maximum s.d. occurs when p � q � 0.5, because pq is maximized. The value of pq does
not change very much with varying p and q until p or q reach low or high values, close
to or more extreme than 0.2 and 0.8.

p q pq

0.5 0.5 0.25
0.4 0.6 0.24
0.3 0.7 0.21
0.2 0.8 0.16
0.1 0.9 0.09

4. When dealing with proportions, the variability of the observed proportion can be
made as small as we wish by increasing the sample size [similar to the s.d. of the mean
of samples of size N, Eq. (1.8)]. This means that we can estimate the proportion of ‘‘suc-
cesses’’ in a population with very little error if we choose a sufficiently large sample. In
the case of the tablet inspection example above, the variability (s.d.) of the proportion for
samples of size 100 is

( . )( . )
.

0 016 0 984

100
0 0125=

By sampling 1000 tablets, we can reduce the variability by a factor of 3.16
(�100/1000 � 1/3.16). The variability of the estimate of the true proportion (i.e., the
sample estimate) is not dependent on the population size (the size of the entire batch of
tablets in this example), but is dependent only on the size of the sample selected for
observation. This interesting fact is true if the sample size is considerably smaller than
the size of the population. Otherwise, a correction must be made in the calculation of the
standard deviation [4]. If the sample size is no more than 5% of the population size, the
correction is negligible. In virtually all of the examples that concern us in pharmaceutical
experimentation, the sample size is considerably less than the population size. Since binom-
ial data are often easy to obtain, large sample sizes can often be accommodated to obtain
very precise estimates of population parameters. An oft-quoted example is that a sample
size of 6000 to 7000 randomly selected voters will be sufficient to estimate the outcome
of a national election within 1% of the total popular vote. Similarly, when sampling tablets
for defects, 6000 to 7000 tablets will estimate the proportion of a property of the tablets
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(e.g., defects) within at most 1% of the true value. (The least precise estimate occurs when
p � 0.5.)

3.4 CONTINUOUS DATA DISTRIBUTIONS

Another view of probability concerns continuous data such as tablet dissolution time. The
probability that any single tablet will have a particular specified dissolution result is 0,
because the number of possible outcomes for continuous data is infinite. Probability can
be conceived as the ratio of the number of times that an event occurs to the total number
of possible outcomes. If the total number of outcomes is infinite, the probability of any
single event is zero. This concept can be confusing. If one observes a large number of
dissolution results, such as time to 90% dissolution, any particular observation might
appear to have a finite probability of occurring. Analogous to the discussion for discrete
data, could we not make an equitable bet that a result for dissolution of exactly 5 min 13
sec, for example, would be observed? The apparent contradiction is due to the fact that
data which are continuous, in theory, appear as discrete data in practice because of the
limitations of measuring instruments, as discussed in Chapter 1. For example, a sensitive
clock could measure time to virtually any given precision (i.e., to small fractions of a
second). It would be difficult to conceive of winning a bet that a 90% dissolution time
would occur at a very specific time, where time can be measured to any specified degree
of precision (e.g., 30 min 8.21683475 … sec).

With continuous variables, we cannot express probabilities in as simple or intuitive
a fashion as was done with discrete variables. Applications of calculus are necessary to
describe concepts of probability with continuous distributions. Continuous cumulative
probability distributions are represented by smooth curves (Fig. 3.7) rather than the steplike
function shown in Fig. 3.5B. The area under the probability distribution curve (also known
as the cumulative probability density) is equal to 1 for all probability functions. Thus the
area under the normal distribution curve in Fig. 3.7A is equal to 1.

3.4.1 The Normal Distribution

The normal distribution is an example of a continuous probability density function. The
normal distribution is most familiar as the symmetrical, bell-shaped curve shown in Fig.
3.8. A theoretical normal distribution is a continuous probability distribution and consists
of an infinite number of values. In the theoretical normal distribution, the data points extend
from positive infinity to negative infinity. It is clear that scientific data from pharmaceutical
experiments cannot possibly fit this definition. Nevertheless, if real data conform reason-
ably well with the theoretical definition of the normal curve, adequate approximations, if
not very accurate estimates of probability, can be computed based on normal curve theory.

The equation for the normal distribution (normal probability density) is

(3.13)Y e X= − −1

2
1 2 2 2

σ π
µ σ( / )( ) /

where

� � standard deviation
� � mean
X � value of the observation
e � base of natural logarithms, 2.718…

Y � ordinate of normal curve, a function of X
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Figure 3.7 A normal distribution.

Figure 3.8 A typical normal curve.
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The normal distribution is defined by its mean, �, and its standard deviation, � [see
Eq. (3.13)]. This means that if these two parameters of the normal distribution are known,
all the properties of the distribution are known. There are any number of different normal
distributions. They all have the typical symmetrical, bell-shaped appearance. They are
differentiated only by their means, a measure of location, and their standard deviation, a
measure of spread. The normal curve shown in Fig. 3.8 can be considered to define the
distribution of the potencies of tablets in a batch of tablets. Most of the tablets have a
potency close to the mean potency of 50 mg. The farther the assay values are from the
mean, the fewer the number of tablets there will be with these more extreme values. As
noted above, the spread or shape of the normal distribution is dependent on the standard
deviation. A large standard deviation means that the spread is large. In this example, a
larger s.d. means that there are more tablets far removed from the mean, perhaps far
enough to be out of specifications (see Fig. 3.9).

In real-life situations, the distribution of a finite number of values often closely approx-
imates a normal distribution. Weights of tablets taken from a single batch may be approxi-
mately normally distributed. For practical purposes, any continuous distribution can be
visualized as being constructed by categorizing a large amount of data in small equilength
intervals and constructing a histogram. Such a histogram can similarly be constructed for
normally distributed variables.

Suppose that all the tablets from a large batch are weighed and categorized in small
intervals or boxes (see Fig. 3.10). The number of tablets in each box is counted and a
histogram plotted as in Fig. 3.11. As more boxes are added and the intervals made shorter,
the intervals will eventually be so small that the distinction between the bars in the histo-
gram is lost and a smooth curve results, as shown in Fig. 3.12. In this example, the
histogram of tablet weights looks like a normal curve.

Areas under the normal curve represent probabilities and are obtained by appropriate
integration of Eq. (3.13). In Fig. 3.7, the probability of observing a value between Z1 and
Z2 is calculated by integrating the normal density function between Z1 and Z2.

This function is not easily integrated. However, tables are available that can be used
to obtain the area between any two values of the variable, Z. Such an area is illustrated

Figure 3.9 Two normal curves with different standard deviations.
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Figure 3.10 Categorization of tablets from a tablet batch by weight.

in Fig. 3.7A. If the area between Z1 and Z2 in Fig. 3.7 is 0.3, the probability of observing
a value between Z1 and Z2 is 3 in 10 or 0.3. In the case of the tablet potencies, the area
in a specified interval can be thought of as the proportion of tablets in the batch contained
in the interval. This concept is illustrated in Fig. 3.13.

Probabilities can be determined directly from the cumulative distribution plot as shown
in Fig. 3.7B (see Exercise Problem 9). The probability of observing a value below Z1 is
0.6. Therefore, the probability of observing a value between Z1 and Z2 is 0.9 � 0.6 �
0.3.

There are an infinite number of normal curves depending on � and �. However, the
area in any interval can be calculated from tables of cumulative areas under the standard
normal curve. The standard normal curve has a mean of 0 and a standard deviation of 1.
Table IV.2 in App. IV is a table of cumulative areas under the standard normal curve,
giving the area below Z (i.e., the area between �� and Z). For example, for Z � 1.96,
the area in Table IV.2 is 0.975. This means that 97.5% of the values comprising the

Figure 3.11 Histogram of tablet weights.
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Figure 3.12 Histogram of tablet weights with small class intervals.

Figure 3.13 Area under normal curve as a representation of proportion of tablets in an
interval.
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Figure 3.14 Symmetry of the normal curve.

standard normal curve are less than 1.96, lying between �� and 1.96. The normal curve
is symmetrical about its mean. Therefore, the area below �1.96 is 0.025 as depicted in
Fig. 3.14. The area between Z equal to �1.96 and �1.96 is 0.95. Referring to Table
IV.2, the area below Z equal to �2.58 is 0.995, and the area below Z � �2.58 is 0.005.
Thus the area between Z equal to �2.58 and �2.58 is 0.99. It would be very useful for
the reader to memorize the Z values and the corresponding area between 	Z as shown
in Table 3.4. These values of Z are commonly used in statistical analyses and tests.

The area in any interval of a normal curve with a mean and standard deviation different
from 0 and 1, respectively, can be computed from the standard normal curve table by
using a transformation. The transformation changes a value from the normal curve with
mean � and standard deviation �, to the corresponding value, Z, in the standard normal
curve. The transformation is

(3.14)Z
X= −µ

σ

The area (probability) between �� and X (i.e., the area below X) corresponds to the
value of the area below Z from the cumulative standard normal curve table. Note that

Table 3.4 Area Between 	Z for
Some Commonly Used Values of Z

Z Area between 	Z

0.84 0.60
1.00 0.68
1.28 0.80
1.65 0.90
1.96 0.95
2.32 0.98
2.58 0.99



69The Binomial and Normal Probability Distributions

if the normal curve which we are considering is the standard normal curve itself, the
transformation results in the identity

Z
X

X= − =0

1

Z is exactly equal to X, as expected. Effectively the transformation changes variables with
a mean of � and a standard deviation of � to variables with a mean of 0 and a standard
deviation of 1.

Suppose in the example of tablet potencies that the mean is 50 and the standard
deviation is 5 mg. Given these two parameters, what proportion of tablets in the batch
would be expected to have more than 58.25 mg of drug? First we calculate the transformed
value, Z. Then the desired proportion (equivalent to probability) can be obtained from
Table IV.2. In this example, X � 58.25, � � 50, and � � 5. Referring to Eq. (3.14),
we have

Z
X= −

= − =

µ
σ

58 25 50

5
1 65

.
.

According to Table IV.2, the area between �� and 1.65 is 0.95. This represents the
probability of a tablet having 58.25 mg or less of drug. Since the question was, ‘‘What
proportion of tablets in the batch have a potency greater than 58.25 mg?’’, the area above
58.25 mg is the correct answer. The area under the entire curve is 1; the area above 58.25
mg is 1 � 0.95, equal to 0.05. This is equivalent to saying that 5% of the tablets have
at least 58.25 mg (58.25 mg or more) of drug in this particular batch or distribution of
tablets. This transformation is illustrated in Fig. 3.15.

One should appreciate that since the normal distribution is a perfectly symmetrical
continuous distribution which extends from �� to ��, real data never exactly fit this
model. However, data from distributions reasonably similar to the normal can be treated
as being normal, with the understanding that probabilities will be approximately correct.
As the data are closer to normal, the probabilities will be more exact. Methods exist to

Figure 3.15 Z transformation for tablets with mean of 50 mg and s.d. of 5 mg.
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test if data can reasonably be expected to be derived from a normally distributed population
[1]. In this book, when applying the normal distribution to data we will either (a) assume
that the data are close to normal according to previous experience or from an inspection
of the data, or (b) that deviations from normality will not greatly distort the probabilities
based on the normal distribution.

Several examples are presented below which further illustrate applications of the
normal distribution.

Example 1: The U.S. Pharmacopia (USP) weight test for tablets states that for tablets
weighing up to 100 mg, not more than 2 of 20 tablets may differ from the average weight
by more than 10%, and no tablet may differ from the average weight by more than 20%
[2]. To ensure that batches of a 100-mg tablet (labeled as 100 mg) will pass this test
consistently, a statistician recommended that 98% of the tablets in the batch should weigh
within 10% of the mean. One thousand tablets from a batch of 3,000,000 were weighed
and the mean and standard deviation were calculated as 101.2 	 3.92 mg. Before perform-
ing the official USP test, the quality control supervisor wishes to know if this batch meets
the statistician’s recommendation. The calculation to answer this problem can be made
using areas under the standard normal curve if the tablet weights can be assumed to have
a distribution that is approximately normal. For purposes of this example, the sample mean
and standard deviation will be considered equal to the true batch mean and standard
deviation. Although not exactly true, the sample estimates will be close to the true values
when a sample as large as 1000 is used. For this large sample size, the sample estimates
are very close to the true parameters. However, one should clearly understand that to
compute probabilities based on areas under the normal curve, both the mean and standard
deviation must be known. When these parameters are estimated from the sample statistics,
other derived distributions can be used to calculate probabilities.

Figure 3.16 shows the region where tablet weights will be outside the limits, 10%
from the mean (� 	 0.1�), that is, 10.12 mg or more from the mean for an average tablet
weight of 101.2 mg (101.2 	 10.12 mg). The question to be answered is: What proportion

Figure 3.16 Distribution of tablets with mean weight 101.2 mg and standard deviation
equal to 3.92.
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of tablets is between 91.1 and 111.3 mg? If the answer is 98% or greater, the requirements
are met. The proportion of tablets between 91.1 and 111.3 mg can be estimated by comput-
ing the area under the normal curve in the interval 91.1 to 111.3, the unshaded area in
Fig. 3.16. This can be accomplished by use of the Z transformation and the table of areas
under the standard normal curve (Table IV.2). First we calculate the areas below 111.3
using the Z transformation:

Z
X= − = − =µ

σ
111 3 101 2

3 92
2 58

. .

.
.

This corresponds to an area of 0.995 (see Table IV.2). The area above 111.3 is (1 �
0.995) � 0.005 or 1/200. Referring to Fig. 3.16, this area represents the probability of
finding a tablet that weighs 111.3 mg or more. The probability of a tablet weighing 91.1
mg or less is calculated in a similar manner

Z = − =91 1 101 2

3 92
2 58

. .

.
.−

Table IV.2 shows that this area is 0.005; that is, the probability of a tablet weighing
between �� and 91.1 mg is 0.005. The probability that a tablet will weigh more than
111.3 mg or less than 91.1 mg is 0.005 � 0.005, equal to 0.01. Therefore, 99% (1.00 �
0.01) of the tablets weigh between 91.1 and 111.3 mg and the statistician’s recommendation
is more than satisfied. The batch should have no trouble passing the USP test.

The fact that the normal distribution is symmetric around the mean simplifies calcula-
tions of areas under the normal curve. In the example above, the probability of values
exceeding Z equal to 2.58 is exactly the same as the probability of values being less than
Z equal to �2.58. This is a consequence of the symmetry of the normal curve, 2.58 and
�2.58 being equidistant from the mean. This is easily seen from an examination of Fig.
3.16.

Although this batch of tablets should pass the USP weight uniformity test, if some
tablets in the batch are out of the 10 or 20% range, there is a chance that a random sample
of 20 will fail the USP test. In our example, about 1% or 30,000 tablets will be more than
10% different from the mean (less than 91.1 or more than 111.3 mg). It would be of
interest to know the chances, albeit small, that of 20 randomly chosen tablets, more than
2 would be ‘‘aberrant.’’ When 1% of the tablets in a batch deviate from the batch mean
by 10% or more, the chances of finding more than 2 such tablets in a sample of 20 is
approximately 0.001 (1/1000). This calculation makes use of the binomial probability
distribution.

Example 2: During clinical trials, serum cholesterol, among other serum components,
is frequently monitored to ensure that a patient’s cholesterol is within the normal range,
as well as to observe possible drug effects on serum cholesterol levels. A question of
concern is: What is an abnormal serum cholesterol value? One way to define ‘‘abnormal’’
is to tabulate cholesterol values for apparently normal healthy persons, and to consider
values very remote from the average as abnormal. The distribution of measurements such
as serum cholesterol often have an approximately normal distribution.

The results of the analysis of a large number of ‘‘normal’’ cholesterol values showed
a mean of 215 mg % and a standard deviation of 35 mg %. This data can be depicted as
a normal distribution as shown in Fig. 3.17. ‘‘Abnormal’’ can be defined in terms of the
proportion of ‘‘normal’’ values that fall in the extremes of the distribution. This may be
thought of in terms of a gamble. By choosing to say that extreme values observed in a
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Figure 3.17 Distribution of ‘‘normal’’ cholesterol values.

new patient are abnormal, we are saying that persons observed to have very low or high
cholesterol levels could be ‘‘normal,’’ but the likelihood or probability that they come
from the population of normal healthy persons is small. By defining an abnormal choles-
terol value as one that has a 1 in 1000 chance of coming from the distribution of values
from normal healthy persons, cutoff points can be defined for abnormality based on the
parameters of the normal distribution. According to the cumulative standard normal curve,
Table IV.2, a value of Z equal to approximately 3.3 leaves 0.05% of the area in the upper
tail. Because of the symmetry of the normal curve, 0.05% of the area is below Z � �3.3.
Therefore, 0.1% (1/1000) of the values will lie outside the values of Z equal to 	3.3 in
the standard normal curve. The values of X (cholesterol levels) corresponding to Z �
	3.3 can be calculated from the Z transformation.

Z
X X

X

= − = − = ±

= ± =

µ
σ

215

35
3 3

215 3 3 35 99 331

.

( . )( ) and

This is equivalent to saying that cholesterol levels which deviate from the average of
‘‘normal’’ persons by 3.3 standard deviation units or more are deemed to be abnormal.
For example, the lower limit is the mean of the ‘‘normals’’ minus 3.3 times the standard
deviation or 215 � (3.3)(35) � 99. The cutoff points are illustrated in Fig. 3.17.

Example 3: The standard normal distribution may be used to calculate the proportion
of values in any interval from any normal distribution. As an example of this calculation,
consider the data of cholesterol values in Example 2. We may wish to calculate the propor-
tion of cholesterol values between 200 and 250 mg %.

Examination of Fig. 3.18 shows that the area (probability) under the normal curve
between 200 and 250 mg % is the probability of a value being less than 250 minus the
probability of a value being less than 200. Referring to Table IV.2, we have:

Probability of a value less than 250:

250 215

35
1 0 841

− = = =Z probability .
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Figure 3.18 Illustration of the calculation of proportion of cholesterol values between
200 and 250 mg %.

Probability of a value less than 200:

200 215

35
0 429 0 334

− = = =. .Z probability−

Therefore, the probability of a value falling between 250 and 200 is

0.841 � 0.334 � 0.507

3.4.2 Central Limit Theorem

‘‘Without doubt, the most important theorem in statistics is the central limit theorem’’[3].
This theorem states that the distribution of sample means of size N taken from any distribu-
tion with a finite variance �2 and mean � tends to be normal with variance �2/N and
mean �. We have previously discussed the fact that a sample mean of size N has a variance
equal to �2/N. The new and important feature here is that if we are dealing with means
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of sufficiently large sample size, the means have a normal distribution, regardless of the
form of the distribution from which the samples were selected.

How large is a ‘‘large’’ sample? The answer to this question depends on the form of
the distribution from which the samples are taken. If the distribution is normal, any size
sample will have a mean that is normally distributed. For distributions that deviate greatly
from normality, larger samples will be needed to approximate normality than distributions
which are more similar to the normal distributions (e.g., symmetrical distributions).

The power of this theorem is that the normal distribution can be used to describe
most of the data with which we will be concerned, provided that the means come from
samples of sufficient size. An example will be presented to illustrate how means of distribu-
tions far from normal tend to be normally distributed as the sample size increases. Later
in this chapter we will see that even the discrete binomial distribution, where only a very
limited number of outcomes are possible, closely approximates the normal distribution
with sample sizes as small as 10 in symmetrical cases (e.g., p � q � 0.5).

Consider a distribution which consists of outcomes 1, 2, and 3 with probabilities
depicted in Fig. 3.19. The probabilities of observing values of 1, 2, and 3 are 0.1, 0.3,
and 0.6, respectively. This is an asymmetric distribution, with only three discrete outcomes.
The mean is 2.5. Sampling from this population can be simulated by placing 600 tags
marked with the number 3, 300 tags marked with the number 2, and 100 tags marked
with the number 1 in a box. We will mix up the tags, select 10 (replacing each tag and
mixing after each individual selection), and compute the mean of the 10 samples. A typical
result might be five tags marked 3, four tags marked 2, and one tag marked 1, an average
of 2.4. With a computer or programmable calculator, we can simulate this drawing of 10
tags. The distributions of 100 such means for samples of sizes 10 and 20 obtained from
a computer simulation are shown in Fig. 3.20. The distribution is closer to normal as the
sample size is increased from 10 to 20. This is an empirical demonstration of the central
limit theorem. Of course, under ordinary circumstances, we would not draw 100 samples
each of size 10 (or 20) to demonstrate a result that can be proved mathematically.

3.4.3 Normal Approximation to the Binomial

A very important result in statistical theory is that the binomial probability distribution
can be approximated by the normal distribution if the sample size is sufficiently large (see

Figure 3.19 Probability distribution of outcomes 1, 2, and 3.
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Figure 3.20 Distribution of means of sizes 10 and 20 from population shown in Fig.
3.19.

Sec. 3.4.2). A conservative rule of thumb is that if Np (the product of the number of
observations and the probability of success) and Nq are both greater than or equal to 5,
we can use the normal distribution to approximate binomial probabilities. With symmetric
binomial distributions, when p � q � 0.5, the approximation works well for Np less than
5.

To demonstrate the application of the normal approximation to the binomial, we will
examine the binomial distribution described above, where N � 10 and p � 0.5. We can
superimpose a normal curve over the binomial with � � 5 (number of successes) and
standard deviation �Npq � �10(0.5)(0.5) � 1.58, as shown in Fig. 3.21.

The probability of a discrete result can be calculated using the binomial probability
[Eq. (3.9)] or Table IV.3. The probability of seven successes, for example, is equal to
0.117. In a normal distribution, the probability of a single value cannot be calculated. We
can only calculate the probability of a range of values within a specified interval. The
area that approximately corresponds to the probability of observing seven successes in 10
trials is the area between 6.5 and 7.5, as illustrated in Fig. 3.21. This area can be obtained
using the Z transformation discussed earlier in this chapter [Eq. (3.14)]. The area between
6.5 and 7.5 is equal to the area below 7.5 minus the area below 6.5.

Area below 6.5:

Z �
6.5 � 5

1.58
� 0.948 from Table IV.2, area � 0.828
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Figure 3.21 Normal approximation to binomial distribution: Np � 5 and s.d. � 1.58.

Area below 7.5:

Z �
7.5 � 5

1.58
� 1.58 from Table IV.2, area � 0.943

Therefore, the area (probability) between 6.5 and 7.5 is

0.943 � 0.828 � 0.115

This area is very close to the exact probability of 0.117.
The use of X 	 0.5 to help estimate the probability of a discrete value, X, using a

continuous distribution (e.g., the normal distribution) is known as a continuity correction.
We will see that the continuity correction is commonly used to improve the estimation
of binomial probabilities by the normal approximation (Chap. 5).

Most of our applications of the binomial distribution will involve data that allow for
the use of the normal approximation to binomial probabilities. This is convenient because
calculations using exact binomial probabilities are tedious and much more difficult than
the calculations using the standard normal cumulative distribution (Table IV.2), particu-
larly when the sample size is large.

3.5 OTHER COMMON PROBABILITY DISTRIBUTIONS

3.5.1 The Poisson Distribution

Although we will not discuss this distribution further in this book, the Poisson distribution
deserves some mention. The Poisson distribution can be considered to be an approximation
to the binomial distribution when the sample size is large and the probability of observing
a specific event is small. In quality control, the probability of observing a defective item
is often calculated using the Poisson. The probability of observing X events of a given
kind in N observations, where the probability of observing the event in a single observation
is P, is

(3.15)p X
e

X

X

( )
!

=
−λ λ
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where

� � NP
e � base of natural logarithms (2.718 . . .)
N � number of observations

We may use the Poisson distribution to compute the probability of finding one defective
tablet in a sample of 100 taken from a batch with 1% defective tablets. Applying Eq.
(3.15), we have

N P NP

P
e

e

= = = = =

= = =
−

−

100 0 01 100 0 01 1

1
1

1
0 368

1 1
1

. ( )( . )

( )
( ) ( )

!
.

λ

The exact probability calculated from the binomial distribution is 0.370. (See Exercise
Problem 8.)

3.5.2 The t Distribution (‘‘Student’s t’’)

The t distribution is an extremely important probability distribution. This distribution can
be constructed by repeatedly taking samples of size N from a normal distribution and
computing the statistic

(3.16)t
X

S N
= −

−
µ

/

where X̄ is the sample mean, � the true mean of the normal distribution, and S the sample
standard deviation. The distribution of the t’s thus obtained forms the t distribution. The
exact shape of the t distribution depends on sample size (degrees of freedom), but the t
distribution is symmetrically distributed about a mean of zero, as shown in Fig. 3.22A.

To elucidate further the concept of a sampling distribution obtained by repeated sam-
pling, as discussed for the t distribution above, a simulated sampling of 100 samples each
of size 4 (N � 4) was performed. These samples were selected from a normal distribution
with mean 50 and standard deviation equal to 5, for this example. The mean and standard
deviation of each sample of size 4 were calculated and a t ratio [Eq. (3.16)] constructed.

Figure 3.22 Examples of typical probability distributions.
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Table 3.5 Frequency Distribution
of 100 t Values Obtained by
Simulated Repeat Sampling from a
Normal Distribution with Mean 50
and Standard Deviation 5a

Class interval Frequency

�5.5 to �4.5 1
�4.5 to �3.5 2
�3.5 to �2.5 2
�2.5 to �1.5 11
�1.5 to �0.5 18
�0.5 to �0.5 29
�0.5 to �1.5 21
�1.5 to �2.5 9
�2.5 to �3.5 4
�3.5 to �4.5 2
�4.5 to �5.5 1

a Sample size � 4.

The distribution of the 100 t values thus obtained is shown in Table 3.5. The data are
plotted (histogram) together with the theoretically derived t distribution with 3 degrees of
freedom (N � 1 � 4 � 1 � 3) in Fig. 3.23. Note that the distribution is symmetrically
centered around a mean of 0, and that 5% of the t values are 3.18 or more units from the
mean (theoretically).

3.5.3 The Chi-Square (�2) Distribution

Another important probability distribution in statistics is the chi-square distribution. The
chi-square distribution may be derived from normally distributed variables, defined as the
sum of squares of independent normal variables, each of which has mean 0 and standard
deviation 1. Thus, if Z is normal with � � 0 and � � 1,

Figure 3.23 Simulated t distribution (d.f. � 3) compared to a theoretical t distribution.
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(3.17)χ2 2= ∑Zi

Applications of the chi-square distribution are presented in Chapters 5 and 15. The chi-
square distribution is often used to assess probabilities when comparing discrete values
from comparative groups, where the normal distribution can be used to approximate dis-
crete probabilities.

As with the t distribution, the distribution of chi-square depends on degrees of freedom,
equal to the number of independent normal variables as defined in Eq. (3.17). Figure
3.22B shows chi-square distributions with 1 and 3 degrees of freedom.

3.5.4 The F Distribution

After the normal distribution, the F distribution is probably the most important probability
distribution used in statistics. This distribution results from the sampling distribution of
the ratio of two independent variance estimates obtained from the same normal distribution.
Thus the first sample consists of N1 observations and the second sample consists of N2

observations:

(3.18)F
S

S
= 1

2

2
2

The F distribution depends on two parameters, the degrees of freedom in the numerator
(N1 � 1) and the degrees of freedom in the denominator (N2 � 1). This distribution is
used to test for differences of means (analysis of variance) as well as to test for the equality
of two variances. The F distribution is discussed in more detail in Chaps. 5 and 8 as
applied to the comparison of two variances and testing of equality of means in the analysis
of variance, respectively.

KEY TERMS

Binomial distribution Independent events
Binomial formula Multiplicative probability
Binomial trial Mutually exclusive
Central limit theorem Normal distribution
Chi-square distribution Outcome
Combinations Poisson distribution
Conditional probability Population
Continuous distribution Probability distribution
Cumulative distribution Proportion
Density function Random
Discontinuous variable Randomly chosen
Discrete distribution Standard normal distribution
Distribution Success
Equally likely t distribution
Event Variability
Factorial Z transformation
Failure
F distribution
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EXERCISES

1. Explain why you think that a controlled multicenter clinical study better estimates
the probability of a patient responding to treatment than the observations of a
single physician in daily practice.

2. Describe the population that represents the multicenter antibiotic clinical study
described in Sec. 3.3.

3. Give three examples of probability distributions that describe the probability of
outcomes in terms of attributes.

4. Explain why 30,000 tablets are only specked if 20,000 tablets are both chipped
and specked as described in Sec. 3.2. What is the probability, in the example
described in Sec. 3.2 of finding a specked tablet or a chipped tablet? (Hint: Count
all the tablets that have either a speck or a chip.) See Eq. (3.4).

5. In a survey of hospital patients, it was shown that the probability that a patient
has high blood pressure given that he or she is diabetic was 0.85. If 10% of the
patients are diabetic and 25% have high blood pressure:
(a) What is the probability that a patient has both diabetes and high blood pres-

sure?
(b) Are the conditions of diabetes and high blood pressure independent?
[Hint: See Eqs. (3.5), (3.6), and (3.7).]

6. Show how the result 0.21094 is obtained for the probability of two of four patients
being cured if the probability of a cure is 0.75 for each patient and the outcomes
are independent (see Table 3.2). (Enumerate all ways in which two of four patients
can be cured, and compute the probability associated with each of these ways.)

7. What is the probability that three of six patients will be cured if the probability
of a cure is 60%?

8. Calculate the probability of one success in 100 trials if p � 0.01.
9. From the cumulative plot in Fig. 3.7B, estimate the probability that a value, se-

lected at random, will be (a) greater than Z0; (b) less than Z0.
10. What is the probability that a normal patient has a cholesterol value below 170

(� � 215, � � 35)?
11. If the mean and standard deviation of the potency of a batch of tablets are 50 mg

and 5 mg, respectively, what proportion of the tablets have a potency between 40
and 60 mg?

12. If a patient has a serum cholesterol value outside normal limits, does this mean
that the patient is abnormal in the sense of having a disease or illness?

13. Serum sodium values for normal persons have a mean of 140 mEq/L and a s.d.
of 2.5. What is the probability that a person’s serum sodium will be between 137
and 142 mEq/L?

14. Data were collected over many years on cholesterol levels of normal persons in
a New York hospital with the following results based on 100,000 readings. The
mean is 205 mg %; the standard deviation is 45. Assuming that the data have a
normal distribution, what is the probability that a normal patient has a value greater
than 280 mg %?

15. In the game of craps, two dice are thrown, each die having an equal probability
of showing one of the numbers 1 to 6 inclusive. Explain why the probability of
observing a point of 2 (the sum of the numbers on the two dice) is 1/36.

16. Is the probability of observing two heads and one tail the same under the two
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following conditions: (a) simultaneously throwing three coins; (b) tossing one coin
three consecutive times? Explain your answer.

17. What odds would you give of finding either none or one defective tablet in a
sample of size 20 if the batch of tablets has 1% defective? Answer the same
question if the sample size is 100.

18. What is the probability of observing exactly one head in 10 tosses of a coin?
**19. The chance of obtaining a cure using conventional treatment for a particular form

of cancer is 1%. A new treatment being tested cures two of the first four patients
tested. Would you announce to the world that a major breakthrough in the treatment
of this cancer is imminent? Explain your answer.

20. What is the standard deviation for the binomial experiments described in Problems
17 and 19? (Answer in terms of Npq and pq/N.)

**21. In screening new compounds for pharmacological activity, the compound is ad-
ministered to 20 animals. For a standard drug, 50% of the animals show a response
on the average. Fifteen of the twenty animals show the response after administra-
tion of a new drug. Is the new drug a promising candidate? Why? [Hint: Compute
the s.d. of the response based on p � 0.5. See if the observed response is more
than 2 s.d.’s greater than 0.5.]

22. Using the binomial formula, calculate the probability that a sample of 30 tablets
will show 0 or 1 defect if there are 1% defects in the batch. (What is the probability
that there will be more than one defect in the sample of 30?)

23. The following expression can be used to calculate the probability of observing A
or B or C (or any combination of A, B, C):

P(A or B or C) � P(A) � P(B) � P(C) � P(A and B)
�P(A and C) � P(B and C) � P(A and B and C)

A survey shows that 85% of people with colds have cough, rhinitis, pain, or a
combination of these symptoms. Thirty-five percent have at least cough, 50%
have at least rhinitis and 50% have at least pain. Twenty percent have (at least)
cough and rhinitis, 15% have cough and pain, and 25% have rhinitis and pain.
What percentage have all three symptoms?
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CHOOSING SAMPLES

The samples are the units that provide the experimental observations, such as tablets
sampled for potency, patients sampled for plasma cholesterol levels, or tablets inspected
for defects. The sampling procedure is an essential ingredient of a good experiment. An
otherwise excellent experiment or investigation can be invalidated if proper attention is
not given to choosing samples in a manner consistent with the experimental design or
objectives. Statistical treatment of data and the inference based on experimental results
depend on the sampling procedure. The way in which samples should be selected is not
always obvious, and requires careful thought.

The implementation of the sampling procedure may be more or less difficult depending
on the experimental situation, such as that which we may confront when choosing patients
for a clinical trial, sampling blends, or choosing tablets for quality control tests. In this
chapter we discuss various ways of choosing samples and assigning treatments to experi-
mental units (e.g., assigning different drug treatments to patients). We will briefly discuss
various types of sampling schemes, such as simple random sampling, stratified sampling,
systematic sampling, and cluster sampling. In addition, the use of random number tables
to assign experimental units to treatments in designed experiments will be described.

4.1 INTRODUCTION

There are many different ways of selecting samples. We all take samples daily, although
we usually do not think of this in a statistical sense. Cooks are always sampling their
wares, tasting the soup to see if it needs a little more spice, or sampling a gravy or sauce
to see if it needs more mixing. When buying a car, we take a test ride in a ‘‘sample’’ to
determine if it meets our needs and desires.

The usual purpose of observing or measuring a property of a sample is to make some
inference about the population from which the sample is drawn. In order to have reasonable
assurance that we will not be deceived by the sample observations, we should take care
that the samples are not biased. We would clearly be misled if the test car was not represen-
tative of the line, but had somehow been modified to entice us into a sale. We can never

82
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be sure that the sample we observe mirrors the entire population. If we could observe the
entire population, we would then know its exact nature. However, 100% sampling is
virtually never done. (One well-known exception is the U.S. census.) It is costly, time
consuming, and may result in erroneous observations. For example, to inspect each and
every one of 2 million tablets for specks, a tedious and time consuming task, would
probably result in many errors due to fatigue of the inspectors.

Destructive testing precludes 100% sampling. To assay each tablet in a batch does
not make sense. Under ordinary circumstances, no one would assay every last bit of bulk
powder to ensure that it is not adulterated.

The sampling procedure used will probably depend on the experimental situation.
Factors to be considered when devising a sampling scheme include:

1. The nature of the population. For example, can we enumerate the individual units,
such as packaged bottles of a product, or is the population less easily defined,
as in the case of hypertensive patients?

2. The cost of sampling in terms of both time and money.
3. Convenience. Sometimes it may be virtually impossible to carry out a particular

sampling procedure.
4. Desired precision. The accuracy and precision desired will be a function of the

sampling procedure and sample size.

Sampling schemes may be roughly divided into probability sampling and nonprobability
sampling (sometimes called authoritative sampling). Nonprobability sampling methods
often are conceptually convenient and simple. These methods are considered as methods
of convenience in many cases. Samples are chosen in a particular manner because alterna-
tives are difficult. For example, when sampling powder from 10 drums of a shipment of
100 drums, those drums that are most easily accessible might be the ones chosen. Or,
when sampling tablets from a large container, we may conveniently choose from those
at the top. A ‘‘judgment’’ sample is chosen with possible knowledge that some samples
are more ‘‘representative’’ than others, perhaps based on experience. A quality control
inspector may decide to inspect a product during the middle of a run, feeling that the
middle is more representative of the ‘‘average’’ product than samples obtained at the
beginning or end of the run. The inspector may also choose particular containers for
inspection based on knowledge of the manufacturing and bottling procedures. A ‘‘haphaz-
ard’’ sample is one taken without any predetermined plan, but one in which the sampler
tries to avoid bias during the sampling procedure. Nonprobability samples often have a
hidden bias, and it is not possible to apply typical statistical methods to estimate the
population parameters (e.g., � and �) and the precision of the estimates. Nonprobability
sampling methods should not be used unless probability sampling methods are too difficult
or too expensive to implement.

We will discuss procedures and some properties of common probability sampling
methods. Objects chosen to be included in probability samples have a known probability
of being included in the sample and are chosen by some random device.

4.2 RANDOM SAMPLING

Simple random sampling is a common way of choosing samples. A random sample is
one in which each individual (object) in the population to be sampled has an equal chance
of being selected. The procedure of choosing a random sample can be likened to a bingo
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game or a lottery where the individuals (tags, balls, tablets, etc.) are thoroughly mixed,
and the sample chosen at ‘‘random.’’ This ensures that there is no bias; that is, on the
average, the estimates of the population parameters (e.g., the mean) will be accurate. Note
that a parameter estimate, such as the mean, computed from a particular sample will, in
all probability, not equal the true parameter. Many statistical procedures are based on an
assumption that samples are chosen at random. Simple random sampling is most effective
when the variability is relatively small and uniform over the population [1].

In most situations, it is not possible to mix the objects that constitute the population
and pick the samples out of a ‘‘box.’’ But if all members of the population can be identified,
a unique identification, such as a number, can be assigned to each individual unit. We
can then choose the sample by picking numbers, randomly, from a box using a lottery-
like technique. Usually, this procedure is more easily accomplished through the use of a
table of random numbers. Random numbers have been tabulated extensively [2]. In addi-
tion to available tables, computer-generated random numbers may be used to select random
samples or to assign experimental units randomly to treatments as described below.

4.2.1 Table of Random Numbers

Random numbers are frequently used as a device to choose samples to be included in a
survey, a quality control inspection sample, or to assign experimental units to treatments
such as assigning patients to drug treatments. The first step that is often necessary in the
application of a table of random numbers is to assign a number to each of the experimental
units in the population or to the units potentially available for inclusion in the sample.
The numbers are assigned consecutively from 1 to N, where N is the number of units
under consideration. The experimental units may be patients to be assigned to one of two
treatments or bottles of tablets to be inspected for defects. We then choose a ‘‘starting
point’’ in the table of random numbers, in some ‘‘random’’ manner. For example, we can
close our eyes and point a finger on a page of the random number table, and this can be
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the starting point. Alternatively, the numbers thus chosen can be thought of as the page,
column, and row number of a new starting point. Using this random procedure, having
observed the numbers 3674826, we would proceed to page 367, column 48, and row 26
in a book such as A Million Random Digits [2]. This would be the starting point for the
random section. If the numbers designating the starting point do not correspond to an
available page, row, or column, the next numbers in sequence (going down or across the
page as is convenient) can be used, and so on.

Table IV.1 is a typical page from a table of random numbers. The exact use of the
table will depend on the specific situation. Some examples should clarify applications of
the random number table to randomization procedures.

1. A sample of 10 bottles is to be selected from a universe of 800 bottles. The bottles
are numbered from 1 to 800 inclusive. A starting point is selected from the random number
table and three-digit numbers are used to accommodate the 800 bottles. Suppose that the
starting point is row 6 and column 21 in Table IV.1. (The first three-digit number is 177.)
If a number greater than 800 appears or a number is chosen a second time (i.e., the same
number appears twice or more in the table), skip the number and proceed to the next one.
The first 10 numbers found in Table IV.1 with the starting point above and subject to the
foregoing restraints are (reading down) 177, 703, 44, 127, 528, 43, 135, 104, 342, and
604 (see Table 4.1). Note that we did not include 964 because there is no bottle with this
number; only 800 bottles are available. These numbers correspond to the 10 bottles that
will be chosen for inspection.

2. Random numbers may be used to assign patients randomly to treatments in clinical
trials. Initially, the characteristics and source of the patients to be included in the trial
should be carefully considered. If a drug for the treatment of asthma were to be compared
to a placebo treatment, the source (or population) of the samples to be chosen could be
all asthmatics in this country. Clearly, even if we could identify all such persons, for
obvious practical reasons it would not be possible to choose those to be included in the
study using the simple random sampling procedure described previously.
In fact, in clinical studies of this kind, patients are usually recruited by an investigator
(physician), and all patients who meet the protocol requirements and are willing to partici-

Table 4.1 Excerpt from
Table IV.1

Column 21

Row 6 17 7
70 3
04 4
12 7
52 8
04 3
13 5
96 4
10 4
34 2
60 4



86 Chapter 4

pate are included. Most of the time, patients in the study are randomly assigned to the
two or more treatments by means of a table of random numbers or a similar ‘‘random’’
device. Consider a study with 20 patients designed to compare an active drug substance
to an identically appearing placebo. As patients enter the study, they are assigned randomly
to one of the treatment groups, 10 patients to be assigned to each group. One way to
accomplish this is to ‘‘flip’’ a coin, assigning, for example, heads to the active drug product
and tails to the placebo. After 10 patients have been assigned to one group, the remaining
patients are assigned to the incomplete group.

A problem with a simple random assignment of this kind is that an undesirable alloca-
tion may result by chance. For example, although improbable, the first 10 patients could
be assigned to the active treatment and the last 10 to the placebo, an assignment that the
randomization procedure is intended to avoid. (Note that if the treatment outcome is
associated with a time trend due to seasonal effects, physician learning, personnel changes,
etc., such an assignment would bias the results.) In order to avoid this possibility, the
randomization can be applied to subgroups of the sample. For 20 patients, one possibility
is to randomize in groups of 4, 2 actives and 2 placebos to be assigned to each group of
4. This procedure also ensures that if the study should be aborted at any time, approximately
equal numbers of placebo and active treated patients will be included in the results.

If the randomization is performed in groups of 4 as recommended, the following
patient allocation would result. (Use Table 4.1 for the random numbers as before, odd for
placebo, even for active.)

Patient Random no. Drug Comment

1 1 P
2 7 P
3 — D
4 — D Assign D to patients 3 and 4 to ensure equal

allocation of D and P in the subgroup
5 0 D
6 1 P
7 5 P
8 — D Assign D to patient 8 to ensure equal allocation

of D and P in the subgroup.
9 0 D

10 1 P
11 9 P
12 — D Assign D to patient 12 to ensure equal allocation

of D and P in the subgroup.
13 1 P
14 3 P
15 — D
16 — D Assign D to patients 15 and 16 to ensure equal

allocation of D and P in the subgroup
17 6 D
18 7 P
19 0 D
20 — P Assign P to patient 20 to ensure equal allocation

of D and P in the subgroup

The source and methods of randomization schemes for experiments or clinical studies
should be documented for U.S. Food and Drug Administration (FDA) submissions or for
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legal purposes. Therefore, it is a good idea to use a table of random numbers or a computer-
generated randomization scheme for documentation rather than the coin-flipping tech-
nique. One should recognize, however that the latter procedure is perfectly fair, the choice
of treatment being due to chance alone. Using a table of random numbers, a patient may
be assigned to one treatment if an odd number appears and to the other treatment if an
even number appears. We use single numbers for this allocation. If even numbers are
assigned to drug treatment, the numbers in Table 4.1 would result in the following assign-
ment to drug and placebo (read numbers down each column, one number at a time; the
first number is 1, the second number is 7, the third number is 0, etc.):

Patient Patient Patient Patient

1 1 P 6 0 D 11 6 D 16 2 D
2 7 P 7 1 P 12 7 P 17 4 D
3 0 D 8 9 P 13 0 D 18 3 P
4 1 P 9 1 P 14 4 D
5 5 P 10 3 P 15 2D

Since 10 patients have been assigned to placebo (P), the remaining 2 patients are assigned
to drug (D). Again, the randomization can be performed in subgroups as described in the
previous paragraph. If the randomization is performed in subgroups of size 4, for example,
the first 4 patients would be assigned as follows: patients 1 and 2 to placebo (random
numbers 1 and 7), and patients 3 and 4 to drug to attain equal allocation of treatments in
this sample of 4.

Another approach is to number the patients from 1 to 20 inclusive as they enter the
study. The patients corresponding to the first 10 numbers from the random number table
are assigned to one of the two treatment groups. The remaining patients are assigned to
the second treatment. In our example, the first 10 numbers will be assigned to placebo
and the remaining numbers to drug. In this case, two-digit numbers are used from the
random number table. (The numbers 1 to 20 have at most two digits.) Starting at row 11,
column 11 in Table IV.1 and reading across, the numbers in Table 4.2 represent patients
to be assigned to the first treatment group, placebo. Reading across, the first 10 numbers
to appear that are between 1 and 20 (disregarding repeats), underlined in Table 4.2, are
4, 9, 13, 18, 10, 20, 3, 11, 12, and 19. These patients are assigned to placebo. The remaining
patients, 1, 2, 5, 6, 7, 8, 14, 15, 16, and 17, are assigned to drug.

Randomization in clinical trials is discussed further in Chapter 11, Sect. 11.2.6.

Table 4.2 Excerpt from Table IV.1: Assignment of First 10 Numbers
Between 1 and 20 to Placebo

Column 11

Row 11 — — — — — 44 22 78 84 26 04 33 46 09 52
59 29 97 68 60 71 91 38 67 54 13 58 18 24 76
48 55 90 65 72 96 57 69 36 10 96 46 92 42 45
66 37 32 20 30 77 84 57 03 29 10 45 65 04 26
68 49 69 10 82 53 75 91 93 30 34 25 20 57 27
83 62 64 11 12 67 19 — — — — — — — —
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4.3 OTHER SAMPLING PROCEDURES: STRATIFIED, SYSTEMATIC,
AND CLUSTER SAMPLING

4.3.1 Stratified Sampling

Stratified sampling is a procedure in which the population is divided into subsets or strata,
and random samples are selected from each strata. Stratified sampling is a recommended
way of sampling when the strata are very different from each other, but objects within
each stratum are alike. The precision of the estimated population mean from this sampling
procedure is based on the variability within the strata. Stratified sampling will be particu-
larly advantageous when this within-object variability is small compared to the variability
between objects in different strata. In quality control procedures, items are frequently
selected for inspection at random within specified time intervals (strata) rather than in a
completely random fashion (simple random sampling). Thus we might sample 10 tablets
during each hour of a tablet run. Often, the sample size chosen from each stratum is
proportional to the size of the stratum, but in some circumstances, disproportionate sam-
pling may be optimal. The computation of the mean and variance based on stratified
sampling can be complicated, and the analysis of the data should take stratification into
account [1]. In the example of the clinical study on asthmatics (Sec. 4.2.1), the stratification
could be accomplished by dividing the asthmatic patients into subsets (strata) depending
on age, duration of illness, or severity of illness, for example. The patients are assigned
to treatments randomly within each subset. Note in this example that patients within each
stratum are more alike than patients from different strata.

Consider an example of sampling tablets for drug content (assay) during a tablet run.
If we believe that samples taken close in time are more alike than those taken at widely
differing times, stratification would be desirable. If the tableting run takes 10 hours to
complete, and a sample of 100 tablets is desired, we could take 10 tablets randomly during
each hour, a stratified sample. This procedure would result in a more precise estimate of
the average tablet potency than a sample of 100 tablets taken randomly over the entire
10-hour run.

Although stratified sampling often results in better precision of the estimate of the
population mean, in some instances the details of its implementation may be more difficult
than those of simple random sampling.

4.3.2 Systematic Sampling

Systematic sampling is often used in quality control. In this kind of sampling, every nth
item is selected (e.g., every 100th item). The initial sample is selected in a random manner.
Thus a quality control procedure may specify that 10 samples be taken at a particular time
each hour during a production run. The time during the hour for each sampling may be
chosen in a random manner. Systematic sampling is usually much more convenient, and
much easier to accomplish than simple random sampling and stratified sampling. It also
results in a uniform sampling over the production run, which may result in a more precise
estimate of the mean. Care should be taken that the process does not show a cyclic or
periodic behavior, because systematic sampling will then not be representative of the
process. The correct variance for the mean of a systematic sample is less than that of a
simple random sample if the variability of the systematic sample is greater than the variabil-
ity of the entire set of data.

To illustrate the properties of a systematic sample, consider a tableting process in
which tablet weights tend to decrease during the run, perhaps due to a gradual decrease
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Figure 4.1 Illustration of problem with systematic sampling when process shows peri-
odic behavior.

in tableting pressure. The press operator adjusts the tablet pressure every hour to maintain
the desired weight. The tablet weights during the run are illustrated in Fig. 4.1. If tablets
are sampled 45 min after each hour, the average result will be approximately 385 mg, a
biased result.

If the data appear in a random manner, systematic sampling may be desirable because
it is simple and convenient to implement. As noted above, ‘‘systematic sampling is more
precise than random sampling if the variance within the systematic sample is larger than
the population variance as a whole.’’ Another way of saying this is that systematic sampling
is precise when units within the same sample are heterogeneous, and imprecise when they
are homogeneous [3]. In the tableting example noted in the previous paragraph, the units
in the sample tend to be similar (precise) and systematic sampling is a poor choice. (See
Exercise Problem 11 for an example of construction of a systematic sample.)

4.3.3 Cluster Sampling

In cluster sampling, the population is divided into groups or clusters each of which contain
‘‘subunits.’’ In single-stage cluster sampling, clusters are selected at random and all ele-
ments of the clusters chosen are included in the sample.

Two-stage cluster sampling may be used when there are many ‘‘primary’’ units, each
of which can be ‘‘subsampled.’’ For example, suppose that we wish to inspect tablets
visually, packaged in the final labeled container. The batch consists of 10,000 bottles of
100 tablets each. The primary units are the bottles and the subsample units are the tablets
within each bottle. Cluster sampling, in this example, might consist of randomly selecting
a sample of 100 bottles, and then inspecting a random sample of 10 tablets from each of
these bottles, thus the nomenclature, ‘‘two-stage’’ sampling. Often, cluster sampling is
the most convenient way of choosing a sample. In the example above, it would be impracti-
cal to select 1000 tablets at random from the 1,000,000 packaged tablets (10,000 bottles
� 100 tablets per bottle).

For a continuous variable such as tablet weights or potency, the estimate of the variance
of the mean in two-stage cluster sampling is:
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where S 2
1 is the estimate of the variance among the primary unit means (the means of

bottles).
S 2

2 is the estimate of the variance of the subsample units, i.e., units within the primary
units (between tablets within bottles).

f1 and f2 are the sampling fractions of the primary and subsample units, respectively.
These are the ratios of units sampled to the total units available. In the present example
of bottled tablets,

f1 � 100 bottles/10,000 bottles � 0.01 (100 bottles are randomly selected from
10,000)

f2 � 10 tablets/100 tablets � 0.1 (10 tablets are randomly selected from 100 for each
of the 100 bottles)

n � number of primary unit samples (100 in this example)
m � number of units sampled from each primary unit (10 in this example)

If, in this example, S 2
1 and S 2

2 are 2 and 20, respectively, from Eq. (4.1), the estimated
variance of the mean of 1000 tablets sampled from 100 bottles (10 tablets per bottle) is

(1 � 0.01)(2)/100 � [20/(100 � 10)](0.01)(0.9) � 0.01998

If 1000 tablets are sampled by taking 2 tablets from each of 500 bottles, the estimated
variance of the mean is

(1 � 0.05)(2)/500 � [20/(500 � 2)](0.05)(0.98) � 0.00478

This example illustrates the increase in efficiency of sampling more primary units.
The variance obtained by sampling 200 bottles is approximately one-half that of sampling
100 bottles. If f1 is small, the variance of the mean is related to the number of primary
units sampled (n) equal to approximately S 2

1/n. Cost and time factors being equal, it is
more efficient to sample more primary units and fewer subsample units given a fixed
sample size. However, in many situations it is not practical or economical to sample a
large number of primary units. The inspection of tablets in finished bottles is an example
where inspection of many primary units (bottles) would be costly and inconvenient. See
Exercise Problems 9 and 10 for further illustrations.

4.4 SAMPLING IN QUALITY CONTROL

Sampling of items for inspection, chemical, or physical analysis is a very important aspect
of quality control procedures. For the moment, we will not discuss the important question:
‘‘What size sample should we take?’’ This will be discussed in Chap. 6. What concerns
us here is how to choose the samples. In this respect, the important points to keep in mind
from a statistical point of view are:

1. The sample should be ‘‘representative.’’
2. The sample should be chosen in a way that will be compatible with the objectives

of the eventual data analysis.

For example, when sampling tablets, we may be interested in estimating the mean
and standard deviation of the weight or potency of the tablet batch. If 20 tablets are chosen
for a weight check during each hour for 10 hours from a tablet press (a stratified or
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systematic sample), the mean and standard deviation are computed in the usual manner
if the production run is uniform resulting in random data. However, if warranted, the
analysis should take into account the number of tablets produced each hour and the uni-
formity of production during the sampling scheme. For example, in a uniform process,
an estimate of the average weight would be the average of the 200 tablets, or equivalently,
the average of the averages of the 10 sets of 20 tablets sampled. However, if the rate of
tablet production is doubled during the 9th and 10 hours, the averages obtained during
these 2 hours should contribute twice the weight to the overall average as the average
results obtained during the first 8 hours. For further details of the statistical analysis of
various sampling procedures, the reader is referred to Refs. 1 and 3.

Choosing a representative sample from a bulk powder, as an example, is often based
on judgment and experience more than on scientific criteria (a ‘‘judgment’’ sample). Rules
for sampling from containers and for preparing powdered material or granulations for
assay are, strictly speaking, not ‘‘statistical’’ in nature. Bulk powder sampling schemes
have been devised in an attempt to obtain a representative sample without having to sample
an inordinately large amount of material. A common rule of thumb, taking samples from

�N � 1 containers (N is the total number of containers), is a way to be reasonably sure
that the material inspected is representative of the entire lot, based on tradition rather than
on objective grounds. Using this rule, given a batch of 50 containers, we would sample

�50 � 1 � 8 containers. The eight containers can be chosen using a random number
table (see Exercise Problem 3).

Sampling plans for bulk powders and solid mixes such as granulations usually include
the manner of sampling, the number of samples, and preparation for assay with an aim
of obtaining a representative sample. One should bear in mind that a single assay will not
yield information on variability. No matter what precautions we take to ensure that a single
sample of a mix is representative of a batch, we can only estimate the degree of homogene-
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ity by repeating the procedure one or more times on different portions of the mix. Repeat
assays on the same sample gives an estimate of analytical error, not homogeneity of the
mix. For a further discussion of this concept see Chapter 13.

An example of a procedure for sampling from large drums of a solid mixture is to
insert a thief (a device for sampling bulk powders) and obtain a sample from the center
of the container. A grain thief may be used to take samples from more than one part of
the container. This procedure is repeated for an appropriate number of containers and the
samples thoroughly mixed. The sample to be submitted for analysis is mixed further and
quartered, rejecting two diagonal portions. The mixing and quartering is repeated until
sufficient sample for analysis remains.

Other ideas on sampling for quality control and validation can be found in Ch. 13,
Section 13.1.1.

KEY TERMS

Cluster sample Sample
Haphazard sample Sampling with replacement
Judgment sample Simple random sample
Multistage sample Stratified sample
Nonprobability sample Systematic sample
Probability sample Table of random numbers
Representative sample Two-stage cluster sample

EXERCISES

Use the table of random numbers (Tables IV.1) to answer the following questions.

1. Twenty-four patients are recruited for a clinical study, 12 patients to be randomly
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assigned to each of two groups, A and B. The patients come to the clinic and are
entered into the study chronologically, randomly assigned to treatment A or B. Devise
a schedule showing to which treatment each of the 24 patients is assigned.

2. Devise a randomization scheme similar to that done in Problem 1 if 24 patients are
to be assigned to three treatments.

3. Thirty drums of bulk material are to be sampled for analysis. How many drums
would you sample? If the drums are numbered 1 to 30, explain how you chose drums
and take the samples.

4. A batch of tablets is to be packaged in 5000 bottles each containing 1000 tablets.
It takes 4 hours to complete the packaging operation. Ten bottles are to be chosen
for quality control tests. Explain in detail how you would choose the 10 bottles.

5. Devise a randomization scheme to assign 20 patients to drug and placebo groups
(10 patients in each group) using the numbers shown in Table 4.1 by using even
numbers for assignment to drug and odd numbers for assignment to placebo.

6. Describe two different ways in which 20 tablets can be chosen during each hour of
a tablet run.

7. One hundred bottles of a product, labeled 0 to 99 inclusive, are available to be
analyzed. Analyze five bottles selected at random. Which five bottles would you
choose to analyze?

8. A batch of tablets is produced over an 8-hr period. Each hour is divided into four
15-min intervals for purposes of sampling. (Sampling can be done during 32 intervals,
four per hour for 8 hr.). Eight samples are to be taken during the run. Devise (a) a
simple random sampling scheme, (b) a stratified sampling scheme, and (c) a system-
atic sampling scheme. Which sample would you expect to have the smallest variance?
Explain.

9. The average potencies of tablets in 20 bottles labeled 1 to 20 are

Bottle number Potency

1 312
2 311
3 309
4 309
5 310
6 308
7 307
8 305
9 306

10 307
11 305
12 301
13 303
14 300
15 299
16 300
17 300
18 297
19 296
20 294
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(a) Choose a random sample of 5 bottles. Calculate the mean and standard devia-
tion.

(b) Choose a systematic sample, choosing every 4th sample, starting randomly with
one of the first 4 bottles. Calculate the mean and standard deviation of the
sample.

(c) Compare the averages and standard deviations of the 2 samples and explain
your results. Compare your results to those obtained by other class members.

10. Ten containers each contain 4 tablets. To estimate the mean potency, 2 tablets are
to be randomly selected from 3 randomly chosen containers. Perform this sampling
from the data shown below. Estimate the mean and variance of the mean. Repeat
the sampling, taking 3 tablets from 2 containers. Explain your results. Compute the
mean potency of all 40 tablets.

Container Tablet potencies (mg)

1 290 289 305 313
2 317 300 285 327
3 288 322 306 299
4 281 305 309 289
5 292 295 327 283
6 286 327 297 314
7 311 286 281 288
8 306 282 282 285
9 313 301 315 285

10 283 327 315 322

11. Twenty-four containers of a product are produced during 8 minutes, 3 containers
each minute. The drug content of each container is shown below:

Minute Container assay

1 80 81 77
2 78 76 76
3 84 83 86
4 77 77 79
5 83 81 82
6 81 79 80
7 82 79 81
8 79 79 80

Eight containers are to be sampled and analyzed for quality control. Take a sample
of 8 as follows:
(a) Simple random sample
(b) Stratified sample; take one sample at random each minute
(c) Systematic sample; start with the first, second, or third container and then take

every third sample thereafter.
Compute the mean and the variance of each of your 3 samples (a, b, and c). Discuss
the results. Which sample gave the best estimate of the mean? Compare your results
to those obtained from the other students in the class.
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5

STATISTICAL INFERENCE: ESTIMATION
AND HYPOTHESIS TESTING

Parameter estimates obtained from samples are usually meant to be used to estimate the
true population parameters. The sample mean and variance are typical estimators or predic-
tors of the true mean and variance, and are often called ‘‘point’’ estimates. In addition,
an interval that is apt to contain the true parameter often accompanies and complements
the point estimate. These intervals, known as confidence intervals, can be constructed with
a known a priori probability of bracketing the true parameters. Confidence intervals play
an important role in the evaluation of drugs and drug products.

The question of statistical significance pervades much of the statistics commonly used
in pharmaceutical and clinical studies. Advertising, competitive claims, and submissions of
supporting data for drug efficacy to the FDA usually require evidence of superiority,
effectiveness, and/or safety based on the traditional use of statistical hypothesis testing.
This is the technique that leads to the familiar statement, ‘‘The difference is statistically
significant’’ (at the 5% level or less, for example), words that open many regulatory
doors. Many scientists and statisticians feel that too much is made of testing for statistical
significance, and that decisions based on such statistical tests are often not appropriate.
However, testing for statistical significance is one of the backbones of standard statistical
methodology and the properties and applications of such tests are well understood and
familiar in many experimental situations. This aspect of statistics is not only important to
the pharmaceutical scientist in terms of applications to data analysis and interpretation,
but is critical to an understanding of the statistical process. Since much of the material
following this chapter is based largely on a comprehension of the principles of hypothesis
testing, the reader is urged to make special efforts to understand the material presented
in this chapter.

5.1 STATISTICAL ESTIMATION (CONFIDENCE INTERVALS)

We will introduce the concept of statistical estimation and confidence intervals before
beginning the discussion of hypothesis testing. Scientific experimentation may be divided
into two classes: (a) experiments designed to estimate some parameter or property of a

96
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system, and (b) comparative experiments, where two or more treatments or experimental
conditions are to be compared. The former type of experiment is concerned with estimation
and the latter is concerned with hypothesis testing.

The term estimation in statistics has a meaning much like its meaning in ordinary
usage. A population parameter is estimated based on the properties of a sample from the
population. We have discussed the unbiased nature of the sample estimates of the true
mean and variance, designated as X̄ and S2 (Sections 1.4 and 1.5). These sample statistics
estimate the population parameters and are considered to be the best estimates of these
parameters from several points of view.* However, the reader should understand that
statistical conclusions are couched in terms of probability. Statistical conclusions are not
invariant as may be the case with results of mathematical proofs. Without having observed
the entire population, one can never be sure that the sample closely reflects the population.
In fact, as we have previously emphasized, sample statistics such as the mean and variance
are rarely equal to the population parameters.

Nevertheless, the sample statistics (e.g., the mean and variance) are the best estimates
we have of the true parameters. Thus, having calculated X̄ and S2 for potencies of 20
tablets from a batch, one may very well inquire about the true average potency of the
batch. If the mean potency of the 20 tablets is 49.8 mg, the best estimate of the true batch
mean is 49.8 mg. Although we may be almost certain that the true batch mean is not
exactly 49.8 mg, there is no reason, unless other information is available, to estimate the
mean to be a value different from 49.8 mg.

The discussion above raises the question of the reliability of the sample statistic as
an estimate of the true parameter. Perhaps one should hesitate in reporting that the true
batch mean is 49.8 mg based on data from only 20 tablets. One might question the reliability
of such an estimate. The director of quality control might inquire: ‘‘How close do you
think the true mean is to 49.8 mg?’’ Thus it is a good policy when reporting an estimate
such as a mean, to include some statement as to the reliability of the estimate. Does the
49.8-mg estimate mean that the true mean potency could be as high as 60 mg, or is there
a high probability that the true mean is not more than 52 mg? This question can be
answered by use of a confidence interval. A confidence interval is an interval within which
we believe the true mean lies. We can say, for example, that the true batch mean potency
is between 47.8 and 51.8 mg with 95% probability. The width of the interval depends on
the properties of the population, the sample estimates of the parameters, and the degree
of certainty desired (the probability statement).

Since most of the problems that we will encounter are concerned with the normal
distribution, particularly sampling of means, we are most interested in confidence intervals
for means. If the distribution of means is normal and � is known, an interval with confi-
dence coefficient, P (probability), can be computed using a table of the cumulative standard
normal distribution, Table IV.2. A two-sided confidence interval, symmetric about the
observed mean, is calculated as follows:

(5.1)X
Z

N

p−
±

σ
P% confidence interval =

* These ‘‘point’’ estimates are unbiased, consistent, minimum variance estimates. Among unbiased
estimators, these have minimum variance, and approach the true value with high probability as
the sample size gets very large.
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Figure 5.1 Areas in the tails of a standard normal curve.

where

X̄ � observed sample mean
N � sample size
� � population standard deviation

Zp � normal deviate corresponding to the (P � 1)/2 percentile of the cumulative
standard normal distribution (Table IV.2)

For the most commonly used 95% confidence interval, Z � 1.96, corresponding to
(0.95 � 1)/2 � 0.975 of the area in the cumulative standard normal distribution. Other
common confidence coefficients are 90% and 99%, having values of Z equal to 1.65 and
2.58, respectively. Inspection of Table IV.2 shows that the area in the tails of a normal
curve between 	1.65, 	1.96, and 	2.58 standard deviations from the mean is 90, 95,
and 99%, respectively. This is illustrated in Fig. 5.1 (see also Table 3.4).

Before presenting examples of the computation and use of confidence intervals, the
reader should take time to understand the concept of a confidence interval. The confidence
interval changes depending on the sample chosen because, although �* and N remain the
same, X̄ varies from sample to sample. A confidence interval using the mean from any
given sample may or may not contain the true mean. Without a knowledge of the true
mean, we cannot say whether or not any given interval contains the true mean. However,
it can be proven that when intervals are constructed according to Eq. (5.1), P% (e.g., 95%)
of such intervals will contain the true mean. Figure 5.2 shows how means of size N, taken
from the same population, generate confidence intervals. Think of this as means of size
20, each mean generating a confidence interval [Eq. (5.1)]. For a 95% confidence interval,

* � is assumed to be known in this example.
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Figure 5.2 Concept of the confidence interval.

19 of 20 such intervals will cover the true mean, �, on the average. Any single interval
has a 95% chance of covering the true mean, a priori. Of course, one would not usually
take many means in an attempt to verify this concept, which can be proved theoretically.
Under usual circumstances, only a single mean is observed and a confidence interval
computed. This interval may not cover the true mean, but we know that 19 of 20 such
intervals will cover the true mean.

Looking at the confidence interval from another point of view, suppose that a mean
of 49.8 mg was observed for a sample size of 20 with �/�N, (�x̄) equal to 2. According

to Eq. (5.1), the 95% confidence interval for the true mean is 49.8 	 1.96(2) � 45.9 to
53.7 mg. Figure 5.3 shows that if the true mean were outside the range 45.9 to 53.7, the
observation of the sample mean, 49.8 mg, would be very unlikely. The dashed curve in

Figure 5.3 This figure shows that a mean of 49.8 is unlikely to be observed if the true
mean is 54.7 (confidence interval � 45.9 to 53.7).
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the figure represents the distribution of means of size 20 with a true mean of 54.7 and �x̄

� 2. In this example, the true mean is outside the 95% confidence interval, and the
probability of observing a mean from this distribution as small as 49.8 mg or less is less
than 1% (see Exercise Problem 1). Therefore, one could conclude that the true mean is
probably not as great as 54.7 mg based on the observation of a mean of 49.8 mg from a
sample of 20 tablets.

5.1.1 Confidence Intervals Using the t Distribution

In most situations in which confidence intervals are computed, �, the true standard devia-
tion, is unknown, but is estimated from the sample data. A confidence interval can still
be computed based on the sample standard deviation, S. However, the interval based on
the sample standard deviation will tend to be wider than that computed with a known
standard deviation. This is reasonable because if the standard deviation is not known, one
has less knowledge of the true distribution and consequently less assurance of the location
of the mean.

The computation of the confidence interval in cases where the standard deviation is
estimated from sample data is similar to that shown in Eq. (5.1) except that a value of t
is substituted for the Z value:

(5.2)X
tS

N

−
±P% confidence interval =

Values of t are obtained from the cumulative t table, Table IV.4, corresponding to a P%
confidence interval.

The appropriate value of t depends on degrees of freedom (d.f.), a concept that we
encountered in Sec. 1.5.2. When constructing confidence intervals for means, the d.f. are
equal to N � 1, where N is the sample size. For samples of size 20, d.f. � 19 and the
appropriate values of t for 90, 95, or 99% confidence intervals are 1.73, 2.09, and 2.86,
respectively. Examination of the t table shows that the values of t decrease with increasing
d.f., and approach the corresponding Z values (from the standard normal curve) when the
d.f. are large. This is expected, because when d.f. � �, the standard deviation is known
and the t distribution coincides with the standard normal distribution. We will talk more
of the t distribution later in this chapter (see also Sec. 3.5).

5.1.2 Examples of Construction of Confidence Intervals

Example 1: Confidence interval when � is unknown and estimated from the sample. The
labeled potency of a tablet dosage form is 100 mg. Ten individual tablets are assayed
according to a quality control specification. The 10 assay results shown in Table 5.1 are

Table 5.1 Assay Results for 10
Randomly Selected Tablets (mg)

101.8 104.5
102.6 100.7

99.8 106.3
104.9 100.6
103.8 105.0

X̄� 103.0 S � 2.22
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assumed to be sampled from a normal distribution. The sample mean is 103.0 mg and the
standard deviation is 2.22. A 95% confidence interval for the true batch mean [Eq. (5.2)]
is

103 2 26
2 22

10
101 41 104 59± 







 =.

.
. .to

Note that the t value is 2.26. This is the value of t with 9 d.f. (N � 10) for a 95%
confidence interval taken from Table IV.4.

Example 2: Confidence interval when � is known. Suppose that the standard deviation
were known to be equal to 2.0. The 95% confidence interval for the mean is [Eq. (5.1)]

X
N

−
± = ± =1 96

103 0
1 96 2 0

10
101 76 104 24

.
.

. ( . )
. .

σ
to

The value 1.96 is obtained from Table IV.2 (Z � 1.96 for a two-sided symmetrical
confidence interval) or from Table IV.4 for t with � d.f.

Two questions arise from this example.

1. How can we know the s.d. of a batch of tablets without assaying every tablet?
2. Why is the s.d. used in Example 2 different from that in Example 1?

Although it would be foolhardy to assay each tablet in a batch (particularly if the assay
were destructive, that is, the sample is destroyed during the assay process), the variance
of a ‘‘stable’’ process can often be precisely estimated by averaging or pooling the variance
over many batches (see also Sec. 12.2 and App. I). The standard deviation obtained from
this pooling is based on a large number of assays and will become very stable as long as
the tableting process does not change. The pooled standard deviation can be assumed to
be equal to or close to the true standard deviation (see Fig. 5.4).

The answer to the second question has actually been answered in the previous para-
graph. The variance of any single sample of 10 tablets will not be identical to the true
variance, 22 or 4 in the example above. If the average variance over many batches can
be considered equal to or very close to the true variance, the pooled variance is a better
estimate of the variance than that obtained from 10 tablets. This presupposes that the
variance does not change from batch to batch. Under these conditions, use of the pooled
variance rather than the individual sample variance will result in a narrower confidence
interval, on the average.

Example 3: Confidence Interval for a Proportion
(a) In a preclinical study, 100 untreated (control) animals were observed for the

presence of liver disease. After 6 months, 25 of these animals were found to have the
disease. We wish to compute a 95% confidence interval for the true proportion of animals
who would have this disease if untreated (after 6 months). A confidence interval for a
proportion has the same form as that for a mean. Assuming that the normal approximation
to the binomial is appropriate, the confidence interval is approximately:

(5.3)p Z
pq

N
∧

∧ ∧

±

where
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Figure 5.4 Pooling variances over batches, a good estimate of the true variance of a
stable process (same sample size per batch).

p̂ � observed proportion
Z � appropriate cutoff point from the normal distribution (Table IV.2)
N � sample size

In the present example, a 95% confidence interval is

0 25 1 96
0 25 0 75

100
0 165 0 335. .

( . )( . )
. .± = to

The true proportion is probably between 16.5 and 33.5%.* Notice that the mean is equal
to the observed proportion and that the normal approximation to the binomial distribution
makes use of the Z value of 1.96 for the 95% confidence interval from the cumulative
normal distribution. The standard deviation is computed from Eq. (3.11), � � �p̂q̂/N.

A 99% confidence interval for the true proportion is

0 25 2 58
0 25 0 75

100
0 138 0 362. .

( . )( . )
. .± = to

Note that the 99% confidence interval is wider than the 95% interval. The greater the
confidence, the wider is the interval. To be 99% ‘‘sure’’ that the true mean is contained

* Both Np̂ and Nq̂ should be equal to or greater than 5 when using the normal approximation to
the binomial (Sec. 3.4.3).
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in the interval, the confidence interval must be wider than that which has a 95% probability
of containing the true mean.

(b) To obtain a confidence interval for the true number of animals with liver disease
when a sample of 100 shows 25 with liver disease, we use the standard deviation according
to Eq. (3.12), � � �Np̂q̂. A 95% confidence interval for the true number of diseased
animals (where the observed number is Np � 25) is

N p Npq∧ ∧ ∧± = ±
=

1 96 25 1 96 100 0 25 0.75

16 5 33 5

. . ( )( . )( )

. .to

This answer is exactly equivalent to that obtained using proportions, in part (a) (16.5/100
� 0.165 and 33.5/100 � 0.335). Further examples of symmetric confidence intervals are
presented in conjunction with various statistical tests in the remaining sections of this
chapter. In particular, confidence intervals for the true difference of two means or two
proportions are given in Secs. 5.22, 5.23, and 5.26.

5.1.3 Asymmetric Confidence Intervals

One-Sided Confidence Intervals

In most situations, a confidence interval symmetric about the observed mean seems most
appropriate. This is the shortest interval given a fixed probability. However, there are
examples where a one-sided confidence interval can be more useful. Consider the case of
a clinical study in which 18 of 500 patients treated with a marketed drug report headaches
as a side effect. Suppose that we are only concerned with an ‘‘upper limit’’ on the propor-
tion of drug-related headaches to be expected in the population of users of the drug. In
this example, when constructing a 95% interval, we use a Z (or t) value that cuts off 5%
of the area in the upper tail of the distribution, rather than the 2.5% in each tail excluded
in a symmetric interval. Using the normal approximation to the binomial, the upper limit
is

p Z pq N+

+
+ =

/

/ . ( . )( . ) /

. . .

18 500 1 65 0 036 0 964 500

0 036 0 014 0 050

Based on the one-sided 95% confidence interval, we conclude that the true proportion
of headaches among drug users is probably not greater than 5%. Note that we make no
statement about the lower limit, which must be greater than 0. Another application of a
one-sided confidence interval is presented in Chap. 7, Sec. 7.5, as applied to the analysis
of stability data.

Other Asymmetric Confidence Intervals

In general, many P% confidence intervals can be constructed by suitably allocating (1 �
P)% of the area to the lower and upper tails of the normal distribution. For example, a
95% confidence interval may be constructed by placing 1% of the area in the lower tail
and 4% in the upper tail. This is not a common procedure and a good reason should exist
before one decides to make such an allocation. Westlake [1,2] has proposed such an
interval for the construction of confidence intervals in bioequivalence studies. In these
studies, a ratio of some property (such as maximum serum concentration) of two products
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Figure 5.5 A 95% asymmetric confidence interval with X̄ � 1.02, S.D. � 0.2, and N
� 20.

is compared. Westlake argues that an interval symmetric about the ratio 1.0 is more useful
than one symmetric about the observed sample mean. The interval often has the great
majority of the area in either the lower or upper tail, depending on the observed ratio. For
a ratio greater than 1.0, most of the area will be in the upper tail and vice versa. Figure
5.5 illustrates this concept with a hypothetical example for products with an average ratio
of 1.02. If the standard deviation is unknown and is estimated as 0.2 with 19 d.f. (N �
20), a 95% symmetric interval would be estimated as

1 02 2 1 0 2 20 1 02 0 094 0 926 1 114. ( . )( . ) / . . . .± = ± = to

To construct the Westlake interval, a symmetric interval about 1.0, detailed tables of
the t distribution are needed [1]. In this example, t values of approximately 1.78 and
�2.70 will cut off 4.3% of the area in the upper tail and 0.7% in the lower tail, respectively.
This results in an upper limit of 1.02 � 0.08 � 1.10 and a lower limit of 1.02 � 0.12
� 0.90, symmetric about 1.0 (1.0 	 0.1).

Examples of confidence intervals for bioequivalence testing are given in Chapters 11
and 15.

The remainder of this chapter will be concerned primarily with testing hypotheses,
categorized as follows:

1. Comparison of the mean of a single sample (group) to some known or standard
mean [single-sample (group) tests]

2. Comparison of means from two independent samples (groups) [two-independent-
samples (groups) test, a form of the parallel-groups design in clinical trials]

3. Comparison of means from related samples (paired-sample tests)
4. One and two sample tests for proportions
5. Tests to compare variances

5.2 STATISTICAL HYPOTHESIS TESTING

To introduce the concept of hypothesis testing, we will use an example of the comparison
of two treatment means (a two-sample test) which has many applications in pharmaceutical
and clinical research. The details of the statistical test are presented in Sec. 5.2.2. A clinical
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study is planned to compare the efficacy of a new antihypertensive agent to a placebo.
Preliminary uncontrolled studies of the drug in humans suggest antihypertensive activity
of the order of a drop of 10 to 15 mmHg diastolic blood pressure. The proposed double-
blind clinical trial is designed to study the effects of a once-a-day dose of tablets of the
drug in a group of hypertensive patients. A second group of patients will receive an
identical-appearing placebo. Blood pressure will be measured prior to the study and every
2 weeks after initiation of therapy for a total of 8 weeks. For purposes of this presentation,
we will be concerned only with the blood pressure at baseline (i.e., pretreatment) and after
8 weeks of treatment. The variable that will be analyzed is the difference between the 8-
week reading and the pretreatment reading. This difference, the change from baseline,
will be called � (delta). At the completion of the experiment, the average change from
baseline will be compared for the active group and the placebo group in order to come
to a decision concerning the efficacy of the drug in reducing blood pressure. The design
is a typical parallel-groups design and the implementation of the study is straightforward.
The problem, and question, that is of concern is: ‘‘What statistical techniques can be used
to aid us in coming to a decision regarding the treatment (placebo and active drug) differ-
ence, and ultimately to a judgment of drug efficacy?’’

From a qualitative and, indeed, practical point of view, a comparison of the average
change in blood pressure for the active and placebo groups, integrated with previous
experience, can give some idea of drug efficacy. Table 5.2 shows the average results of
this study. (Only 21 patients completed the study.) Based on the results, our ‘‘internal
computer’’ might reason as follows: ‘‘The new drug reduced the blood pressure by 10
mmHg compared to a reduction of 1 mmHg for patients on placebo. That is an impressive
reduction for the drug’’; or ‘‘The average reduction is quite impressive, but the sample
size is small, less than 12 patients per group. If the raw data were available, it would be
of interest to see how many patients showed an improvement when given the drug com-
pared to the number who showed an improvement when given placebo.’’ Such an examina-
tion of the clinical results may give an intuitive feeling of the effectiveness of a drug
product. At one time, not very long ago, presentation of such experimental results accompa-
nied by a subjective evaluation by the clinical investigator was important evidence in the
support of efficacy of drugs. If the average results showed that the drug was no better
than the placebo, the drug would probably be of little, if any interest.

One obvious problem with such a subjective analysis is the potential lack of consis-
tency in the evaluation and conclusions that may be drawn from the same results by
different reviewers. Also, although some experimental results may appear to point unequiv-
ocally to either efficacy or lack of efficacy, the inherent variability of the experimental

Table 5.2 Average Results and Standard Deviation of
a Clinical Study Comparing Drug and Placebo in the
Treatment of Hypertension

Drug Placebo

Number of patients 11 10
Average blood pressure

reduction (mmHg) 10 1
Standard deviation 11.12 7.80
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data may be sufficiently large to obscure the truth. In general, subjective perusal of data
is not sufficient to separate drug-related effects from random variability. Statistical hypoth-
esis testing is an objective means of assessing whether or not observed differences between
treatments can be attributed to experimental variation (error). Good experimental design
and data analysis are essential if clinical studies are to be used as evidence for drug safety
and efficacy. This is particularly critical when such evidence is part of a New Drug
Application (NDA) for the FDA, or for use for advertising claims.

The statistical evaluation or test of treatment differences is based on the ratio of the
observed treatment difference (drug minus placebo in this example) to the variability of
the difference. A large observed difference between drug and placebo accompanied by
small variability is the most impressive evidence of a real drug effect (see Fig. 5.6).

The magnitude of the ratio can be translated into a probability or ‘‘statistical’’ state-
ment relating to the true but unknown drug effect. This is the basis of the common statement
‘‘statistically significant,’’ implying that the difference observed between treatments is
real, not merely a result of random variation. Statistical significance addresses the question
of whether or not the treatments truly differ, but does not necessarily apply to the practical
magnitude of the drug effect. The possibility exists that a small but real drug effect has
no clinical meaning. Such judgments should be made by experts who can evaluate the
magnitude of the drug effect in relation to the potential use of the drug vis-à-vis other
therapeutic alternatives.

The preliminary discussion above suggests the procedure used in testing statistical
hypotheses. Broadly speaking, data are first collected for comparative experiments accord-
ing to an appropriate plan or design. For comparative experiments similar to that considered
in our example, the ratio of the difference of the averages of the two treatments to its
experimental error (standard deviation) is referred to an appropriate tabulated probability
distribution. The treatment difference is deemed ‘‘statistically significant’’ if the ratio is
sufficiently large relative to the tabulated probability values.

The testing procedure is based on the concept of a null hypothesis. The null hypothesis
is a hypothetical statement about a parameter (such as the mean) which will subsequently

Figure 5.6 Mark of a real drug effect: A large difference between drug and placebo
with small variation.
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be compared to the sample estimate of the parameter, to test for treatment differences. In
the present example, the null hypothesis is

H0 1 2 1 2 0: µ µ µ µ= ∆ = − =or

H0 refers to the null hypothesis. �1 and �2 refer to the true blood pressure change from
baseline for the two treatments. � is the hypothesized average difference of the change
of blood pressure from baseline values for the new drug compared to placebo.

� � true average reduction in blood pressure due to drug minus true average reduction
in blood pressure due to placebo

The sample estimate of � is designated as̄ �, and is assumed to have a normal distribution.
The fact that H0 is expressed as a specific difference (zero in this example), as opposed
to a more general difference (H0: � � 0), is an important concept. The test of ‘‘no
difference’’ or some specific difference (e.g., � � 2) is usually much more easily concep-
tualized and implemented than a test of some nonspecific difference.

The format of the null hypothesis statement is not always immediately apparent to
those unfamiliar with statistical procedures. Table 5.3 shows some examples of how null
hypothesis statements can be presented. The alternative hypothesis specifies alternative
values of the parameter, which we accept as true if the statistical test leads to rejection
of the null hypothesis. The alternative hypothesis includes values not specified in the null
hypothesis. In our example, a reasonable alternative would include all values where the
true values of the two means were not equal, typically stated as follows:

Ha 1 2: µ µ≠

As noted above, the magnitude of the ratio of the (observed difference minus the
hypothetical difference) to its variability, the s.d. of the observed difference, determines

Table 5.3 Examples of the Null Hypothesis for Various Experimental Situations

Study Null hypothesis Comments

Effect of drug therapy on cholesterol
level compared to placebo

Effect of antibiotic on cure rate

Average tablet weight for quality
control

Testing two mixing procedures with
regard to homogeneity of the two
mixes

Test to see if two treatments differ

H0: �1 � �2 or H0:
�1 � �2 � 0 or
H0: 
 � 0

H0: p0 � 0.8

H0: W � 300 mg

H0: �2
1 � �2

2

H0: �1 ≠ �2

�1 refers to the true average
cholesterol with drug and �2

refers to true average
cholesterol with placebo

p0 refers to the true proportion of
patients cured; H0 states that the
hypothetical cure rate is 80%

The target weight is a mean of
300 mg

The variance of the samples from
the two procedures is
hypothesized to be equal

This statement cannot be tested;
H0 must be specified as a
specific difference or a limited
range of differences
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whether or not H0 should be accepted or rejected. A large ratio leads to rejection of H0,
and the difference is considered to be ‘‘statistically’’ significant. The specific details for
testing simple hypotheses are presented below, beginning with the most elementary exam-
ple, tests of a single mean.

5.2.1 Case I: Test of the Mean from a Single Population (One-Sample
Tests), an Introduction to a Simple Example of Hypothesis Testing

The discussion above was concerned with a test to compare means from samples obtained
from two groups, a drug group and a placebo group. The tests for a single mean are simpler
in concept, and specific steps to construct this test are presented below. The process for
other designs in which statistical hypotheses are tested is essentially the same as for the
case described here. Other examples will be presented in the remainder of this chapter
and, where applicable, in subsequent chapters of this book. The concept of hypothesis
testing is important, and the student is well advised to make an extra effort to understand
the procedures described below.

Data often come from a single population, and a comparison of the sample mean to
some hypothetical or ‘‘standard’’ (known) value is desired. The examples shown in Table
5.4 are typical of those found in pharmaceutical research. The statistical test compares
the observed value (a mean or a proportion, for example) to the hypothetical value.

To illustrate the procedure, we will consider an experiment to assess the effects of a
change in manufacturing procedure on the average potency of a tablet product. A large
amount of data was collected for the content of drug in the tablet formulation during a
period of several years. The manufacturing process showed an average potency of 5.01
mg and a standard deviation of 0.11, both values considered to be equal to the true process
parameters. A new batch was made with a modification of the usual manufacturing proce-
dure. Twenty tablets were assayed and the results are shown in Table 5.5. The objective
is to determine if the process modification results in a change of average potency from
the process average of 5.01, the value of � under the null hypothesis.

The steps for designing and analyzing this experiment are as follows:

Table 5.4 Examples of Experiments Where a Single Population Mean is Observed

Sample mean Hypothetical or standard mean

Average tablet potency of N tablets
Preference for product A in a paired

preference test
Average dissolution of N tablets
Proportion of patients cured by a new drug

Average cholesterol level of N patients
under therapy

Average blood pressure reduction in N rats
in preclinical study

Average difference of pain relief for two
drugs taken by the same patients

Label potency
50% are hypothesized to prefer product A

Quality control specifications
Cure rate of P% based on previous therapy with

a similar drug
Hypothetical or standard value based on large

amount of data collected by clinical laboratory
Hypothetical average reduction considered to be

of biological and clinical interest
Average difference (
) is hypothesized to be 0 if

the drugs are identical
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Table 5.5 Results of 20 Single-Tablet Assays
from a Modification of a Process with a Historical
Mean of 5.01 mg

5.13 5.04 5.09 5.00
4.98 5.03 5.01 4.99
5.20 5.08 4.96 5.18
5.08 5.06 5.02 5.24
4.99 5.17 5.06 5.00

X̄� 5.0655 mg S � 0.0806
� (historical) � 0.11

1. Careful planning of the experiment ensures that the objectives of the experiment
are addressed by an appropriate experimental design. The testing of a hypothesis where
data are derived from a poorly implemented experiment can result in invalid conclusions.
Proper design includes the choice and number of experimental units (patients, animals,
tablets, etc.). Other considerations of experimental design and the manner in which obser-
vations are made are addressed in Chaps. 6, 8, and 11. Sample size may be determined
on a scientific, statistical basis, but the choice is often limited by cost or time considerations,
or the availability of experimental units. In the present example, the routine quality control
content uniformity assay of 20 tablets was the determinant of sample size, a matter of
convenience. The 20 tablets were chosen at random from the newly manufactured batch.

2. The null hypothesis and alternative hypothesis are defined prior to the implemen-
tation of the experiment or study.

H Ha0 0 0: :µ µ µ µ= ≠

In this example,

H Ha0 5 01 mg 5 01: . : .µ µ≤ > mg

The objective of this experiment is to see if the average potency of the batch prepared
with the modified procedure is different from that based on historical experience (5.01
mg). The null hypothesis takes the form of ‘‘no change,’’ as discussed previously. To
conclude that the new process has caused a change, we must demonstrate that the alterna-
tive hypothesis is true by rejecting the null hypothesis. The alternative hypothesis comple-
ments the null hypothesis. The two hypotheses are mutually exclusive and, together, in
this example, cover all relevant possibilities that can result from the experiment. Either
the average potency is 5.01 mg (H0) or it is not (Ha). This is known as a two-sided (or
two-tailed) test, suggesting that the average drug potency of the new batch can conceivably
be smaller as well as greater than the historical process average of 5.01 mg. A one-sided
test allows for the possibility of a difference in only one direction. Suppose that the process
average of 5.01 mg suggested a preferential loss of drug during processing based on the
theoretical amount added to the batch (e.g., 5.05 mg). The new procedure may have been
designed to prevent this loss. Under these circumstances, one might hypothesize that the
potency could only be greater (or, at least, not less) than the previous process average.
Under this hypothesis, if the experiment reveals a lower potency than 5.01 mg, this result
would be attributed to chance only; that is, although the average potency, in truth, is equal
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to or greater than 5.01 mg, chance variability may result in an experimental outcome
where the observed average is ‘‘numerically’’ less than 5.01 mg. Such a result could
occur, for example, as a result of a chance selection of tablets of low potency for the assay
sample. For a one-sided test, the null and alternative hypotheses may take the following
form:

H Ha0 5 01 5 01: . : .µ µ� �mg mg

3. The level of significance is specified. This is the well-known P value associated
with statements of statistical significance. The concept of the level of significance is crucial
to an understanding of statistical methodology. The level of significance is defined as the
probability that the statistical test results in a decision to reject H0 (a significant difference)
when, in fact, the treatments do not differ (H0 is true). This concept will be clarified further
when we describe the statistical test. By definition, the level of significance represents
the chance of making a mistake when deciding to reject the null hypothesis. This mistake,
or error, is also known as the alpha (�) error or error of the first kind (see Table 5.6).
Thus, if the statistical test results in rejection of the null hypothesis, we say that the
difference is significant at the � level. If � is chosen to be 0.05, the difference is significant
at the 5% level. This is often expressed, equivalently, as P � 0.05. Figure 5.7 shows
values of X̄ which lead to rejection of H0 for a statistical test at the 5% level if � is known.

The beta (	) error is the probability of accepting H0 (no treatment difference) when,
in fact, some specified difference included in Ha is the true difference. Although the
evaluation of the 	 error and its involvement in sample-size determination is important,
because of the complex nature of this concept, further discussion of this topic will be
delayed until Chapter 6.

The choice of magnitude of �, which should be established prior to the start of the
experiment, rests on the experimenter or sponsoring organization. To make this choice,
one should consider the risks or consequences that will result if an � error is made, that
is, the error made when declaring that a significant difference exists when the treatments
are indeed equivalent. Traditionally, � is chosen as 5% (0.05). An � error of 5% means
that a decision that a significant difference exists between treatments (based on the rejection
of H0) has a probability of 5% (1 in 20) of being incorrect (P � 0.05). Such a decision
has credibility and is generally accepted as ‘‘proof’’ of a difference by regulatory agencies.
When using the word ‘‘significant,’’ one infers with a large degree of confidence that the
experimental result does not support the null hypothesis.

An important concept is that if the statistical test results in a decision of no significance,
the conclusion does not prove that H0 is true or, in this case, that the average potency is
5.01 mg. Usually, ‘‘non-significance’’ is a weak statement, not carrying the clout or

Table 5.6 Alpha and Beta Probabilities in Hypothesis
Testing (Errors When Accepting or Rejecting H0)

Ha (a specific
H0 is true alternative) is true

H0 is rejected Alpha (�) 1 � beta
H0 is accepted 1 � alpha Beta ()
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Figure 5.7 Region of rejection (critical region) in a statistical test (two-sided) at the 5%
level with �2 known.

authority of the statement of ‘‘significance.’’ Note that the chance of erroneously accepting
H0 is equal to 	 (Table 5.6). This means that 	 percent of the time, a nonsignificant result
will be observed (H0 is accepted as true), when a true difference specified by Ha truly
exists. Unfortunately, most of the time when planning experiments, unlike �, 	 is not
fixed in advance. The 	 level is often a result of circumstance. In most experiments, 	 is
a consequence of the sample size, which is usually based on considerations other than the
size of 	. However, the sample size is best computed with the aid of a predetermined
value of 	 (see Chap. 6). In our experiment, 	 was not fixed in advance. The sample of
20 tablets was chosen as a matter of tradition and convenience.

4. The sample size, in our example, has been fixed based on considerations that
did not include 	, as discussed above. However, the sample size can be calculated
after � and 	 are specified, so that the experiment will be of sufficient size to have
properties that will satisfy the choice of the � and 	 errors (see Chap. 6 for further
details).

5. After the experiment is completed, relevant statistics are computed. In this exam-
ple and most situations with which we will be concerned, mean values are to be compared.
It is at this point that the statistical test of significance is performed as follows.

For a two-sided test, compute the ratio:

(5.4)Z
X

N

X

N
=

−
=

−µ

σ

µ

σ
0

2

0

/ /

The numerator of the ratio is the absolute value of the difference between the observed
and hypothetical mean. (In a two-sided test, low or negative values as well as large positive
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values of the mean lead to significance.) The variance of ( X̄ � �0)* is equal to

σ2

N

The denominator of Eq. (5.4) is the standard deviation of the numerator. The Z ratio [Eq.
(5.4)] consists of a difference, divided by its standard deviation. The ratio is exactly the
Z transformation presented in Chap. 3 [Eq. (3.14)], which transforms a normal distribution
with mean � and variance �2 to the standard normal distribution (� � 0, �2 � 1).

In general, �2 is unknown, but it can be estimated from the sample data, and the
sample estimate, S2, is used in the denominator of Eq. (5.4). An important question is
how to determine if the ratio

(5.5)t
X

S N
=

−−

/

µ0

2

leads to a decision of ‘‘significant.’’ This prevalent situation (�2 unknown) will be dis-
cussed below.

As discussed above, significance is based on a probability statement defined by �.
More specifically, the difference is considered to be statistically significant (H0 is rejected)
if the observed difference between the sample mean and �0 is sufficiently large so that
the observed or larger differences are improbable (probability of � or less, e.g., P � 0.05)
if the null hypothesis is true (� � 5.01 mg). In order to calculate the relevant probability,
the observations are assumed to be statistically independent and normally distributed.

With these assumptions, the ratio shown in Eq. (5.4) has a normal distribution with
mean equal to 0 and variance equal to 1 (the standard normal distribution). The concept
of the � error is illustrated in Fig. 5.7. The values of X̄ that lead to rejection of the null
hypothesis define the ‘‘region of rejection,’’ also known as the critical region. With a
knowledge of the variance, the area corresponding to the critical region can be calculated
using the standard normal distribution. The probability of observing a mean value in the
critical region of the distribution defined by the null hypothesis is �. This region is usually
taken as symmetrical areas in the tails of the distribution, with each tail containing �/2
of the area (21⁄2% in each tail at the 5% level) for a two-tailed test. Under the null hypothesis
and the assumption of normality, X̄ is normal with mean �0 and variance �2/N. The Z
ratio [Eq. (5.4)] is a standard normal deviate, as noted above. Referring to Table IV.2,
the values of X̄ that satisfy

(5.6)
X

N

X

N

− −−
≤ −

−
≥ +

µ
σ

µ
σ

0 01 96 1 96
/

.
/

.or

will result in rejection of H0 at the 5% level. The values of X̄ that lead to rejection of H0

may be derived by rearranging Eq. (5.6).

(5.7)X
N

X
N

− −≤ − ≥ +µ σ µ σ
0 0

1 96 1 96. .
or

* The variance of (X̄ � �0) is equal to the variance of X̄ because �0 is constant and has a variance
of 0.
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or, equivalently,

(5.8)X
N

− ≥µ σ
0

1 96.

If the value of X̄ falls in the critical region, as defined in Eqs. (5.7) and (5.8), the null
hypothesis is rejected and the difference is said to be significant at the � (5%) level.

The statistical test of the mean assay result from Table 5.5 may be performed: (a)
assuming that � is known (� � 0.11) and (b) assuming that � is unknown, but estimated
from the sample (S � 0.0806)

The following examples demonstrate the procedure for applying the test of signifi-
cance for a single mean.

(a) One-sample test, variance known. In this case we believe that the large quantity
of historical data defines the standard deviation of the process precisely, and that this
standard deviation represents the variation in the new batch. We assume, therefore, that
�2 is known. In addition, as noted above, if the data from the sample are independent and
normally distributed, the test of significance is based on the standard normal curve (Table
IV.2). The ratio as described in Eq. (5.4) is computed using the known value of the
variance. If the absolute value of the ratio is greater than that which cuts off �/2 percent
of the area (defining the two tails of the rejection region, Fig. 5.7), the difference between
the observed and hypothetical means is said to be significant at the � level. For a two-
sided test, the absolute value of the difference is used because both large positive and
negative differences are considered evidence for rejecting the null hypothesis.

In this example, we will use a two-sided test, because the change in potency, if any,
may occur in either direction, higher or lower. The level of significance is set at the
traditional 5% level.

α = 0 05.

Compute the ratio [Eq. (5.4)]

Z
X

N
=

−
=

−
=

µ

σ
0 5 0655 5 01

0 11/ 20
2 26

/

. .

.
.

At the 5% level values of |Z| � 1.96 will lead to a declaration of significance for a two-
sided test [Eq. (5.6)]. Therefore, the new batch can be said to have a greater mean potency
than previous batches.

The level of significance is set before the actual experimental results are obtained.
In the previous example, a one-sided test at the 5% level may be justified if convincing
evidence were available to demonstrate that the new process would only result in mean
results equal to or greater than the historical mean. If such a one-sided test had been
deemed appropriate, the null hypothesis would be

H0 5 01: .µ = mg

The alternative hypothesis, Ha: � 
 5.01 mg, eliminates the possibility that the new
process can lower the mean potency. The concept is illustrated in Fig. 5.8. Now the
rejection region lies only in values of X̄ greater than 5.01 mg, as described below. An
observed value of X̄ below 5.01 mg is considered to be due only to chance.

The rejection region is defined for values of X̄ equal to or greater than �0 � 1.65�/

�N [or, equivalently, (X̄ � �0)/(�/�N) � 1.65] because 5% of the area of the normal
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Figure 5.8 Rejection region for a one-sided test.

curve is found above this value (Table IV.2.) This is in keeping with the definition of �:
If the null hypothesis is true, we will erroneously reject the null hypothesis 5% of the
time. Thus we can see that a smaller difference is needed for significance using a one-
sided test; the Z ratio need only exceed 1.65 rather than 1.96 for significance at the 5%
level. In the present example, values of X̄ � [5.01 � 1.65(0.11)/�20] � 5.051 will lead

to significance for a one-sided test. Clearly, the observed mean of 5.0655 is significantly
different from 5.01 (P � 0.05). Note that in a one-sided test, the sign of the numerator
is important and the absolute value is not used.

Usually, statistical tests are two-sided tests. One-sided tests are warranted in certain
circumstances. However, the choice of a one-sided test should be made a priori, and one
must be prepared to defend its use. As mentioned above, in the present example, if evidence
were available to show that the new process could not reduce the potency, a one-sided test
would be acceptable. To have such evidence and convince others (particularly, regulatory
agencies) of its validity is not always an easy task. Also, from a scientific point of view,
two-sided tests are desirable because significant results in both positive and negative
directions are usually of interest.

(b) One-sample test, variance unknown. In most experiments in pharmaceutical re-
search, the variance is unknown. Usually, the only estimate of the variance comes from
the experimental data itself. As has been emphasized in the example above, use of the
cumulative standard normal distribution (Table IV.2) to determine probabilities for the
comparison of a mean to a known value (�0) is valid only if the variance is known.

The procedure for testing the significance of the difference of an observed mean from
a hypothetical value (one-sample test) when the variance is estimated from the sample
data is the same as that with the variance known, with the following exceptions:

1. The variance is computed from the experimental data. In the present example,
the variance is (0.0806)2; the standard deviation is 0.0806 from Table 5.5.

2. The ratio is computed using S2 instead of �2 as in Eq. (5.5). For a two-sided test,
this ratio,

(5.5)t
X

S N
=

−−

/

µ0

2
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is not distributed as a standard normal variable. If the mean is normally distributed, the
ratio [Eq. (5.5)] has a t distribution. The t distribution looks like the standard normal
distribution but has more area in the tails; the t distribution is more spread out. The shape
of the t distribution depends on the degrees of freedom (d.f.). As the d.f. increase the t
distribution looks more and more like the standard normal distribution as shown in Fig.
5.9. When the d.f. are equal to �, the t distribution is identical to the standard normal
distribution (i.e., the variance is known).

The t distribution is a probability distribution that was introduced in Sec. 5.1.1 and
Chap. 3. The area under the t distributions shown in Fig. 5.9 is 1. Thus, as in the case of
the normal distribution (or any continuous distribution), areas within specified intervals
represent probabilities. However, unlike the normal distribution, there is no transformation
which will change all t distributions (differing d.f.’s) to one ‘‘standard’’ t distribution.
Clearly, a tabulation of all possible t distributions would be impossible. Table IV.4 shows
commonly used probability points for representative t distributions. The values in the table
are points in the t distribution representing cumulative areas (probabilities) of 80, 90, 95,
97.5, and 99.5%. For example, with d.f. � 10, 97.5% of the area of the t distribution is
below a value of t equal to 2.23 (see Fig. 5.10).

Note that when d.f. � �, the t value corresponding to a cumulative probability of
97.5% (0.975) is 1.96, exactly the same value as that for the standard normal distribution.
Since the t distribution is symmetrical about zero, as is the standard normal distribution,
a t value of �2.23 cuts off 1 � 0.975 � 0.025 of the area (d.f. � 10). This means that
to obtain a significant difference of means at the 5% level for a two-sided test and d.f.
equal to 10, the absolute value of the t ratio [Eq. (5.5)] must exceed 2.23. Thus the t
values in the column headed ‘‘0.975’’ in Table IV.4 are values to be used for two-tailed
significance tests at the 5% level (or for a two-sided 95% confidence interval). Similarly,
the column headed ‘‘0.95’’ contains appropriate t values for significance tests at the 10%
level for two-sided tests, or the 5% level for one-sided tests. The column headed ‘‘0.995’’
represents t values used for two-sided tests at the 1% level, or for 99% confidence intervals.

Figure 5.9 t distribution compared to the standard normal distribution.
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Figure 5.10 t distribution with 10 degrees of freedom.

The number of d.f. used to obtain the appropriate value of t from Table IV.4 are the
d.f. associated with the variance estimate in the denominator of the t ratio [Eq. (5.5)]. The
d.f. for a mean is N � 1, or 19 (20 � 1) in this example. The test is a two-sided test at
the 5% level. The t ratio is

t �
| X̄ � �0 |

S/�N

�
| 5.0655 � 5.01 |

0.0806/�20
The value of t needed for significance for a two-sided test at the 5% level is 2.09 (Table
IV.4, 19 d.f.). Therefore, the new process results in a ‘‘significant’’ increase in potency
(P � 0.05).

A 95% confidence interval for the true mean potency may be constructed as described
in Sec. 5.1.1 [Eq. (5.2)]:

5.0655 	 2.09 �0.0806

�20 � � 5.028 to 5.103 mg

Note that the notion of the confidence interval is closely associated with the statistical
test. If the confidence interval covers the hypothetical value, the difference is not significant
at the indicated level, and vice versa. In our example, the difference was significant at
the 5% level, and the 95% confidence interval does not cover the hypothetical mean value
of 5.01.

Example 4: As part of the process of new drug research, a pharmaceutical company
places all new compounds through an ‘‘antihypertensive’’ screen. A new compound is
given to a group of animals and the reduction in blood pressure measured. Experience
has shown that a blood pressure reduction of more than 15 mmHg in these hypertensive
animals is an indication for further testing as a new drug candidate. Since such testing is
expensive, the researchers wish to be reasonably sure that the compound truly reduces
the blood pressure by more than 15 mmHg before testing is continued; that is, they will
continue testing only if the experimental evidence suggests that the true blood pressure
reduction is greater than 15 mmHg with a high probability.
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H0: � � 15 mmHg reduction Ha: � 
 15 mmHg reduction

The null hypothesis is a statement that the new compound is unacceptable (blood pressure
change is equal to or less than 15 mmHg). This is typical of the concept of the null
hypothesis. A rejection of the null hypothesis means that a difference probably exists. In
our example, a true difference greater than 15 mmHg means that the compound should
be tested further. This is a one-sided test. Experimental results showing a difference of
15 mmHg or less will result in a decision to accept H0, and the compound will be put
aside. If the blood pressure reduction exceeds 15 mmHg, the reduction will be tested for
significance using a t test.

� � 10% (0.10)

The level of significance of 10% was chosen in lieu of the usual 5% level for the following
reason. A 5% significance level means that 1 time in 20 a compound will be chosen as
effective when the true reduction is less than 15mmHg. The company was willing to take
a risk of 1 in 10 of following up an ineffective compound in order to reduce the risk of
missing potentially effective compounds. One should understand that the choice of alpha
and beta errors often is a compromise between reward and risk. We could increase the
chances for reward, but we could simultaneously increase the risk of failure, or, in this
case, following up on an ineffective compound. Other things being equal, an increase in
the � error decreases the 	 error; that is, there is a smaller chance of accepting H0 when
it is false. Note that the t value needed for significance is smaller at the 10% level than
that at the 5% level. Therefore, a smaller reduction in blood pressure is needed for signifi-
cance at the 10% level. The standard procedure in this company is to test the compound
on 10 animals. The results shown in Table 5.7 were observed in a test of a newly synthe-
sized potential anti-hypertensive agent.

The t test is [Eq. (5.5)]

t �
15.9 � 15

3.87/�10
�

0.9
1.22

� 0.74

The value of t needed for significance is 1.38 (Table IV.4, one-sided test at the 10% level
with 9 degrees of freedom). Therefore, the compound is not sufficiently effective to be
considered further. Although the average result was larger than 15 mmHg, it was not
sufficiently large to encourage further testing, according to the statistical criterion.

Table 5.7 Blood Pressure
Reduction Caused by a New
Antihypertensive Compound
in 10 Animals (mmHg)

15 12
18 17
14 21

8 16
20 18
X̄� 15.9 S � 3.87
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What difference (reduction) would have been needed to show a significant reduction,
assuming that the sample variance does not change? Equation (5.5) may be rearranged as
follows: X̄ � t(S)/�N � �0. If X̄ is greater than or equal to t(S)/�N � �0, the average
reduction will be significant, where t is the table value at the � level of significance with
(N � 1) d.f. In our example,

t(s )

�N
� �0 �

(1.38)(3.87)

�10
� 15 � 16.7

A blood pressure reduction of 16.7 mmHg or more (the critical region) would have resulted
in a significant difference. (See Exercise Problem 10.)

5.2.2 Case II: Comparisons of Means from Two Independent Groups (Two-
Independent-Groups Test)

A preliminary discussion of this test was presented in Sec. 5.2. This most important test
is commonly encountered in clinical studies (a parallel-groups design). Table 5.8 shows
a few examples of research experiments that may be analyzed by the test described here.
The data of Table 5.2 will be used to illustrate this test. The experiment consisted of a
comparison of an active drug and a placebo where each treatment is tested on different
patients. The results of the study showed an average blood pressure reduction of 10mmHg
for 11 patients receiving drug, and an average reduction of 1 mmHg for 10 patients
receiving placebo. The principal feature of this test (or design) is that treatments are given
to two independent groups. The observations in one group are independent of those in
the second group. In addition, we assume that the data within each group are normally
and independently distributed.

The steps to be taken in performing the two-independent-groups test are similar to
those described for the one-sample test (see Sec. 5.2.1).

1. Patients are randomly assigned to the two treatment groups. (For a description
of the method of random assignment, see Chap. 4.) The number of patients chosen to
participate in the study in this example was largely a consequence of cost and convenience.
Without these restraints, a suitable sample size could be determined with a knowledge of
	, as described in Chap. 6. The drug and placebo were to be randomly assigned to each
of 12 patients (12 patients for each treatment). There were several dropouts, resulting in
11 patients in the drug group and 10 patients in the placebo group.

2. The null and alternative hypotheses are

Table 5.8 Some Examples of Experiments that May Be Analyzed by the Two-
Independent-Groups Test

Clinical studies

Preclinical studies

Comparison of product attributes
from two batches

Active drug compared to a standard drug or placebo;
treatments given to different persons, one treatment per
person

Comparison of drugs for efficacy and/or toxicity with
treatments given to different animals

Tablet dissolution, potency, weight, etc., from two batches
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H0: �1 � �2 � � � 0 Ha: � � 0

We hypothesize no difference between treatments. A ‘‘significant’’ result means that
treatments are considered different. This is a two-sided test. The drug treatment may be
better or worse than placebo.

3. � is set at 0.05.

4. The form of the statistical test depends on whether or not variances are known.
In the usual circumstances, the variances are unknown.

Two-Independent-Groups Test, Variances Known
If the variances of both groups are known, the ratio

(5.9)Z
X X

N N
=

− − −

+
1 2 1 2

1
2

1 2
2

2

( )

/ /

µ µ

σ σ

has a normal distribution with mean 0 and standard deviation equal to 1 (the standard
normal distribution). The numerator of the ratio is the difference between the observed
difference of the means of the two groups (X̄1 � X̄2) and the hypothetical difference
(�1 � �2 according to H0). In the present case, and indeed in most of the examples of
this test that we will consider, the hypothetical difference is zero (i.e., H0: �1 � �2 �
0). The variability of (X̄1 � X̄2)* (defined as the standard deviation) is equal to

σ σX X1
2

2
2+

[as described in App. I, if A and B are independent, �2(A � B) � � 2
A � � 2

B.]. Thus, as
in the one-sample case, the test consists of forming a ratio whose distribution is defined
by the standard normal curve. In the present example (test of an antihypertensive agent),
suppose that the variances corresponding to drug and placebo are known to be 144 and
100, respectively. The rejection region is defined by �. For � � 0.05, values of Z greater
than 1.96 or less than � 1.96 (|Z| � 1.96) will lead to rejection of the null hypothesis. Z
is defined by Eq. (5.9).

For a two-sided test

Z
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N N

X X N N
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, , , .and Thus

Z =
10 1

14

−

44/11 100/10+
= 1 87.

Since the absolute value of the ratio does not exceed 1.96, the difference is not significant
at the 5% level. From Table IV.2, the probability of observing a value of Z greater than
1.87 is approximately 0.03. Therefore, the test can be considered significant at the 6%
level [2(0.03) � 0.06 for a two-tailed test]. The probability of observing an absolute
difference of 9 mmHg or more between drug and placebo, if the two products are identical,
is 0.06 or 6%.

* The variance of ((X̄1 � X̄2) � (�1 � �2) is equal to the variance of (X̄1 � X̄2) because �1 and
�2 are constants and have a variance equal to zero.
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We have set � equal to 5% as defining an unlikely event from a distribution with
known mean (0) and variance (144/11 � 100/10 � 23.1). An event as far or farther from
the mean (0) than 9 mmHg can occur 6 times in a 100 if H0 is true. Strictly speaking,
this is not cause for rejecting H0 because we set � at 5% a priori (i.e., before performing
the experiment). In reality, there is nothing special about 5%. The use of 5% as the
� level is based strongly on tradition and experience, as mentioned previously. Should
significance at the 6% level result in a different decision than a level of 5%? To document
efficacy, a significance level of 6% may not be adequate for acceptance by regulatory
agencies. There has to be some cutoff point; otherwise, if 6% is acceptable, why not 7%
and so on? However, for internal decisions or for leads in experiments used to obtain
information for further work or to verify theories, 5% and 6% may be too close to ‘‘call.’’
Rather than closing the door on experiments that show differences at P � 0.06, one might
think of such results as being of ‘‘borderline’’ significance, worthy of a second look. In
our example, had the difference between drug and placebo been approximately 9.4 mmHg,
we would have called the difference ‘‘significant,’’ rejecting the hypothesis that the pla-
cebo treatment was equal to the drug.

P values are often presented with experimental results even though the statistical test
shows nonsignificance at the predetermined � level. In this experiment, a statement that
P � 0.06 (‘‘The difference is significant at the 6% level’’) does not imply that the treat-
ments are considered to be significantly different. We emphasize that if the � level is set
at 5%, a decision that the treatments are different should be declared only if the experimen-
tal results show that P � 0.05. However, in practical situations, it is often useful for the
experimenter and other interested parties to know the P value, particularly in the case of
‘‘borderline’’ significance.

Two-Independent-Groups Test, Variance Unknown

The procedure for comparing means of two independent groups when the variances are
estimated from the sample data is the same as that with the variances known, with the
following exceptions:

1. The variance is computed from the sample data. In order to perform the statistical
test to be described below, in addition to the usual assumptions of normality and independ-
ence, we assume that the variance is the same for each group. (If the variances differ, a
modified procedure can be used as described later in this chapter.) A rule of thumb for
moderate-sized samples (N equal 10 to 20) is that the ratio of the two variances should
not be greater than 3 to 4. Sometimes, in doubtful situations, a test for the equality of the
two variances may be appropriate (see Sec. 5.3) before performing the test of significance
for means described here. To obtain an estimate of the common variance, first compute
the variance of each group. The two variances are pooled by calculating a weighted average
of the variances, the best estimate of the true common variance. The weights are equal
to the degrees of freedom, d.f., N1 � 1 and N2 � 1, for groups 1 and 2, respectively. N1

and N2 are the sample sizes for the two groups. The following formula may be used to
calculate the pooled variance:

(5.10)S
N S N S

N Np
2 1 1

2
2 2

2

1 2

1 1

2
= − + −

+ −
( ) ( )

Note that we do not calculate the pooled variance by first pooling together all of the data
from the two groups. The pooled variance obtained by pooling the two separate variances
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will always be equal to or smaller than that computed from all of the data combined
disregarding groups. In the latter case, the variance estimate includes the variability due
to differences of means as well as that due to the variance within each group (see Exercise
Problem 5). Appendix I has a further discussion of pooling variance.

2. The ratio that is used for the statistical test is similar to Eq. (5.9). Because the
variance, S 2

p (pooled variance), is estimated from the sample data, the ratio
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is used instead of Z [Eq. (5.9)]. The degrees of freedom for the distribution is determined
from the variance estimate, S2

p. This is equal to the d.f., pooled from the two groups, equal
to (N1 � 1) � (N2 � 1) or N1 � N2 � 2.

These concepts are explained and clarified, step by step, in the following examples.
Example 5: Two different formulations of a tablet of a new drug are to be compared

with regard to rate of dissolution. Ten tablets of each formulation are tested, and the
percent dissolution after 15 min in the dissolution apparatus is observed. The results are
tabulated in Table 5.9. The object of this experiment is to determine if the dissolution
rates of the two formulations differ. The test for the ‘‘significance’’ of the observed
difference is described in detail as follows:

1. State the null and alternative hypotheses:

H Ha0 1 2 1 2: :µ µ µ µ= ≠

�1 and �2 are the true mean 15-min dissolution values for formulations A and B,
respectively. This is a two-sided test. There is no reason to believe that one or the other
formulation will have a faster or slower dissolution, a priori.

2. State the significance level � � 0.05. The level of significance is chosen as the
traditional 5% level.

Table 5.9 Percent Dissolution After 15 Min for Two
Tablet Formulations

Formulation A Formulation B

68 74
84 71
81 79
85 63
75 80
69 61
80 69
76 72
79 80
74 65

Average 77.1 71.4
Variance 33.43 48.71
s.d. 5.78 6.98
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3. Select the samples. Ten tablets taken at random from each of the two pilot batches
will be tested.

4. Compute the value of the t statistic [Eq. (5.11)].

X X

S N N
t

Sp p

1 2 1 2

1 21 1

77 1 71 4

1 10 1 10

− − −

+
= =

−

+

( )

/ /

. .
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X̄1 � 77.1 and X̄2 � 71.4 (see Table 5.9). N1 � N2 � 10 (d.f. � 9 for each group). Sp

is calculated from Eq. (5.10).

Sp = + =9 33 43 9 48 71

18
6 41

( . ) ( . )
.

Note that the pooled standard deviation is the square root of the pooled variance, where
the pooled variance is a weighted average of the variances from each group. It is not
correct to average the standard deviations. Although the sample variances of the two
groups are not identical, they are ‘‘reasonably’’ close, close enough so that the assumption
of equal variances can be considered to be acceptable. The assumption of equal variance
and independence of the two groups is more critical than the assumption of normality of
the data, because we are comparing means. Means tend to be normally distributed even
when the individual data do not have a normal distribution, according to the central limit
theorem. The observed value of t (18 d.f.) is
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Values of t equal to or greater than 2.10 (Table IV.4, d.f. � 18) lead to rejection of the
null hypothesis. These values, which comprise the critical region, result in a declaration
of ‘‘significance.’’ In this experiment, the value of t is 1.99, and the difference is not
significant at the 5% level (P 
 0.05). This does not mean that the two formulations have
the same rate of dissolution. The declaration of nonsignificance here probably means that
the sample size was too small; that is, the same difference with a larger sample would be
significant at the 5% level. Two different formulations are apt not to be identical with
regard to dissolution. The question of statistical versus practical significance may be raised
here. If the dissolutions are indeed different, will the difference of 5.7% (77.1%–71.4%)
affect drug absorption in vivo? A confidence interval on the difference of the means may
be an appropriate way of presenting the results.

Confidence Interval for the Difference of Two Means

A confidence interval for the difference of two means can be constructed in a manner
similar to that presented for a single mean as shown in Sec. 5.1 [Eq. (5.2)]. For example,
a confidence interval with a confidence coefficient of 95% is

(5.12)( ) ( )X X t S
N Np1 2

1 2

1 1− ± +
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t is the value obtained from Table IV.4 with appropriate d.f., with the probability used
for a two-sided test. (Use the column labeled ‘‘0.975’’ in Table IV.4 for a 95% interval.)
For the example discussed above (tablet dissolution), a 95% confidence interval for the
difference of the mean 15-min dissolution values [Eq. (5.12)] is

(77.1 � 71.4) 	 2.10(6.41)(0.447) � 5.7 	 6.02 � �0.32 to 11.72%

Thus the 95% confidence interval is from �0.32 to 11.72%.

Test of Significance If Variances of the Two Groups Are Unequal

If the two groups can be considered not to have equal variances and the variances are
estimated from the samples, the usual t test procedure is not correct. This problem has
been solved and is often denoted as the Behrens-Fisher procedure. Special tables are
needed for the solution, but a good approximate test for the equality of two means can
be performed using Eq. (5.13) [2].

(5.13)t
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If N1 � N2 � N, then the critical t is taken from Table IV.4 with N � 1 instead of the
usual 2(N � 1) d.f. If N1 and N2 are not equal, then the t value needed for significance
is a weighted average of the appropriate t values from Table IV.4 with N1 � 1 and
N2 � 1 d.f.

Weighted average of t values � (w1t1 � w2t2)/(w1 � w2)
where the weights are:

w S N w S N1 1
2

1 2 2
2

2= =/ /

To make the calculation clear, assume that the means of two groups of patients treated
with an antihypertensive agent showed the following reduction in blood pressure (mmHg).

Group A Group B

Mean 10.7 7.2
Variance (S2) 51.8 5.3
N 20 15

We have reason to believe that the variances differ, and for a two-sided test, we first
calculate t′ according to Eq. (5.13):

t
10 7 7 2

51 8 20 5 3 15
=

−

+

. .

. / . /
' = 2.04

The critical value of t′ is obtained using the weighting procedure. At the 5% level, t with
19 d.f. � 2.09 and t with 14 d.f. � 2.14. The weighted average t value is

( . / )( . ) ( . / )( . )

( . / ) ( . / )
.
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51 8 20 5 3 15
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=

Since t′ is less than 2.10, the difference is considered to be not significant at the 5% level.
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Overlapping Confidence Intervals and Statistical Significance

When comparing two independent treatments for statistical significance, sometimes people
erroneously make conclusions based on the confidence intervals constructed from each
treatment separately. In particular, if the confidence intervals overlap, the treatments are
considered not to differ. This reasoning is not necessarily correct. The fallacy can be
easily seen from the following example. Consider two independent treatments, A and B,
representing two formulations of the same drug with the following dissolution results:

Treatment N Average s.d.

A 6 37.5 6.2
B 6 47.4 7.4

For a two-sided test, the two sample t test results in a t value of

t =
−

+
=

47 4 37 5

6 83 1 6 1 6
2 51

. .

. / /
.

Since 2.51 exceeds the critical t value with 10 d.f. (2.23), the results show significance
at the 5% level.

Computation of the 95% confidence intervals for the two treatments results in the
following:

Treatment A: 37.5 (2.57)(6.2) 1/6 to 44.01

Treatment B:

± = 30 99.

  47.4 (2.57)(7.4) 1/6 to 55.16± = 39 64.

Clearly, in this example, the individual confidence intervals overlap (the values be-
tween 39.64 and 44.01 are common to both intervals), yet the treatments are significantly
different. The 95% confidence interval for the difference of the two treatments is

(47.4 � 37.5) 	 8.79 � 1.1 to 18.19

As has been noted earlier in this section, if the 95% confidence interval does not cover
0, the difference between the treatments is significant at the 5% level.

Summary of t-Test Procedure and Design for Comparison of Two Independent
Groups

The t-test procedure is essentially the same as the test using the normal distribution (Z
test). The t test is used when the variance(s) are unknown and estimated from the sample
data. The t distribution with � d.f. is identical to the standard normal distribution. There-
fore, the t distribution with � d.f. can be used for normal distribution tests (e.g., comparison
of means with variance known). When using the t test, it is necessary to compute a pooled
variance. [With variances known, a pooled variance is not computed; see Eqs. (5.10) and
(5.11).] An assumption underlying the use of this t test is that the variances of the compara-
tive groups are the same. Other assumptions when using the t test are that the data from
the two groups are independent and normally distributed. If the variances are considered
to be unequal, use the approximate Behrens-Fisher method.

If Ho is rejected (the difference is ‘‘significant’’), one accepts the alternative, Ha: �1

� �2 or �1 � �2 � 0. The best estimate of the true difference between the means is the
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observed difference. A confidence interval gives a range for the true difference (see above).
If the confidence interval covers 0, the statistical test is not significant at the corresponding
alpha level.

Planning an experiment to compare the means of two independent groups usually
requires the following considerations:

1. Define the objective. For example, in the example above, the objective was to
determine if the two formulations differed with regard to rates of dissolution.

2. Determine the number of samples (experimental units) to be included in the exper-
iment. We have noted that statistical methods may be used to determine the sample size
(Chap. 6). However, practical considerations such as cost and time constraints are often
predominating factors. The sample size of the two groups need not be equal in this type
of design, also known as a parallel-groups or one-way analysis of variance design. If the
primary interest is the comparison of means of the two groups, equal sample sizes are
optimal (assuming that the variances of the two groups are equal). That is, given the
total number of experimental units available (patients, tablets, etc.), the most powerful
comparison will be obtained by dividing the total number of experimental units into two
equal groups. The reason for this is that (1/N1) � (1/N2), which is in the denominator of
the test ratio, is minimal when N1 � N2 � Nt/2 (Nt is the total sample size). In many
circumstances (particularly in clinical studies), observations are lost due to errors, patient
dropouts, and so on. The analysis described here is still valid, but some power will be
lost. Power is the ability of the test to discriminate between the treatment groups. (Power
is discussed in detail in Chap. 6.) Sometimes, it is appropriate to use different sample
sizes for the two groups. In a clinical study where a new drug treatment is to be compared
to a standard or placebo treatment, one may wish to obtain data on adverse experiences
due to the new drug entity in addition to comparisons of efficacy based on some relevant
mean outcome. In this case, the design may include more patients on the new drug than
the comparative treatment. Also, if the variances of two groups are known to be unequal,
the optimal sample sizes will not be equal [4].

3. Choose the samples. It would seem best in many situations to be able to apply
treatments to randomly chosen experimental units (e.g., patients). Often, practical consider-
ations make this procedure impossible, and some compromise must be made. In clinical
trials, it is usually not possible to select patients at random according to the strict definition
of ‘‘random.’’ We usually choose investigators who assign treatments to the patients
available to the study in a random manner.

4. Observations are made on the samples. Every effort should be made to avoid
bias. Blinding techniques and randomizing the order of observations (e.g., assays) are
examples of ways to avoid bias. Given a choice, objective measurements, such as body
weights, blood pressure, and blood assays, are usually preferable to subjective measure-
ments, such as degree of improvement, psychological traits, and so on.

5. The statistical analysis, as described above, is then applied to the data. The
statistical methods and probability levels (e.g., �) should be established prior to the experi-
ment. However, one should not be immobilized because of prior commitments. If experi-
mental conditions differ from that anticipated, and alternative analyses are warranted, a
certain degree of flexibility is desirable. However, statistical theory (and common sense)
shows that it is not fair to examine the data to look for all possible effects not included
in the objectives. The more one looks, the more one will find. In a large data set, any
number of unusual findings will be apparent if the data are examined with a ‘‘fine-tooth
comb.’’ If such unexpected results are of interest, it is best to design a new experiment
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to explore and define these effects. Otherwise, large data sets can be incorrectly used to
demonstrate a large number of unusual, but inadvertent, random, and inconsequential
‘‘statistically’’ significant differences.

5.2.3 Test for Comparison of Means of Related Samples (Paired-Sample t
Test)

Experiments are often designed so that comparisons of two means are made on related
samples. This design is usually more sensitive than the two-independent-groups t test. A
test is more sensitive if the experimental variability is smaller. With smaller variability,
smaller differences can be detected as statistically significant. In clinical studies, a paired
design is often described as one in which each patient acts as his or her own ‘‘control.’’
A bioequivalence study, in which each subject takes each of a test and reference drug
product, is a form of paired design (see Sec. 11.4).

In the paired-sample experiment, the two treatments are applied to experimental units
which are closely related. If the same person takes both treatments, the relationship is
obvious. Table 5.10 shows common examples of related samples used in paired tests.

The paired t test is identical in its implementation to the one-sample test described
in Sec. 5.2.1. In the paired test, the single sample is obtained by taking differences between
the data for the two treatments for each experimental unit (patient or subject, for example).
With N pairs of individuals, there are N data points (i.e., N differences). The N differences
are designated as �. Example 4, concerning the average reduction in blood pressure in a
preclinical screen, was a paired-sample test in disguise. The paired data consisted of pre-
and post-drug blood pressure readings for each animal. We were interested in the difference
of pre- and post- values (�), the blood pressure reduction (see illustration below).

In paired tests, treatments should be assigned either in random order, or in some
designed way, as in the crossover design. In the crossover design, usually one-half of the
subjects receive the two treatments in the order A-B, and the remaining half of the subjects
receive the treatments in the opposite order, where A and B are the two treatments. The
crossover design is discussed in detail in Chapter 11. With regard to blood pressure reduc-
tion, it is obvious that the order cannot be randomized. The pretreatment reading occurs
before the posttreatment reading. The inflexibility of this ordering can create problems in

Table 5.10 Examples of Related Samples

Clinical studies

Preclinical studies
Analytical development

Stability studies

Each patient takes each drug on different occasions (e.g., crossover
study)

Each patient takes each drug simultaneously, such as in skin testing;
for example, an ointment is applied to different parts of the body

Matched pairs: two patients are matched for relevant characteristics
(age, sex, disease state, etc.) and two drugs randomly assigned,
one to each patient

Drugs assigned randomly to littermates
Same analyst assays all samples
Each laboratory assays all samples in collaborative test
Each method is applied to a homogeneous sample
Assays over time from material from same container
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interpretation of such data. The conclusions based on these data could be controversial
because of the lack of a ‘‘control’’ group. If extraneous conditions that could influence
the experimental outcome are different at the times of the initial and final observation
(pre- and posttreatment), the treatment effect is ‘‘confounded’’ with the differences in
conditions at the two points of observation. Therefore, randomization of the order of
treatment given to each subject is important for the validity of this statistical test. For
example, consider a study to compare two hypnotic drugs with regard to sleep-inducing
effects. If the first drug were given to all patients before the second drug, and the initial
period happened to be associated with hot and humid weather conditions, any observed
differences between drugs (or lack of difference) would be ‘‘tainted’’ by the effect of the
weather on the therapeutic response.

An important feature of the paired design is that the experimental units receiving the
two treatments are, indeed, related. Sometimes, this is not as obvious as the example of
the same patient taking both treatments. One can think of the concept of relatedness in
terms of the paired samples being more alike than samples from members of different
pairs. Pairs may be devised in clinical trials by pairing patients with similar characteristics,
such as age, sex, severity of disease, and so on.

Example 6: A new formulation of a marketed drug is to be tested for bioavailability,
comparing the extent of absorption to the marketed form on six laboratory animals. Each
animal received both formulations in random order on two different occasions. The results,
the area under the blood level versus time curve (AUC), are shown in Table 5.11.

H Ha0 0 0: * :∆ = ∆ ≠

This is a two-sided test, with the null hypothesis of equality of means of the paired samples.
(The true difference is zero.) Before the experiment, it was not known which formulation
would be more or less bioavailable if, indeed, the formulations are different. The signifi-
cance level is set at 5%. From Table 5.11, the average difference is 18.5 and the standard
deviation of the differences (� values) is 13.0. The t test is

* � is the hypothetical difference, and �̄ is the observed average difference.
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Table 5.11 Results of a Bioavailability Study Comparing a New Formulation
(A) to a Marketed Form (B) with Regard to the Area Under the Blood-Level Curve

Animal A B � � B – A A/B � R

1 136 166 30 0.82
2 168 184 16 0.91
3 160 193 33 0.83
4 94 105 11 0.90
5 200 198 �2 1.01
6 174 197 23 0.88

�̄ � 18.5 R̄ � 0.89
S� � 13.0 SR � 0.069

(5.14)t
S N

= − ∆δ
/

The form of the test is the same as the one-sample t test [Eq. (5.5)]. In our example, a
two-sided test,

t =
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For a two-sided test at the 5% level, a t value of 2.57 is needed for significance (d.f. �
5; there are six pairs). Therefore, the difference is significant at the 5% level. Formulation
B appears to be more bioavailable.

In many kinds of experiments, ratios are more meaningful than differences as a
practical expression of the results. In comparative bioavailability studies, the ratio of the
AUCs of the two competing formulations is more easily interpreted than is their difference.
The ratio expresses the relative absorption of the formulations. From a statistical point of
view, if the AUCs for formulations A and B are normally distributed, the difference of
the AUCs is also normally distributed. It can be proven that the ratio of the AUCs will
not be normally distributed and the assumption of normality for the t test is violated.
However, if the variability of the ratios is not great and the sample size is sufficiently
‘‘large,’’ analyzing the ratios should give conclusions similar to that obtained from the
analysis of the differences. Another alternative for the analysis of such data is the logarith-
mic transformation (see Chapter 10), where the differences of the logarithms of the AUCs
are analyzed. For purposes of illustration, we will analyze the data in Table 5.11 using
the ratio of the AUCs for formulations A and B. The ratios are calculated in the last
column in Table 5.11.

The null and alternative hypotheses in this case are

H R H Ra0 0 01 1: := ≠

where R0 is the true ratio. If the products are identical, we would expect to observe an
average ratio close to 1 from the experimental data. For the statistical test, we choose �
equal to 0.05 for a two-sided test. Applying Eq. (5.5), where X̄ is replaced by the average
ratio R̄:
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Note that this is a one-sample test. We are testing the mean of a single sample of ratios
versus the hypothetical value of 1. Because this is a two-sided test, low or high ratios can
lead to significant differences. As in the analysis of the differences, the value of t is
significant at the 5% level. (According to Table IV.4, at the 5% level, t must exceed 2.57
for significance.)

A confidence interval for the average ratio (or difference) of the AUCs can be com-
puted in a manner similar to that presented earlier in this chapter [Eq. (5.2)]. A 95%
confidence interval for the true ratio A/B is

R
t S

N
±

± = ± =

( )

.
. ( . )

. . .0 89
2 57 0 069

6
0 89 0 07 0 82 to 0.96

Again, the fact that the confidence interval does not cover the value specified by H0 (1)
means that the statistical test is significant at the 5% level.

A more complete discussion of the analysis of bioequivalence data as required by the
F.D.A. is given in Chapter 11.

5.2.4 Normal Distribution Tests for Proportions (Binomial Tests)

The tests described thus far in this chapter (normal distribution and t tests as well as
confidence intervals) can also be applied to data that are binomially distributed. To apply
tests for binomial variables based on the normal distribution, a conservative rule is that
the sample sizes should be sufficiently large so that both Np̂ and Nq̂ are larger than or
equal to 5. Where p̂ is the observed proportion and q̂ � 1 � p̂. For symmetric distributions
(p � 0.5), this constraint may be relaxed somewhat. The binomial tests are based on the
normal approximation to the binomial and, therefore, we use normal curve probabilities
when making decisions in these tests. To obtain the probabilities for tests of significance,
we can use the t table with � d.f. or the standard normal distribution (Tables IV.4 and
IV.2, respectively). We will also discuss the application of the �2 (chi-square) distribution
to the problem of comparing the ‘‘means’’ of binomial populations.

Test to Compare the Proportion of a Sample to a Known or Hypothetical
Proportion

This test is equivalent to the normal test of the mean of a single population. The test is

(5.15)Z
p p

p q N
=

−ˆ

/
0

0 0

where

p̂ � observed proportion
p0 � hypothetical proportion under the null hypothesis H0: p′ � p0

The test procedure is analogous to the one-sample tests described in Sec. 5.2.1. Because
of the discrete nature of binomial data, a correction factor is recommended to improve
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the normal approximation. The correction, often called the Yates continuity correction,
consists of subtracting 1/(2N) from the absolute value of the numerator of the test statistic
[Eq. (5.15)]:

(5.16)Z
p p N

p q N
=

− −ˆ /( )

/
0

0 0

1 2

For a two-tailed test, the approximation can be improved as described by Snedecor and
Cochran [5]. The correction is the same as the Yates correction if np is ‘‘a whole number
or ends in 0.5.’’ Otherwise, the correction is somewhat less than 1/2N (see Ref. 5 for
details). In the examples presented here, we will use the Yates correction. This results in
probabilities very close to those which would be obtained by using exact calculations
based on the binomial theorem. Some examples should make the procedure clear.

Example 7: Two products are to be compared for preference with regard to some
attribute. The attribute could be sensory (taste, smell, etc.) or therapeutic effect as exam-
ples. Suppose that an ointment is formulated for rectal itch and is to be compared to a
marketed formulation. Twenty patients try each product under ‘‘blind’’ conditions and
report their preference. The null hypothesis and alternative hypothesis are

H p p H p H pa b a a0 0 00 5 0 5: : . : .= = ≠or

Where pa and pb are the hypothetical preferences for A and B, respectively. If the products
are truly equivalent, we would expect one-half of the patients to prefer either product A
or B. Note that is a one-sample test. There are two possible outcomes that can result from
each observation: a patient prefers A or prefers B (pa � pb � 1).

We observe the proportion of preferences (successes) for A, where A is the new
formulation. This is a two-sided test; very few or very many preferences for A would
suggest a significant difference in preference for the two products. Final tabulation of
results showed that 15 of 20 patients found product A superior (5 found B superior). Does
this result represent a ‘‘significant’’ preference for product A? Applying Eq. (5.16), we
have

Z =
− −

=
15 20 0 5 1 40

0 5 0 5 20
2 01

/ . /

( . )( . ) /
.

Note the correction for continuity, 1/(2N). Also note that the denominator uses the value
of pq based on the null hypothesis (pa � 0.5), not the sample proportion (0.75 � 15/20).
This procedure may be rationalized if one verbalizes the nature of the test. We assume
that the preferences are equal for both products (pa � 0.5). We then observe a sample of
20 patients to see if the results conform with the hypothetical preference. Thus the test is
based on a hypothetical binomial distribution with the expected number of preferences
equal to 10 (pa � 20). See Fig. 5.11, which illustrates the rejection region in this test.
The value of Z � 2.01 (15 preferences in a sample of 20) is sufficiently large to reject
the null hypothesis. A value of 1.96 or greater is significant at the 5% level (Table IV.2).
The test of p0 � 0.5 is common in statistical procedures. The sign test described in Chap.
15 is a test of equal proportions (i.e., p0 � q0 � 0.5).

Example 8: A particularly lethal disease is known to result in 95% fatality if not
treated. A new treatment is given to 100 patients and 10 survive. Does the treatment merit
serious consideration as a new therapeutic regimen for the disease? We can use the normal
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Figure 5.11 Rejection region for the test of pa � 0.5 for a sample of 20 patients (� �
0.05, two-sided test).

approximation because the expected number of successes and failures both are �5, i.e.,
Np0 � 5 and Nq0 � 5 and Nq0 � 95 (p0 � 0.05, N � 100). A one-sided test is performed
because evidence supports the hypothesis that the treatment cannot worsen the chances
of survival. The � level is set at 0.05. Applying Eq. (5.16), we have

H p H p

Z

0 0 0 00 05 0 05

0 10 0 05 1 200

0 05 0 95 100
2 06

: . : .

. . /

( . )( . ) /
.

= >

=
− −

=

Table IV.2 shows that a value of Z equal to 1.65 would result in significance at the 5%
level (one-sided test). Therefore, the result of the experiment is strong evidence that the
new treatment is effective (P � 0.05).

If either Np0 or Nq0 is less than 5, the normal approximation to the binomial may not
be justified. Although this rule is conservative, if in doubt, in these cases, probabilities
must be calculated by enumerating all possible results which are equally or less likely to
occur than the observed result under the null hypothesis. This is a tedious procedure, but
in some cases it is the only way to obtain the probability for significance testing. Fortu-
nately, most of the time, the sample sizes of binomial experiments are sufficiently large
to use the normal approximation.

Tests for the Comparison of Proportions from Two Independent Groups

Experiments commonly occur in the pharmaceutical and biological sciences which involve
the comparison of proportions from two independent groups. These experiments are analo-
gous to the comparison of means in two independent groups using the t or normal distribu-
tions. For proportions, the form of the test is similar. With a sufficiently large sample
size, the normal approximation to the binomial can be used, as in the single-sample test.
For the hypothesis: H0: pa � pb (pa � pb � 0), the test using the normal approximation
is:
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(5.17)Z
p p

p q N N
a b=

−
+

ˆ ˆ

( / / )0 0 1 21 1

where p̂a and p̂b are the observed proportions in groups A and B, respectively, and N1 and
N2 are the sample sizes for groups A and B, respectively, p0 and q0 are the ‘‘pooled’’
proportion of successes and failures. The pooled proportion, p0, is similar to the pooled
standard deviation in the t test. For proportions, the results of the two comparative groups
are pooled together and the ‘‘overall’’ observed proportion is equal to p0. Under the null
hypothesis, the probability of success is the same for both groups, A and B. Therefore,
the best estimate of the common probability for the two groups is the estimate based on
the combination of data from the entire experiment. An example of this calculation is shown
in Table 5.12. The pooled proportion, p0, is a weighted average of the two proportions. This
is exactly the same as adding up the total number of ‘‘successes’’ and dividing this by the
total number of observations. In the example in Table 5.12, the total number of successes is
34, 16 in group I and 18 in group II. The total number of observations is 50, 30 � 20.
The following examples illustrate the computations.

Example 9: In a clinical study designed to test the safety and efficacy of a new
therapeutic agent, the incidence of side effects are compared for two groups of patients,
one taking the new drug and the other group taking a marketed standard agent. Headache
is a known side effect of such therapy. Of 212 patients on the new drug, 35 related that
they had experienced severe headaches. Of 196 patients on the standard therapy, 46 suf-
fered from severe headaches. Can the new drug be claimed to result in fewer headaches
than the standard drug at the 5% level of significance? The null and alternative hypotheses
are

H p p p p H p pa0 1 2 1 2 1 20: ( ) := − = ≠

This is a two-sided test. Before performing the statistical test, the following computations
are necessary:

ˆ .

ˆ .
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p q
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Table 5.12 Sample Calculation for Pooling
Proportions from Two Groups

Group I Group II

N � 20 N � 30
p̂1 � 0.8 p̂2 � 0.6

p p0

20 0 8 30 0 6

20 30
0 68= = × + ×

+
=pooled

. .
.
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Applying Eq. (5.17), we have
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−

+
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Since a Z value of 1.96 is needed for significance at the 5% level, the observed difference
between the two groups with regard to the side effect of ‘‘headache’’ is not significant
(P 
 0.05).

Example 10: In a preclinical test, the carcinogenicity potential of a new compound
is determined by administering several doses to different groups of animals. A control
group (placebo) is included in the study as a reference. One of the dosage groups showed
an incidence of the carcinoma in 9 of 60 animals (15%). The control group exhibited 6
carcinomas in 65 animals (9.2%). Is there a difference in the proportion of animals with
the carcinoma in the two groups (� � 5%)? Applying Eq. (5.17), we have

H p p H p p

Z

a0 1 2 1 2

9 60 6 65

15 125 110 125 1 60 1 65

0

: :

/ /

( / )( / )( / / )

.

= ≠
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= 00577
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0 99

.
.=

Note that p̂1 � 9/60 � 0.15, p̂2 � 6/65 � 0.092, and p0 � 15/125 � 0.12.
Since Z does not exceed 1.96, the difference is not significant at the 5% level. This

test could have been a one-sided test (a priori) if one were certain that the new compound
could not lower the risk of carcinoma. However, the result is not significant at the 5%
level for a one-sided test; a value of Z equal to 1.65 or greater is needed for significance
for a one-sided test.

Example 11: A new operator is assigned to a tablet machine. A sample of 1000 tablets
from this machine showed 8% defects. A random sample of 1000 tablets from the other
tablet presses used during this run showed 5.7% defects. Is there reason to believe that the
new operator produced more defective tablets than that produced by the more experienced
personnel? We will perform a two-sided test at the 5% level, using Eq. (5.17).

Z =
−

= =
0 08 0 057

0 0685 0 9315 2 1000

0 023

0 0113
2 04

. .

( . )( . )( / )

.

.
.

Since the value of Z (2.04) is greater than 1.96, the difference is significant at the 5%
level. We can conclude that the new operator is responsible for the larger number of
defective tablets produced at his station. (See also Exercise Problem 19.) If a continuity
correction is used, the equivalent chisquare test with a correction as described below is
recommended.*

There is some controversy about the appropriateness of a continuity correction in
these tests. D’Agostino et al. [6] examined various alternatives and compared the results
to exact probabilities. They concluded that for small sample sizes (N1 and N2 � 15),
the use of the Yates continuity correction resulted in too conservative probabilities (i.e.,
probabilities were too high which may lead to a lack of rejection of H0 in some cases).

* The continuity correction can make a difference when making decisions based on the � level,
when the statistical test is ‘‘just significant’’ (e.g., P � 0.04 for a test at the 5% level). The
correction makes the test ‘‘less significant.’’
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They suggest that in these situations a correction should not be used. They also suggest
an alternative analysis that is similar to the t test.

(5.18)t
p p

N N
=

−

+
1 2

1 21 1s.d. / /

where s.d. is the pooled standard deviation computed from the data considering a success
equal to 1 and a failure equal to 0. The value of t is compared to the appropriate t value
with N1 � N2 � 2 d.f. The computation for the example in Table 5.12 follows:

For Group 1, S 2
1 � (16 � 162/20)/19 � 0.168

For Group 2, S 2
2 � (18 � 182/30)/29 � 0.248

(Note for Group 1 that the number of successes is 16 and the number of failures is 4.
Thus, we have 16 values equal to 1 and 4 values equal to 0. The variance is calculated
from these 20 values.) The pooled variance is:

(19 � 0.168 � 29 � 0.248)/48 � 0.216

The pooled standard deviation is 0.465.
From Eq. (5.18),

t =
−

+
=

0 8 0 6

1 20 1 30
1 49

. .

/ /
.

0.465

The t value with 48 d.f. for significance at the 5% level for a two-sided test is 2.01.
Therefore the results fail to show a significant difference at the 5% level.

Fleiss [7] advocates the use of the Yates continuity correction. He states ‘‘Because
the correction for continuity brings probabilities associated with �2 and Z into close agree-
ment with the exact probabilities, the correction should always be used.’’

5.2.5 Chi-Square Tests for Proportions

An alternative method of comparing proportions is the chi-square (�2) test. This test results
in identical conclusions as the binomial test in which the normal approximation is used as
described above. The chi-square distribution is frequently used in statistical tests involving
counts and proportions, as discussed in Chap. 15. Here we will show the application to
fourfold tables (2 � 2 tables), the comparison of proportions in two independent groups.

The chi-square distribution is appropriate where the normal approximation to the
distribution of discrete variables can be applied. In particular, when comparing two propor-
tions, the chi-square distribution with 1 d.f. can be used to approximate probabilities. (The
values for the �2 distribution with one d.f. are exactly the square of the corresponding
normal deviates. For example, the ‘‘95%’’ cutoff point for the chi-square distribution with
1 d.f. is 3.84, equal to 1.962.)

The use of the chi-square distribution to test for differences of proportions in two
groups has two advantages: (a) the computations are easy and (b) a continuity correction
can be easily applied. The reader may have noted that a continuity correction was not
used in the examples for the comparison of two independent groups described above.
The correction was not included because the computation of the correction is somewhat
complicated. In the chi-square test, however, the continuity correction is relatively simple.
The correction is most easily described in the context of an example. We will demonstrate
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Table 5.13 Results of the Experiment Shown in Table 5.12 in
the Form of a Fourfold Table

Group

I II Total

Number of successes 16 18 34
Number of failures 4 12 16

Total 20 30 50

the chi-square test using the data in Table 5.12. We can think of these data as resulting
from a clinical trial where groups I and II represent two comparative drugs. The same
results are presented in the fourfold table shown in Table 5.13.

The chi-square statistic is calculated as follows:

(5.19)χ2
2

= −∑ ( )O E

E

where

O � observed number in a cell (there are four cells in the experiment in Table 5.13;
a cell is the intersection of a row and column; the upper left-hand cell, number
of successes in group I, has the value 16 contained in it)

E � expected number in a cell

The expected number is the number that would result if each group had the same proportion
of successes and failures. The best estimate of the common p (proportion of successes)
is the pooled value, as calculated in the test using the normal approximation above [Eq.
(5.17)]. The pooled, p, p0, is 0.68 (34/50). With a probability of success of 0.68 (34/50),
we would expect ‘‘13.6’’ successes for group I (20 � 0.68). The expected number of
failures is 20 � 0.32 � 6.4. The expected number of failures can also be obtained by
subtracting 13.6 from the total number of observations in group I, 20 � 13.6 � 6.4.
Similarly, the expected number of successes in group II is 30 � 0.68 � 20.4. Again the
number, 20.4, could have been obtained by subtracting 13.6 from 34.

This concept (and calculation) is illustrated in Table 5.14, which shows the expected
values for Table 5.13. The marginal totals (34, 16, 20, and 30) in the ‘‘expected value’’
table are the same as in the original table, Table 5.13. In order to calculate the expected

Table 5.14 Expected Values for the Experiment Shown in Table 5.13

Group

I II Total

Expected number of successes 13.6 20.4 34
Expected number of failures 6.4 9.6 16

Total 20.0 30.0 50
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values, multiply the two marginal totals for a cell and divide this value by the grand total.
This simple way of calculating the expected values will be demonstrated for the upper
lefthand cell, where the observed value is 16. The expected value is

( )( )

( )
.

20 34

50
13 6=

Once the expected value for one cell is calculated, the expected values for the remaining
cells can be obtained by subtraction.

Expected successes in group II � 34 � 13.6 � 20.4
Expected failures in group I � 20 � 13.6 � 6.4
Expected failures in group II � 16 � 6.4 � 9.6

Given the marginal totals and the value for any one cell, the values for the other three
cells can be calculated. Once the expected values have been calculated, the chi-square
statistic is evaluated according to Eq. (5.19).
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The numerator of each term is (	2.4)2 � 5.76. Therefore, the computation of �2 can be
simplified as follows:

(5.20)χ2 2

1 2 3 4
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where E1 through E4 are the expected values for each of the four cells.
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One can show that this computation is exactly equal to the square of the Z value using
the normal approximation to the binomial. (See Exercise Problem 11.)

The degrees of freedom for the test described above (the fourfold table) is equal to
1. In general, the degrees of freedom for an R � C contingency table, where R is the
number of rows and C is the number of columns, is equal to (R � 1)(C � 1). The analysis
of R � C tables is discussed in Chap. 15.

Table IV.5, a table of points in the cumulative chi-square distribution, shows that a
value of 3.84 is needed for significance at the 5% level (1 degree of freedom). Therefore,
the test in this example is not significant; that is, the proportion of successes in group I
is not significantly different from that in group II, 0.8 and 0.6, respectively.

To illustrate further the computations of the chi-square statistic and the application
of the continuity correction, we will analyze the data in Example 10, where the normal
approximation to the binomial was used for the statistical test. Table 5.15 shows the
observed and expected values for the results of this preclinical study.

The uncorrected chi-square analysis results in a value of 0.98, (0.99)2. (See Exercise
Problem 18.) The continuity correction is applied using the following rule: If the fractional
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Table 5.15 Observed and Expected Values for Preclinical Carcinogenicity Studya

Drug Placebo Total

Animals with carcinoma 9 (7.2) 6 (7.8) 15
Animals without carcinoma 51 (52.8) 59 (57.2) 110

Total 60 65 125

a Parenthetical values are expected values.

part of the difference (O � E) is larger than 0 but �0.5, delete the fractional part. If the
fractional part is greater than 0.5 or exactly 0, ‘‘reduce the fractional part to 0.5.’’ Some
examples should made the application of this rule clearer.

O � E Corrected for continuity

3.0 2.5
3.2 3.0
3.5 3.0
3.9 3.5
3.99 3.5
4.0 3.5

In the example above, O � E � 	1.8. Therefore, correct this value to 	1.5. The corrected
chi-square statistic is [Eq. (5.20)]

( . )
. . . .

.1 5
1

7 2

1

7 8

1

52 8

1

57 2
0 682 + + +
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In this example, the result is not significant using either the corrected or uncorrected
values. However, when chi-square is close to significance at the � level, the continuity
correction can make a difference. The continuity correction is more apparent in its effect
on the computation of chi-square in small samples. With large samples, the correction
makes less of a difference.

The chi-square test, like the normal approximation, is an approximate test, applying
a continuous distribution to discrete data. The test is valid (close to correct probabilities)
when the expected value in each cell is at least 5. This is an approximate rule. Because
the rule is conservative, in some cases, an expected value in one or more cells of less
than 5 can be tolerated. However, one should be cautious in applying this test if the
expected values are too small.

5.2.6 Confidence Intervals for Proportions

Examples of the formation of a confidence interval for a proportion have been presented
earlier in this chapter (Example 3). Although the confidence interval for the binomial is
calculated using the standard deviation of the binomial based on the sample proportion, we
should understand that in most cases, the s.d. is unknown. The sample standard deviation is
an estimate of the true standard deviation, which for the binomial depends on the true
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value of the proportion or probability. However, when we use the sample estimate of the
s.d. for the calculations, the confidence interval and statistical tests are valid using criteria
based on the normal distribution (Table IV.2). We do not use the t distribution as in the
procedures discussed previously.

The confidence interval for the true proportion or binomial probability, p0 is

(5.3)ˆ
ˆ ˆ

p Z
pq

N
±

where p̂ is the observed proportion in a sample of size N. The value of Z depends on the
confidence coefficient (e.g., 1.96 for a 95% interval). Of 500 tablets inspected, 20 were
found to be defective (p̂ � 20/500 � 0.04). A 95% confidence interval for the true
proportion of defective tablets is

ˆ .
ˆ ˆ

. .
( . )( . )

. . .
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To obtain a confidence interval for the difference of two proportions (two independent
groups), use the following formula:

(5.21)( )p Z
p q

N

p q

N1 2
1 1

1

2 2

2

− ± +p̂ ˆ
ˆ ˆ ˆ ˆ

where p̂1 and p̂2 are the observed proportions in groups 1 and 2, respectively, and N1 and
N2 are the respective sample sizes of the two groups. Z is the appropriate normal deviate
(1.96 for a 95% confidence interval).

In the example of incidence of headaches in two groups of patients, the proportion
of headaches observed in group 1 was 35/212 � 0.165 and the proportion in group 2 was
46/196 � 0.235. A 95% confidence interval for the difference of the two proportions,
calculated from Eq. (5.21), is

( . . ) .
( . )( . ) ( . )( . )

.

0 235 0 165 1 96
0 165 0 835

212

0 235 0 765

196
0 07

− ± +

= ±± =0 078 0 148. .to0.008−

The difference between the two proportions was not significant at the 5% level in a two-
sided test (see ‘‘Test for Comparison of Proportions from Two Independent Groups’’ in
Sec. 5.2.4). Note that 95% confidence interval covers 0, the difference specified in the
null hypothesis (H0: p1 � p2 � 0).*

Hauck and Anderson [8] recommend the use of a continuity correction for the con-
struction of confidence intervals that gives better results than that obtained without a
correction [Eq. (5.21)]. If a 90% or 95% interval is used, the Yates correction works well
if N1p1, N1q1, N2p2, and N2q2 are all greater than or equal to 3. The 99% interval is good
for N1p1, N1q1, N2p2, and N2q2 all greater than or equal to 5. The correction is 1/2N1 �
1/2N2. Applying the correction to the previous example, a 95% confidence interval is:

* The form of the confidence interval Eq. (5.21) differs from the form of the statistical test in that
the latter uses the pooled variance [Eq. (5.17)]. Therefore, this relationship will not always hold
for the comparison of two proportions.
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An approach to sample size requirements using confidence intervals for bio-equivalence
trials with a binomial variable is given in Chapter 11, Section 11.4.8.

5.3 COMPARISON OF VARIANCES IN INDEPENDENT SAMPLES

Most of the statistical tests presented in this book are concerned with means. However,
situations arise where variability is important as a measure of a process or product perfor-
mance. For example, when mixing powders for tablet granulations, one may be interested
in measuring the homogeneity of the mix as may be indicated in validation procedures.
The ‘‘degree’’ of homogeneity can be determined by assaying different portions of the
mix, and calculating the standard deviation or variance. (Sample weights equal to that in
the final dosage form are most convenient.) A small variance would be associated with
a relatively homogeneous mix, and vice versa. Variability is also often of interest when
assaying drug blood levels in a bioavailability study or when determining a clinical re-
sponse to drug therapy. We will describe statistical tests appropriate for two situations: the
comparison of two variances from independent samples, and the comparison of variances in
related (paired) samples. The test for related samples will be presented in Chapter 7 because
methods of calculation involve material presented there. The test for the comparison of
variances in independent samples described here assumes that the data in each sample are
independent and normally distributed.

The notion of significance tests for two variances is similar to the tests for means
(e.g., the t test). The null hypothesis is usually of the form

H0 1
2

2
2: σ σ=

For a two-sided test, the alternative hypothesis admits the possibility of either variance
being larger or smaller than the other:

H0: σ σ1
2

2
2≠

The statistical test consists of calculating the ratio of the two sample variances. The ratio
has an F distribution with (N1 � 1) d.f. in the numerator and (N2 � 1) d.f. in the denomina-
tor. To determine if the ratio is ‘‘significant’’ (i.e., the variances differ), the observed ratio
is compared to appropriate table values of F at the � level. The F distribution is not
symmetrical and, in general, to make statistical decisions, we would need F tables with
both upper and lower cutoff points.

Referring to Fig. 5.12, if the F ratio falls between FL and FU, the test is not significant.
We do not reject the null hypothesis of equal variances. If the F ratio is below FL or above
FU, we reject the null hypothesis and conclude that the variances differ (at the 5% level,
the shaded area in the example of Fig. 5.12). The F table to test the equality of two
variances is the same as that used to determine significance in analysis of variance tests
to be presented in Chap. 8 (Table IV.6). However, F tables for ANOVA usually give only
the upper cutoff points (FU, 0.05 in Fig. 5.12, for example).

Nevertheless, it is possible to perform a two-sided test for two variances using the
one-tailed F table (Table IV.6) by forming the ratio with the larger variance in the numera-
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Figure 5.12 Example of two-sided cutoff points in an F distribution.

tor. Thus the ratio will always be equal to or greater than 1. The ratio is then referred to
the usual ANOVA F table, but the level of significance is twice that stated in the table.
For example, the values that must be exceeded for significance in Table IV.6 represent
cutoff points at the 10% or 2% level if the larger variance is in the numerator. For signifi-
cance at the 5% level, use Table 5.16, a brief table of the upper 0.025 cutoff points for
some F distributions.

To summarize, for a two-sided test at the 5% level, calculate the ratio of the compara-
tive variances with the larger variance in the numerator. (Clearly, if the variances in the
two groups are identical, there is no need to perform a test of significance.) To be significant
at the 5% level, the ratio must be equal to or greater than the tabulated upper 2.5% cutoff
points (see Table 5.16). For significance at the 10% level, for a two-sided test, use the
upper 5% points in Table IV.6.

Table 5.16 Brief Table of Upper 0.025 Cutoff Points of the F Distribution

Degrees of Degrees of freedom in numerator
freedom in
denominator 2 3 4 5 6 8 10 15 20 25 30 ∞

2 39.0 39.2 39.3 39.3 39.3 39.4 39.4 39.4 39.5 39.5 39.5 39.5
3 16.0 15.4 15.1 14.9 14.7 14.5 14.4 14.3 14.2 14.1 14.1 13.9
4 10.6 10.0 9.6 9.4 9.2 9.0 8.8 8.7 8.6 8.5 8.5 8.3
5 8.4 7.8 7.4 7.2 7.0 6.8 6.6 6.4 6.3 6.3 6.2 6.0
6 7.3 6.6 6.2 6.0 5.8 5.6 5.5 5.3 5.2 5.1 5.1 4.9
7 6.5 5.9 5.5 5.3 5.1 4.9 4.8 4.6 4.5 4.4 4.4 4.1
8 6.1 5.4 5.1 4.8 4.7 4.4 4.3 4.1 4.0 3.9 3.9 3.7
9 5.7 5.1 4.7 4.5 4.3 4.1 4.0 3.8 3.7 3.6 3.6 3.3

10 5.5 4.8 4.5 4.2 4.1 3.9 3.7 3.5 3.4 3.4 3.3 3.1
15 4.8 4.2 3.8 3.6 3.4 3.2 3.1 2.9 2.8 2.7 2.6 2.4
20 4.5 3.9 3.5 3.3 3.1 2.9 2.8 2.6 2.5 2.4 2.4 2.1
24 4.3 3.7 3.4 3.2 3.0 2.8 2.6 2.4 2.3 2.3 2.2 1.9
30 4.2 3.6 3.3 3.0 2.9 2.7 2.5 2.3 2.2 2.1 2.1 1.8
40 4.1 3.5 3.1 2.9 2.7 2.5 2.4 2.2 2.1 2.0 1.9 1.6
∞ 3.7 3.1 2.8 2.6 2.4 2.2 2.1 1.8 1.7 1.6 1.6 1.0
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Table 5.17 Assays from Samples from Two Granulations

Granulation A Granulation B

20.6 20.7 20.2 19.0
20.9 19.8 21.5 21.8
20.6 20.4 18.9 20.4

21.0 21.0
X̄� 20.57 S2 � 0.156 X̄� 20.4 S2 � 1.297

For a one-sided test, if the null hypothesis is

H H0 A B a A B: :σ σ σ σ2 2 2 2≥ <

Perform the test only if S 2
A is smaller than S 2

B, with S 2
B in the numerator. (If S 2

A is equal
to or greater than S 2

B, we cannot reject the null hypothesis.) Refer the ratio to Table IV.6
for significance at the 5% (or 1%) level. (The test is one-sided.)

One should appreciate that this statistical test is particularly sensitive to departures
from the assumptions of normality and independence of the two comparative groups.

An example should clarify the procedure. Two granulations were prepared by different
procedures. Seven random samples of powdered mix of equal weight (equal to the weight
of the final dosage form) were collected from each batch and assayed for active material,
with the results shown in Table 5.17. The test is to be performed at the 5% level: H0:
� 2

1 � � 2
2; Ha: � 2

1 � � 2
2. For a two-sided test, we form the ratio of the variances with

� 2
B, the larger variance in the numerator.

F = =1 297

0 156
8 3

.

.
.

The tabulated F value with 6 d.f. in the numerator and denominator (Table 5.16) is 5.8.
Therefore, the variances can be considered significantly different (P � 0.05); granulation
B is more variable than granulation A. If the test were performed at the 10% level, we
would refer to the upper 5% points in Table IV.6, where a value greater than 4.28 would
be significant.

If the test were one-sided, at the 5% level, for example, with the null hypothesis:

H HA B a A B0
2 2 2 2: :σ σ σ σ≥ <

the ratio 1.297/0.156 � 8.3 would be referred to Table IV.6 for significance. Now, a
value greater than 4.28 would be significant at the 5% level.

If more than two variances are to be compared, the F test discussed above is not
appropriate. Bartlett’s test is the procedure commonly used to test the equality of more
than two variances [1].

5.4 TEST OF EQUALITY OF MORE THAN TWO VARIANCES

The test statistic computation is shown in Eq. (5.22).

(5.22)χ2 2 21 1= − − −∑ ∑( ) [( ) ]N S N Si i iln ln

where S2 is the pooled variance and S 2
i is the variance of the ith sample.
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Table 5.18 Results of Variability of Assays of Granulation at Six Locations in
a Mixer

Location N N � 1 Variance (S2) ln S2

A 3 2 3.6 1.2809
B 3 2 4.7 1.5476
C 3 2 2.9 1.0647
D 5 4 8.3 2.1163

The computations are demonstrated for the data of Table 5.18. In this example, samples
of a granulation were taken at 4 different locations in a mixer. Three samples were analyzed
in each of 3 of the locations, and 5 samples analyzed in the 4th location. The purpose of
this experiment was to test the homogeneity of the mix in a validation experiment. Part
of the statistical analysis requires an estimate of the variability within each location. The
statistical test (analysis of variance, Chap. 8) assumes homogeneity of variance within the
different locations. Bartlett’s test allows us to test for the homogeneity of variance (Table
5.18).

The pooled variance is calculated as the weighted average of the variances, where
the weights are the d.f. (Ni � 1).

Pooled S

Ni

2 2 3 6 2 4 7 2 2 9 4 8 3

1 10

= × + × + × + ×[ ]
−( ) =

. . . . /

∑∑
∑ −( ) = ( ) + ( ) + ( ) 

+ ( )
N Si i1 2 1 2809 2 1 5476 2 1 0647

4 2 1163

2ln . . .

. ==

= × ( ) − =

16 2516

10 5 56 16 2516 0 9042

.

. . .χ ln

2 2 2 4 5 56+ + +[ ] = .

To test �2 for significance, compare the result to the tabulated value of �2 (Table
IV.5) with 3 d.f. (1 less than the number of variances being compared) at the appropriate
significance level. A value of 7.81 is needed for significance at the 5% level. Therefore,
we conclude that the variances do not differ. A significant value of �2 means that the
variances are not all equal. This test is very sensitive to nonnormality. That is, if the
variances come from nonnormal populations, the conclusions of the test may be erroneous.

See Exercise Problem 22 for another example where Bartlett’s test can be used to
test the homogeneity of variances.

5.5 CONFIDENCE LIMITS FOR A VARIANCE

Given a sample variance, a confidence interval for the variance can be constructed in a
manner similar to that for means. S2/�2 is distributed as �2/d.f. The confidence interval
can be obtained from the chi-square distribution, using the relationship shown in Eq.
5.23.
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Table 5.19 Short Table of Lower and Upper Cutoff Points for Chi-Square Distribution

Degrees of
Freedom Lower 2.5% Lower 5% Upper 95% Upper 97.5%

2 0.0506 0.1026 5.99 7.38
3 0.216 0.352 7.81 9.35
4 0.484 0.711 9.49 11.14
5 0.831 1.15 11.07 12.83
6 1.24 1.64 12.59 14.45
7 1.69 2.17 14.07 16.01
8 2.18 2.73 15.51 17.53
9 2.70 3.33 16.92 19.02
10 3.25 3.94 18.31 20.48
15 6.26 7.26 25.00 27.49
20 9.59 10.85 31.41 34.17
30 16.79 18.49 43.77 46.98
60 40.48 43.19 79.08 83.30
120 91.58 95.76 146.57 152.21

(5.23)S n S n2
2

2 2
21 1−( ) ≥ ≥ −( )/ // /chi-square chi-squareα 1−ασ

For example, a variance estimate based on 10 observations is 4.2, with 9 d.f. For a 90%
two-sided confidence interval, we put 5% of the probability in each of the lower and upper
tails of the �2 distribution. From Table 5.19 and Eq. 5.23, the upper limit is

S2(9/3.33) � 4.2(9/3.33) � 11.45

The lower limit is

4.2(9/16.92) � 2.23

The values, 3.33 and 16.92 are the cut-off points for 5% and 95% of the chi-square
distribution with 9 degrees of freedom. Thus, we can say that with 90% probability, the
true variance is between 2.23 and 11.45. Exercise Problem 23 shows an example of a
one-sided confidence interval for the variance from a content uniformity test.

5.5.1 Rationale for USP Content Uniformity Test

The USP content uniformity test was based on the desire for a plan that would limit
acceptance to lots with sigma (RSD) less than 10% (9). The main concern is to prevent
the release of batches of product with excessive units outside of 75% to 125% of the
labeled dose which may occur for lots with a large variability. If the observed RSD for
10 units is less than 6%, one can demonstrate that there is less than 0.05 probability that
the true RSD of the lot is greater than 10%. A two-sided 90% confidence interval for an
RSD of 6 for N � 10, can be calculated by taking the square root of the interval for the
variance. In this example, the variance is 36 (RSD � 6). Following the logic of the
previous example, the upper limit of the 90% confidence interval for the variance is 62(9/
3.33) � 97.3. Since the upper limit represents a one-sided 95% confidence limit, the



144 Chapter 5

upper limit for the standard deviation (s) is �97.3, approximately 10. See also Exercise

Problem 24 at the end of this chapter.

5.6 TOLERANCE INTERVALS

Tolerance intervals have a wide variety of potential applications in pharmaceutical and
clinical data analysis. A tolerance interval describes an interval in which a given percentage
of the individual items lie, with a specified probability. This may be expressed as:

Probability(L � % of population � U)

where L is the lower limit and U is the upper limit.
For example, a tolerance interval might take the form of a statement such as, ‘‘There

is 99% probability that 95% of the population is between 85 and 115.’’ More specifically,
we might say that there is 99% probability that 95% of the tablets in a batch have a
potency between 85% and 115%. In order to be able to compute tolerance intervals, we
must make an assumption about the data distribution. As is typical in statistical applica-
tions, the data will be assumed to have a normal distribution. In order to compute the
tolerance interval, we need an estimate of the mean and standard deviation. These estimates
are usually taken from a set of observed experimental data.

Given the d.f. for the estimated s.d., the limits can be computed from Table IV.19 in
App. IV. The factors in Table IV.19 represent multipliers of the standard deviation, similar
to a confidence interval. Therefore, using these factors, the tolerance interval computation
is identical to the calculation of a confidence interval.

P percent Tolerance Interval containing X% of the population � X̄ 	 t′ (s.d.)

where t′ is the appropriate factor found in Table IV.19.
The following examples are intended to make the calculation and interpretation clear.
Example 1. A batch of tablets was tested for content uniformity. The mean of the 10

tablets tested was 99.1% and the s.d. was 2.6%. Entering Table IV.19, for a 99% tolerance
interval which contains 99.9% of the population with N � 10, the factor, t′ � 7.129.
Assuming a normal distribution of tablet potencies, we can say with 99% probability (99%
‘‘confidence’’) that 99.9% of the tablets are within 99.1% 	 7.129 � 2.6 � 99.1% 	
18.5 � 80.6% to 117.6%.

Example 2. In a bioequivalence study using a crossover design with 24 subjects, the
ratio of test product to standard product was computed for each subject. One of the propos-
als for assessing individual equivalence is to compute a tolerance interval to estimate an
interval which will encompass a substantial proportion of subjects who take the drug. The
average of the 24 ratios was 1.05 with a standard deviation of 0.3. A tolerance interval
is calculated that has 95% probability of containing 75% of the population. The factor
from Table IV.19 for N � 24 and 95% confidence is 1.557. The tolerance interval is 1.05
	 1.557 � 0.3 � 1.05 	 0.47. Thus, we can say that 75% of the patients will have a
ratio between 0.58 and 1.52 with 95% probability. One of the problems with such an
approach to individual equivalence is that the interval is dependent on the variability, and
highly variable drugs will always show a wide variation of the ratio for different products.
Therefore, using this interval as an acceptance criterion for individual equivalence may
not be very meaningful. Also, this computation assumes a normal distribution, and individ-
ual ratios may deviate significantly from a normal distribution.

Table 5.20 summarizes some tests discussed in this chapter.
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Table 5.20 Summary of Tests

Test Section

a If the variance is known, use the normal distribution.
b A continuity correction may be used (5.16 and 5.20).

Mean of single population

Comparison of means from two
independent populations (variances
known)

Comparisons of means from two
independent populations (variance
unknown)

Comparison of means from two related
samples (variance unknown)a

Proportion from a single populationb

Comparison of two proportions from
independent groupsb

Comparison of variances (two-sided test)

Confidence limits for variance
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KEY TERMS

Alpha level Nonsignificance
Alternative hypothesis Normal curve test
Bartlett’s test Null hypothesis
Behrens—Fisher test One-sample test
Beta error One-sided test
Bias One-way analysis of variance
Binomial trials Paired-sample t test
Blinding Parallel-groups design
Cells Parameters
Chi-square test Pooled proportion
Confidence interval Pooled variance
Continuity correction Power
Critical region Preference tests
Crossover design Randomization
Cumulative normal distribution Region of rejection
Degrees of freedom Sample size
Delta Sensitive
Error Significance
Error of first kind t distribution
Estimation t test
Expected values Tolerance interval
Experimental error Two-by-two table
Fourfold table Two-independent-groups t test
F test Two-tailed (sided) test
Hypothesis testing Uncontrolled study
Independence Variance
Independent groups Yates correction
Level of significance Z transformation
Marginal totals

EXERCISES

1. Calculate the probability of finding a value of 49.8 or less if � � 54.7 and � �
2.

2. If the variance of the population of tablets in Table 5.1 were known to be 4.84,
compute a 99% confidence interval for the mean.

3. (a) Six analysts perform an assay on a portion of the same homogeneous material
with the following results: 5.8, 6.0, 5.7, 6.1, 6.0, and 6.1. Place 95% confi-
dence limits on the true mean.

(b) A sample of 500 tablets shows 12 to be defective. Place a 95% confidence
interval on the percent defective in the lot.

(c) Place a 95% confidence interval on the difference between two products in
which 50 of 60 patients responded to product A, and 25 of 50 patients re-
sponded to product B.

4. (a) Quality control records show the average tablet weight to be 502 mg with
a standard deviation of 5.3. There are sufficient data so that these values
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may be considered known parameter values. A new batch shows the follow-
ing weights from a random sample of six tablets: 500, 499, 504, 493, 497,
and 495 mg. Do you believe that the new batch has a different mean from
the process average?

(b) Two batches of tablets were prepared by two different processes. The potency
determinations made on five tablets from each batch were as follows: batch
A: 5.1, 4.9, 4.6, 5.3, 5.5; batch B: 4.8, 4.8, 5.2, 5.0, 4.5. Test to see if the
means of the two batches are equal.

(c) Answer part (a) if the variance were unknown. Place a 95% confidence
interval on the true average weight.

5. (a) In part (b) of Problem 4, calculate the variance and the standard deviation
of the 10 values as if they were one sample. Are the values of the s.d. and
s2 smaller or larger than the values calculated from ‘‘pooling’’?

(b) Calculate the pooled s.d. above by ‘‘averaging’’ the s.d.’s from the two
samples. Is the result different from the ‘‘pooled’’ s.d. as described in the
text?

6.
Batch 1 Pass/fail Batch 2 Pass/fail
(drug) (improve, worsen) (placebo) (improve, worsen)

10.1 P 9.5 F
9.7 F 8.9 F

10.1 P 9.4 F
10.5 P 10.4 P
12.3 P 9.9 F
11.8 P 10.1 P
9.6 F 9.0 F

10.0 F 9.7 F
11.2 P 9.9 F
11.3 P 9.8 F

(a) What are the mean and s.d. of each batch? Test for difference between the
two batches using a t test.

(b) What might be the ‘‘population’’ corresponding to this sample? Do you think
that the sample size is large enough? Why? Ten objects were selected from
each batch for this test. Is this a good design for comparing the average
results from two batches?

(c) Consider values above 10.0 a success and values 10.00 or less a failure.
What is the proportion of successes for batch 1 and batch 2? Is the propor-
tion of successes in batch 1 different from the proportion in batch 2 (5%
level)?

(d) Put 95% confidence limits on the proportion of successes with all data com-
bined.

7. A new analytical method is to be compared to an old method. The experiment is
performed by a single analyst. She selects four batches of product at random and
obtains the following results.
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Batch Method 1 Method 2

1 4.81 4.93
2 5.44 5.43
3 4.25 4.30
4 4.35 4.47

(a) Do you think that the two methods give different results on the average?
(b) Place 95% confidence limits on the true difference of the methods.

8. The following data for blood protein (g/100 ml) were observed for the comparison
of two drugs. Both drugs were tested on each person in random order.

Patient Drug A Drug B

1 8.1 9.0
2 9.4 9.9
3 7.2 8.0
4 6.3 6.0
5 6.6 7.9
6 9.3 9.0
7 7.6 7.9
8 8.1 8.3
9 8.6 8.2

10 8.3 8.9
11 7.0 8.3
12 7.7 8.8

(a) Perform a statistical test for drug differences at the 5% level.
(b) Place 95% confidence limits on the average differences between drugs A

and B.
9. For examples 10 and 11, calculate the pooled p and q (p0 and q0).

10. In Example 4, perform a t test if the mean were 16.7 instead of 15.9.
11. Use the normal approximation and chi-square test (with and without continuity

correction) to answer the following problem. A placebo treatment results in 8
patients out of 100 having elevated blood urea nitrogen (BUN) values. The drug
treatment results in 16 of 100 patients having elevated values. Is this significantly
different from the placebo?

12. Quality control records show that the average defect rate for a product is 2.8%.
Two hundred items are inspected and 5% are found to be defective in a new batch.
Should the batch be rejected? What would you do if you were the director of
quality control? Place confidence limits on the percent defective and the number
defective (out of 200).

**13. In a batch size of 1,000,000, 5000 tablets are inspected and 50 are found defective.
(a) Put 95% confidence limits on the true number of defectives in the batch.
(b) At � � 0.05, do you think that there could be more than 2% defective in

the batch?

** This is an optional, more difficult problem.
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**(c) If you wanted to estimate the true proportion of defectives within 	 0.1%
with 95% confidence, how many tablets would you inspect?

14. In a clinical test, 60 people received a new drug and 50 people received a placebo.
Of the people on the new drug, 40 of the 60 showed a positive response and 25
of the 50 people on placebo showed a positive response. Perform a statistical test
to determine if the new drug shows more of an effect than the placebo. Place a
95% confidence interval on the difference of proportion of positive response in
the two test groups.

15. In a paired preference test, each of 100 subjects was asked to choose the preference
between A and B. Of these 100, 60 showed no preference, 30 preferred A, and
10 preferred B. Is A significantly preferred to B?

16. Over a long period of time, a screening test has shown a response rate for a control
of 20%. A new chemical shows 9 positive results in 20 observations (45%). Would
you say that this candidate is better than the control? Place 99% confidence limits
on the true response rate for the new chemical.

17. Use the chi-square test with the continuity correction to see if there is a significant
difference in the following comparison. Two batches of tablets were made using
different excipients. In batch A, 10 of 100 tablets sampled were chipped. In batch
B, 17 of 95 tablets were chipped. Compare the two batches with respect to propor-
tion chipped at the 5% level.

18. Show that the uncorrected value of chi-square for the data in Table 5.15 is 0.98.
19. Use the chi-square test, with continuity correction, to test for significance (5%

level) for the data in Example 11.
20. Perform a statistical test to compare the variances in the two groups in Problem

6. H0: � 2
1 � � 2

2; Ha: � 1
2 � � 2

2. Perform the test at the 10% level.
21. Compute the value of the corrected �2 statistic for data of Example 11 in 5.2.4.

Compute the t value as recommended by D’agostino et al. Compare the uncorrected
value of Z with these results.

22. The homogeneity of a sample taken from a mixer was tested after 5, 10, and 15
minutes. The variances of 6 samples taken at each time were 16.21, 1.98, 2.02.
Based on the results of Bartlett’s test for homogeneity of variances, what are your
conclusions?

23. Six blend samples (unit dose size) show a variance of 9% (RSD � 3%). Compute
a 95% one-sided upper confidence interval for the variance. Is this interval too
large based on the official limit of 6% for RSD?

24. The USP content uniformity test for 30 units states that the RSD should not exceed
7.8%. Show that there is a 5% probability that the true RSD is less than 10%.
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6

SAMPLE SIZE AND POWER

The question of the size of the sample, the number of observations, to be used in scientific
experiments is of extreme importance. Most experiments beg the question of sample size.
Particularly when time and cost are critical factors, one wishes to use the minimum sample
size to achieve the experimental objectives. Even when time and cost are less crucial, the
scientist wishes to have some idea of the number of observations needed to yield sufficient
data to answer the objectives. An elegant experiment will make the most of the resources
available, resulting in a sufficient amount of information from a minimum sample size.
For simple comparative experiments, where one or two groups are involved, the calculation
of sample size is relatively simple. A knowledge of the � level (level of significance), 	
level (1 � power), the standard deviation, and a meaningful ‘‘practically significant’’
difference is necessary in order to calculate the sample size.

Power is defined as 1 � 	 (i.e., 	 � 1 � power). Power is the ability of a statistical
test to show significance if a specified difference truly exists. The magnitude of power
depends on the level of significance, the standard deviation, and the sample size. Thus
power and sample size are related.

In this chapter we present methods for computing the sample size for relatively simple
situations for normally distributed and binomial data. The concept and calculation of power
are also introduced.

6.1 INTRODUCTION

The question of sample size is a major consideration in the planning of experiments, but
may not be answered easily from a scientific point of view. In some situations, the choice
of sample size is limited. Sample size may be dictated by official specifications, regula-
tions, cost constraints, and/or the availability of sampling units such as patients, manufac-
tured items, animals, and so on. The USP content uniformity test is an example of a test
in which the sample size is fixed and specified [1].

The sample size is also specified in certain quality control sampling plans such as
those described in MIL-STD-105E [2]. These sampling plans are used when sampling
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products for inspection for attributes such as product defects, missing labels, specks in
tablets, or ampul leakage. The properties of these plans have been thoroughly investigated
and defined as described in the document cited above. The properties of the plans include
the chances (probability) of rejecting or accepting batches with a known proportion of
rejects in the batch (Sec. 12.3).

Sample-size determination in comparative clinical trials is a factor of major impor-
tance. Since very large experiments will detect very small, perhaps clinically insignificant,
differences as being statistically significant, and small experiments will often find large,
clinically significant differences as statistically insignificant, the choice of an appropriate
sample size is critical in the design of a clinical program to demonstrate safety and efficacy.
When cost is a major factor in implementing a clinical program, the number of patients
to be included in the studies may be limited by lack of funds. With fewer patients, a study
will be less sensitive. Decreased sensitivity means that the comparative treatments will
be relatively more difficult to distinguish statistically if they are, in fact, different.

The problem of choosing a ‘‘correct’’ sample size is related to experimental objectives
and the risk (or probability) of coming to an incorrect decision when the experiment and
analysis are completed. For simple comparative experiments, certain prior information is
required in order to compute a sample size that will satisfy the experimental objectives.
The following considerations are essential when estimating sample size.

1. The � level must be specified which, in part, determines the difference needed
to represent a statistically significant result. To review, the � level is defined as the risk
of concluding that treatments differ when, in fact, they are the same. The level of signifi-
cance is usually (but not always) set at the traditional value of 5%.

2. The 	 error must be specified for some specified treatment difference, �. Beta, 	,
is the risk (probability) of erroneously concluding that the treatments are not significantly
different when, in fact, a difference of size � or greater exists. The assessment of 	 and
�, the ‘‘practically significant’’ difference, prior to the initiation of the experiment, is not
easy. Nevertheless, an educated guess is required. 	 is often chosen to be between 5 and
20%. Hence one may be willing to accept a 20% (1 in 5) chance of not arriving at a
statistically significant difference when the treatments are truly different by an amount
equal to (or greater than) �. The consequences of committing a 	 error should be considered
carefully. If a true difference of practical significance is missed and the consequence is
costly, 	 should be made very small, perhaps as small as 1%. Costly consequences of
missing an effective treatment should be evaluated not only in monetary terms, but should
also include public health issues, such as the possible loss of an effective treatment in a
serious disease.

3. The difference to be detected, � (that difference considered to have practical
significance), should be specified as described in (2) above. This difference should not
be arbitrarily or capriciously determined, but should be considered carefully with respect
to meaningfulness from both a scientific and commercial marketing standpoint. For exam-
ple, when comparing two formulas for time to 90% dissolution, a difference of 1 or 2 min
might be considered meaningless. A difference of 10 or 20 min, however, may have
practical consequences in terms of in vivo absorption characteristics.

4. A knowledge of the standard deviation (or an estimate) for the significance test
is necessary. If no information on variability is available, an educated guess, or results of
studies reported in the literature using related compounds, may be sufficient to give an
estimate of the relevant variability. The assistance of a statistician is recommended when
estimating the standard deviation for purposes of determining sample size.
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Figure 6.1 Scheme to demonstrate calculation of sample size based on �, 	, �, and �:
� � 0.05, 	 � 0.10, � � 5, � � 7; H0: � � 0, Ha: � � 5.

To compute the sample size in a comparative experiment, (a) �, (b) 	, (c) �, and (d)
� must be specified. The computations to determine sample size are described below (see
also Fig. 6.1).

6.2 DETERMINATION OF SAMPLE SIZE FOR SIMPLE
COMPARATIVE EXPERIMENTS FOR NORMALLY DISTRIBUTED
VARIABLES

The calculation of sample size will be described with the aid of Fig. 6.1. This explanation
is based on normal distribution or t tests. The derivation of sample-size determination
may appear complex. The reader not requiring a ‘‘proof’’ can proceed directly to the
appropriate formulas below.

6.2.1 Paired-Sample and Single-Sample Tests

We will first consider the case of a paired-sample test where the null hypothesis is that
the two treatment means are equal: H0: � � 0. In the case of an experiment comparing
a new antihypertensive drug candidate and a placebo, an average difference of 5 mmHg
in blood pressure reduction might be considered of sufficient magnitude to be interpreted
as a difference of ‘‘practical significance’’ (� � 5). The standard deviation for the compar-
ison was known, equal to 7, based on a large amount of experience with this drug.

In Fig. 6.1, the normal curve labeled A represents the distribution of differences with
mean equal to 0 and � equal to 7. This is the distribution under the null hypothesis
(i.e., drug and placebo are identical). Curve B is the distribution of differences when the
alternative, Ha: � � 5,* is true (i.e., the difference between drug and placebo is equal to
5). Note that curve B is identical to curve A except that B is displaced 5 mmHg to the
right. Both curves have the same standard deviation, 7.

* � is considered to be the true mean difference, similar to �. �̄ will be used to denote the observed
mean difference.
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With the standard deviation, 7, known, the statistical test is performed at the 5% level
as follows [Eq. (5.4)]:

(6.1)Z
N N

= − ∆ = −δ
σ

δ
/ /

0

7

For a two-tailed test, if the absolute value of Z is 1.96 or greater, the difference is significant.
According to Eq. (6.1), to obtain the significance

(6.2)δ σ≥ = =Ζ
N N N

7 1 96 13 7( . ) .

Therefore, values of �̄ equal to or greater than 13.7/�N (or equal to or less than � 13.7/

�N) will lead to a declaration of significance. These points are designated as �̄L and �̄U

in Fig. 6.1, and represent the cutoff points for statistical significance at the 5% level; that
is, observed differences equal to or more remote from the mean than these values result
in ‘‘statistically significant differences.’’

If curve B is the true distribution (i.e., � � 5), an observed mean difference greater
than 13.7/�N (or less than � 13.7/�N) will result in the correct decision; H0 will be
rejected and we conclude that a difference exists. If � � 5, observations of a mean
difference between 13.7/�N and � 13.7/�N will lead to an incorrect decision, the accep-
tance of H0 (no difference) (see Fig. 6.1). By definition, the probability of making this
incorrect decision is equal to 	.

In the present example, 	 will be set at 10%. In Fig. 6.1, 	 is represented by the area
in curve B below 13.7/�N (�u), equal to 0.10. (This area, 	, represents the probability
of accepting H0 if � � 5.)

We will now compute that value of �̄ which cuts off 10% of the area in the lower
tail of the normal curve with a mean of 5 and a standard deviation of 7 (curve B in Fig.
6.1). Table IV.2 shows that 10% of the area in the standard normal curve is below
� 1.28. The value of �̄ (mean difference in blood pressure between the two groups) which
corresponds to a given value of Z (�1.28, in this example) is obtained from the formula
for the Z transformation [Eq. (3.14)] as follows:

(6.3)
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Applying Eq. (6.3) to our present example, �̄ � 5 � 1.28(7/�N). The value of �̄ in Eqs.

(6.2) and (6.3) is identically the same, equal to �̄U. This is illustrated in Fig. 6.1.
From Eq. (6.2), �̄U � 13.7/�N, satisfying the definition of �. From Eq. (6.3),

�̄U � 5 � 1.28(7)/�N, satisfying the definition of 	. We have two equations in two
unknowns (�̄U and N), and N is evaluated as follows:
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Table 6.1 Sample Size as a
Function of Beta with 
 � 5 and
� � 7: Paired Test (� � 0.05)

Beta Sample size, N

1% 36
5% 26

10% 21
20% 16

In general, Eqs. (6.2) and (6.3) can be solved for N to yield the following equation:

(6.4)N Z Z=
∆







+( )σ
α β

2
2

where Z� and Z	* are the appropriate normal deviates obtained from Table IV.2. In our
example, N � (7/5)2(1.96 � 1.28)2 � 21. A sample size of 21 will result in a statistical
test with 90% power (	 � 10%) against an alternative of 5, at the 5% level of significance.
Table 6.1 shows how the choice of 	 can affect the sample size for a test at the 5% level
with � � 5 and � � 7.

The formula for computing the sample size if the standard deviation is known [Eq.
(6.4)] is appropriate for a paired-sample test or for the test of a mean from a single
population. For example, consider a test to compare the mean drug content of a sample
of tablets to the labeled amount, 100 mg. The two-sided test is to be performed at the 5%
level. Beta is designated as 10% for a difference of �5 mg (95 mg potency or less). That
is, we wish to have a power of 90% to detect a difference from 100 mg if the true potency
is 95 mg or less. If � is equal to 3, how many tablets should be assayed? Applying Eq.
(6.4), we have

N = 





+( ) =3

5
1 96 1 28 3 8

2
2

. . .

Assaying four tablets will satisfy the � and 	 probabilities. Note that Z � 1.28 cuts off
90% of the area under curve B (the ‘‘alternative’’ curve) in Fig. 6.2, leaving 10% (	) of
the area in the upper tail of the curve. Table 6.2 shows values of Z� and Z	 for various
levels of � and 	 to be used in Eq. (6.4).

Equation (6.4) is correct for computing the sample size for a paired- or one-sample
test if the standard deviation is known.

In most situations, the standard deviation is unknown and a prior estimate of the
standard deviation is necessary in order to calculate sample size requirements. In this case,
the estimate of the standard deviation replaces � in Eq. (6.4), but the calculation results
in an answer that is slightly too small. The underestimation occurs because the values of
Z� and Z	 are smaller than the corresponding t values which should be used in the formula
when the standard deviation is unknown. The situation is somewhat complicated by the

* Z	 is taken as the positive value of Z in this formula.
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Figure 6.2 Illustration of the calculation of N for tablet assays. X̄ � 95 � �Z	/�N �
100 � �Z�/�N.

fact that the value of t depends on the sample size (d.f.), which is yet unknown. The
problem can be solved by an iterative method, but for practical purposes, one can use the
appropriate values of Z to compute the sample size [as in Eq. (6.4)] and add on a few
extra samples (patients, tablets, etc.) to compensate for the use of Z rather than t. Guenther
has shown that the simple addition of 0.5Z 2

�, which is equal to approximately 2 for a two-
sided test at the 5% level, results in a very close approximation to the correct answer [3].
In the problem illustrated above (tablet assays), if the standard deviation were unknown
but estimated as being equal to 3 based on previous experience, a better estimate of the
sample size would be N � 0.5Z 2

� � 3.8 � 0.5(1.96)2 � 6 tablets.

6.2.2 Determination of Sample Size for Comparison of Means in Two
Groups

For a two-independent-groups test (parallel design), with the standard deviation known
and equal number of observations per group, the formula for N (where N is the sample
size for each group) is

Table 6.2 Values of Z� and Z for Sample-Size Calculations

Z�

One-sided Two-sided Z
a

1% 2.32 2.58 2.32
5% 1.65 1.96 1.65

10% 1.28 1.65 1.28
20% 0.84 1.28 0.84

a The value of  is for a single specified alternative. For a two-sided test,
the probability of rejection of the alternative, if true, (accept Ha) is virtually all
contained in the tail nearest the alternative mean.



157Sample Size and Power

(6.5)N Z Z=
∆







+( )2
2
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If the standard deviation is unknown and a prior estimate is available (s.d.), substitute s.d.
for � in Eq. (6.5) and compute the sample size; but add on 0.25Z 2

� to the sample size for
each group.

Example 1: This example illustrates the determination of the sample size for a two-
independent-groups (two-sided test) design. Two variations of a tablet formulation are to
be compared with regard to dissolution time. All ingredients except for the lubricating
agent were the same in these two formulations. In this case, a decision was made that if
the formulations differed by 10 min or more to 80% dissolution, it would be extremely
important that the experiment show a statistically significant difference between the formu-
lations. Therefore, the pharmaceutical scientist decided to fix the 	 error at 1% in a
statistical test at the traditional 5% level. Data were available from dissolution tests run
during the development of formulations of the drug and the standard deviation was esti-
mated as 5 min. With the information presented above, the sample size can be determined
from Eq. (6.5). We will add on 0.25Z 2

� samples to the answer because the standard deviation
is unknown.

N = 





+( ) + =2
5

10
1 96 2 32 0 25 1 96 10 1

2
2 2. . . ( . ) .

The study was performed using 12 tablets from each formulation rather than the 10 or 11
suggested by the answer in the calculation above. Twelve tablets were used because the
dissolution apparatus could accommodate six tablets per run.

Example 2: A bioequivalence study was being planned to compare the bioavailability
of a final production batch to a previously manufactured pilot-sized batch of tablets which
were made for clinical studies. Two parameters resulting from the blood-level data would
be compared: area under the plasma level versus time curves (AUC) and peak plasma
concentration (Cmax). The study was to have 80% power (	 � 0.20) to detect a difference
of 20% or more between the formulations. The test is done at the usual 5% level of
significance. Estimates of the standard deviations of the ratios of the values of each of
the parameters [(final product)/(pilot batch)], were determined from a small pilot study.
The standard deviations were different for the parameters. Since the researchers could not
agree that one of the parameters was clearly critical in the comparison, they decided to
use a ‘‘maximum’’ number of patients based on the variable with the largest relative
variability. In this example, Cmax was most variable, the ratio having a standard deviation
of approximately 0.30. Since the design and analysis of the bioequivalence study is a
variation of the paired t test, Eq. (6.4) was used to calculate the sample size, adding on
0.5Z 2

�, as recommended previously.

(6.6)

N Z Z Z=
∆
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2
2 2

2
2
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2
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Twenty subjects were used for the comparison of the bioavailabilities of the two formula-
tions.
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Sometimes the sample sizes computed to satisfy the desired � and 	 errors can be
inordinately large when time and cost factors are taken into consideration. Under these
circumstances, a compromise must be made—most easily accomplished by relaxing the
� and 	 requirements* (see Table 6.1). The consequence of this compromise is that
probabilities of making an incorrect decision based on the statistical test will be increased.
Other ways of reducing the required sample size are (a) to increase the precision of the
test by improving the assay methodology or carefully controlling extraneous conditions
during the experiment, for example, or (b) to compromise by increasing �, that is, accepting
a larger difference which one considers to be of practical importance.

Table 6.3 gives the sample size for some representative values of the ratio �/�, �,
and 	, where the s.d. (s) is estimated.

6.3 DETERMINATION OF SAMPLE SIZE FOR BINOMIAL TESTS

The formulas for calculating the sample size for comparative binomial tests are similar
to those described for normal curve or t tests. The major difference is that the value of
�2, which is assumed to be the same under H0 and Ha in the two-sample independent-
groups t or Z tests, is different for the distributions under H0 and Ha in the binomial case.
This difference occurs because �2 is dependent on p, the probability of success, in the
binomial. The value of p will be different depending on whether H0 or Ha represents the
true situation. The appropriate formulas for determining sample size for the one- and two-
sample tests are:

One-sample test:

(6.7)N
p q p q

Z Z=
+

∆






+( )1 2 0 0 1 1
2

2
/ α β

where � � p1 � p0; p1 is the proportion that would result in a meaningful difference,
and p0 is the hypothetical proportion under the null hypothesis.

Two-sample test:

(6.8)N
p q p q

Z Z= +
∆







+( )1 1 2 2
2

2

α β

where � � p1 � p2; p1 and p2 are prior estimates of the proportions in the experimental
groups. The values of Z� and Z	 are the same as those used in the formulas for the normal
curve or t tests. N is the sample size for each group. If it is not possible to estimate p1

and p2 prior to the experiment, one can make an educated guess of a meaningful value
of � and set p1 and p2 both equal to 0.5 in the numerator of Eq. (6.8). This will maximize
the sample size, resulting in a conservative estimate of sample size.

Fleiss [5] gives a fine discussion of an approach to estimating �, the practically
significant difference, when computing the sample size. For example, one approach is
first to estimate the proportion for the more well-studied treatment group. In the case of
a comparative clinical study, this could very well be a standard treatment. Suppose this
treatment has shown a success rate of 50%. One might argue that if the comparative
treatment is additionally successful for 30% of the patients who do not respond to the

* In practice, � is often fixed by regulatory considerations and 	 is determined as a compromise.
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standard treatment, then the experimental treatment would be valuable. Therefore, the
success rate for the experimental treatment should be 50% � 0.3 (50%) � 65% to show
a practically significant difference. Thus, p1 would be equal to 0.5 and p2 would be equal
to 0.65.

Example 3: A reconciliation of quality control data over several years showed that
the proportion of unacceptable capsules for a stable encapsulation process was 0.8% (p0).
A sample size for inspection is to be determined so that if the true proportion of unaccepta-
ble capsules is equal to or greater than 1.2% (� � 0.4%), the probability of detecting
this change is 80% (	 � 0.2). The comparison is to be made at the 5% level using a one-
sided test. According to Eq. (6.7),

N = ⋅ + ⋅
−( )













+1

2

0 008 0 992 0 012 0 988

0 008 0 012
1 65 0 84

2

. . . .

. .
. .(( )

= =

2

7670

2
3835

The large sample size resulting from this calculation is typical of that resulting from
binomial data. If 3835 capsules are too many to inspect, �, 	, and/or � must be increased.
In the example above, management decided to increase �. This is a conservative decision
in that more good batches would be ‘‘rejected’’ if � is increased; that is, the increase in
� results in an increased probability of rejecting good batches, those with 0.8% unaccepta-
ble or less.

Example 4: Two antibiotics, a new product and a standard product, are to be compared
with respect to the 2-week cure rate of a urinary tract infection, where a cure is bacteriologi-
cal evidence that the organism no longer appears in urine. From previous experience the
cure rate for the standard product is estimated at 80%. From a practical point of view, if
the new product shows an 85% or better cure rate, the new product can be considered
superior. The marketing division of the pharmaceutical company felt that this difference
would support claims of better efficacy for the new product. This is an important claim.
Therefore, 	 is chosen to be 1% (power � 99%). A two-sided test will be performed at
the 5% level to satisfy FDA guidelines. The test is two-sided because, a priori, the new
product is not known to be better or worse than the standard. The calculation of sample
size to satisfy the conditions above makes use of Eq. (6.8); here p1 � 0.8 and p2 � 0.85.

N = ⋅ + ⋅
−( )
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2. . . .

. .
. .

The trial would have to include 4214 patients, 2107 on each drug, to satisfy the � and 	
risks of 0.05 and 0.01, respectively. If this number of patients is greater than can be
accommodated, the 	 error can be increased to 5 or 10%, for example. A sample size of
1499 per group is obtained for a 	 of 5%, and 1207 patients per group for 	 equal to
10%.

Although Eq. (6.8) is adequate for computing the sample size for most situations, the
calculation of N can be improved by considering the continuity correction [5]. This would
be particularly important for small sample sizes.

N N N p p' [ / ][ / ]= + + −( )4 1 1 8 2 1
2
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where N is the sample size computed from Eq. (6.8) and N′ is the corrected sample size.
In the example, for � � 0.05 and 	 � 0.01, the corrected sample size is:

N ' [ / ][ / . . ]= + + −( ) =2107 4 1 1 8 2107 0 80 0 85 21862

6.4 DETERMINATION OF SAMPLE SIZE TO OBTAIN A
CONFIDENCE INTERVAL OF SPECIFIED WIDTH

The problem of estimating the number of samples needed to estimate the mean with a
known precision by means of the confidence interval is easily solved using the formula
for the confidence interval (see Sec. 5.1). This approach has been used as an aid in predict-
ing election results based on preliminary polls where the samples are chosen by simple
random sampling. For example, one may wish to estimate the proportion of voters who
will vote for candidate A within 1% of the actual proportion.

We will consider the application of this problem to the estimation of proportions. In
quality control, one can closely estimate the true proportion of percent defects to any
given degree of precision. In a clinical study, a suitable sample size may be chosen to
estimate the true proportion of successes within certain specified limits. According to Eq.
(5.3), a two-sided confidence interval with confidence coefficient P for a proportion is

(6.3)p Z
pq

N
∧

∧ ∧

±

To obtain a 99% confidence interval with a width of 0.01 (i.e., construct an interval that
is within 	0.005 of the observed proportion, p̂ 	 0.005),

Zp �p̂ q̂
N

� 0.005

or

(6.9)
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A more exact formula for the sample size for small values of N is given in Ref. 4.
Example 5: A quality control supervisor wishes to have an estimate of the proportion

of tablets in a batch which weigh between 195 and 205 mg, where the proportion of tablets
in this interval is to be estimated within 	0.05 (W � 0.10). How many tablets should
be weighed? Use a 95% confidence interval.

To compute N, we must have an estimate of p̂ [see Eq. (6.9)]. If p̂ and q̂ are chosen
to be equal to 0.5, N will be at a maximum. Thus, if one has no inkling as to the magnitude
of the outcome, using p̂ � 0.5 in Eq. (6.9) will result in a sufficiently large sample size
(probably, too large). Otherwise, estimate p̂ and q̂ based on previous experience and
knowledge. In the present example from previous experience, approximately 80% of the
tablets are expected to weigh between 195 and 205 mg ( p̂ � 0.8). Applying Eq. (6.9),

N = =( . ) ( . )( . )

( . / )
.

1 96 0 8 0 2

0 10 2
245 9

2

2
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A total of 246 tablets should be weighed. In the actual experiment, 250 tablets were
weighed, and 195 of the tablets (78%) weighed between 195 and 205 mg. The 95%
confidence interval for the true proportion, according to Eq. (5.3), is

p
pq

N
± = ± = ±1 96 0 78 1 96

0 78 0 22

250
0 78 0 051. . .

( . )( . )
. .

ˆ ˆ

The interval is slightly greater than 	5% because p is somewhat less than 0.8 (pq is
larger for p � 0.78 than for p � 0.8). Although 5.1% is acceptable, to ensure a sufficient
sample size, in general, one should estimate p closer to 0.5 in order to cover possible poor
estimates of p.

If p̂ had been chosen equal to 0.5, we would have calculated

N = =( . ) ( . )( . )

( . / )
.

1 96 0 5 0 5

0 10 2
384 2

2

2

Example 6: A new vaccine is to undergo a nationwide clinical trial. An estimate is
desired of the proportion of the population that would be afflicted with the disease after
vaccination. A good guess of the expected proportion of the population diseased without
vaccination is 0.003. Pilot studies show that the incidence will be about 0.001 (0.1%) after
vaccination. What size sample is needed so that the width of a 99% confidence interval
for the proportion diseased in the vaccinated population should be no greater than 0.0002?
To ensure that the sample size is sufficiently large, the value of p to be used in Eq. (6.9)
is chosen to be 0.0012, rather than the expected 0.0010.

N = =( . ) ( . )( . )

( . / )
,

2 58 0 9988 0 0012

0 0002 2
797 809

2

2

The trial will have to include approximately 800,000 subjects in order to yield the desired
precision.

6.5 POWER

Power is the probability that the statistical test results in rejection of H0 when a specified
alternative is true. The ‘‘stronger’’ the power, the better the chance that the null hypothesis
will be rejected (i.e., the test results in a declaration of ‘‘significance’’) when, in fact, H0

is false. The larger the power, the more sensitive is the test. Power is defined as 1 � 	.
The larger the 	 error, the weaker is the power. Remember that 	 is an error resulting
from accepting H0 when H0 is false. Therefore, 1 � 	 is the probability of rejecting H0

when H0 is false.
From an idealistic point of view, the power of a test should be calculated before an

experiment is conducted. In addition to defining the properties of the test, power is used
to help compute the sample size, as discussed above. Unfortunately, most experiments
proceed without consideration of power (or 	). This results from the difficulty of choosing
an appropriate value of 	. There is no traditional value of 	 to use, as is the case for �,
where 5% is usually used. Thus the power of the test is often computed after the experiment
has been completed.

Power is best described by diagrams such as those shown previously in this chapter
(Figs. 6.1 and 6.2). In these figures, 	 is the area of the curves represented by the alternative
hypothesis which is included in the region of acceptance defined by the null hypothesis.
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Figure 6.3 Illustration of beta or power (1 � 	).

The concept of power is also illustrated in Fig. 6.3. To illustrate the calculation of power,
we will use data presented for the test of a new antihypertensive agent (Sec. 6.2), a paired
sample test, with � � 7 and H0: � � 0. The test is performed at the 5% level of signifi-
cance. Let us suppose that the sample size is limited by cost. The sponsor of the test had
sufficient funds to pay for a study which included only 12 subjects. The design described
earlier in this chapter (Sec. 6.2) used 26 patients with 	 specified equal to 0.05 (power
� 0.95). With 12 subjects, the power will be considerably less than 0.95. The following
discussion shows how power is calculated.

The cutoff points for statistical significance (which specify the critical region) are
defined by �, N, and �. Thus the values of �̄ that will lead to a significant result for a
two-sided test are as follows:

Z
N

Z

=

= ±

δ

σ

δ σ
/

N

In our example, Z � 1.96 (� � 0.05), � � 7, and N � 12.

δ = ± = ±( . )( )
.

1 96 7

12
3 96

Values of �̄ greater than 3.96 or less than �3.96 will lead to the decision that the products
differ at the 5% level. Having defined the values of �̄ that will lead to rejection of H0,
we obtain the power for the alternative, Ha: � � 5, by computing the probability that an
average result, �̄, will be less than 3.96, if Ha is true (i.e., � � 5).

This concept is illustrated in Fig. 6.3. Curve B is the distribution with mean equal to
5 and � � 7. If curve B is the true distribution, the probability of observing a value of
�̄ below 3.96 is the probability of accepting H0 if the alternative hypothesis is true (� �
5). This is the definition of 	. This probability can be calculated using the Z transformation.

Z = − = −3 96 5

7 12
0 51

.

/
.
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Referring to Table IV.2, the area below �3.96 (Z � �0.51) for curve B is approximately
0.31. The power is 1 � 	 � 1 � 0.31 � 0.69. The use of 12 subjects results in a power
of 0.69 to ‘‘detect’’ a difference of �5 compared to the 0.95 power to detect such a
difference when 26 subjects were used. A power of 0.69 means that if the true difference
were 5 mmHg, the statistical test will result in significance with a probability of 69%;
31% of the time, such a test will result in acceptance of H0.

A power curve is a plot of the power, 1 � 	, versus alternative values of �. Power
curves can be constructed by computing 	 for several alternatives and drawing a smooth
curve through these points. For a two-sided test, the power curve is symmetrical around
the hypothetical mean, � � 0, in our example. The power is equal to � when the alternative
is equal to the hypothetical mean under H0. Thus the power is 0.05 when � � H0 (Fig.
6.4) in the power curve. The power curve for the present example is shown in Fig. 6.4.

The following conclusions may be drawn concerning the power of a test if � is kept
constant:

1. The larger the sample size, the larger the power.
2. The larger the difference to be detected (Ha), the larger the power. A large sample

size will be needed in order to have strong power to detect a small difference.
3. The larger the variability (s.d.), the weaker the power.
4. If � is increased, power is increased (	 is decreased) (see Fig. 6.3). An increase

in � (e.g., 10%) results in a smaller Z. The cutoff points are shorter, and the area
of curve B below the cutoff point is smaller.

Power is a function of N, �, �, and �.
A simple way to compute the approximate power of a test is to use the formula for

sample size [Eqs. (6.4) and (6.5), for example] and solve for Z	. In the previous example,
a single sample or a paired test, Eq. (6.4) is appropriate:

(6.4)N Z Z=
∆







+( )σ
α β

2
2

(6.10)Z N Zβ ασ
= ∆ −

Figure 6.4 Power curve for N � 12, � � 0.05, � � 7, and H0: � � 0.
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Once having calculated Z	, the probability determined directly from Table IV.2 is equal
to the power, 1 � 	. See the discussion and examples below.

In the problem discussed above, applying Eq. (6.10) with � � 5, � � 7, N � 12,
and Z� � 1.96:

Zβ = − =5

7
12 1 96 0 51. .

According to the notation used for Z (see Table 6.2), 	 is the area above Z	. Power is the
area below Z	 (power � 1 � 	). In Table IV.2, the area above Z � 0.51 is approximately
31%. The power is 1 � 	. Therefore, the power is 69%.*

If N is small and the variance is unknown, appropriate values of t should be used in
place of Z� and Z	. Alternatively, we can adjust N by subtracting 0.5Z 2

� or 0.25Z 2
� from

the actual sample size for a one- or two-sample test, respectively. The following examples
should make the calculations clearer.

Example 7: A bioavailability study has been completed in which the ratio of the AUCs
for two comparative drugs was submitted as evidence of bioequivalence. The FDA asked
for the power of the test as part of their review of the submission. The null hypothesis
for the comparison is H0: R � 1, where R is the true average ratio. The test was two-
sided with � equal to 5%. Eighteen subjects took each of the two comparative drugs in
a paired-sample design. The standard deviation was calculated from the final results of
the study, and was equal to 0.3. The power is to be determined for a difference of 20%
for the comparison. This means that if the test product is truly more than 20% greater or
smaller than the reference product, we wish to calculate the probability that the ratio will
be judged to be significantly different from 1.0. The value of � to be used in Eq. (6.10)
is 0.2.

Zβ = − =0 2 16

0 3
1 96 0 707

.

.
. .

Note that the value of N is taken as 16. This is the inverse of the procedure for determining
sample size, where 0.5Z 2

� was added to N. Here we subtract 0.5Z 2
� (approximately 2) from

N; 18 � 2 � 16. According to Table IV.2, the area corresponding to Z � 0.707 is
approximately 0.76. Therefore, the power of this test is 76%. That is, if the true difference
between the formulations is 20%, a significant difference will be found between the formu-
lations 76% of the time. This is very close to the 80% power that was recommended in
the past for bioavailability tests (where � � 0.2).

Example 8: A drug product is prepared by two different methods. The average tablet
weights of the two batches are to be compared, weighing 20 tablets from each batch. The
average weights of the two 20-tablet samples were 507 and 511 mg. The pooled standard
deviation was calculated to be 12 mg. The director of quality control wishes to be ‘‘sure’’
that if the average weights truly differ by 10 mg or more, the statistical test will show a
significant difference. when he was asked, ‘‘How sure?’’, he said 95% sure. This can be
translated into a 	 of 5% or a power of 95%. This is a two-independent-groups test.
Solving for Z	 from Eq. (6.5), we have

* The value corresponding to Z in Table IV.2 gives the power directly. In this example, the area in
the table corresponding to a Z of 0.51 is approximately 0.69.
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(6.11)

Z
N

Zβ ασ
= ∆ −

= − =

2

10

12

19

2
1 96 0 609. .

As discussed above, the value of N is taken as 19 rather than 20, by subtracting 0.25Z 2
�

from N for the two-sample case. Referring to Table IV.2, we note that the power is
approximately 73%. The experiment does not have sufficient power according to the
director’s standards. To obtain the desired power, we can increase the sample size (i.e.,
weigh more tablets). (See Exercise Problem 10.)

6.6 SAMPLE SIZE AND POWER FOR MORE THAN TWO
TREATMENTS (SEE CHAPTER 8)

The problem of computing power or sample size for an experiment with more than two
treatments is somewhat more complicated than the relatively simple case of designs with
two treatments. The power will depend on the number of treatments and the form of
the null and alternative hypotheses. Dixon and Massey [4] present a simple approach to
determining power and sample size. The following notation will be used in presenting the
solution to this problem.

Let M1, M2, M3 … Mk be the hypothetical population means of the k treatments. The
null hypothesis is M1 � M2 � M3 � Mk. As for the two sample cases, we must specify
the alternative values of Mi. The alternative means are expressed as a grand mean, Mt 	
some deviation, Di, where �(Di) � 0. For example, if three treatments are compared for
pain, Active A, Active B, and Placebo (P), the values for the alternative hypothesized
means, based on a VAS scale for pain relief, could be 75 � 10 (85), 75 � 10 (85), and
75 � 20 (55) for the two actives and placebo, respectively. The sum of the deviations
from the grand mean, 75, is 10 � 10 � 20 � 0. The power is computed based on the
following equation:

(6.12)ψ2 2 2= −( )



∑ M M k S ni t / [ / )

n is the number of observations in each treatment group (n is the same for each treatment)
and S2 is the common variance. The value of �2 is referred to Table 6.4 to estimate the
required sample size.

Consider the following example of three treatments in a study measuring the analgesic
properties of two actives and a placebo as described above. Fifteen subjects are in each
treatment group and the variance is 1000. According to Eq. (6.12),

ψ2 2 2 285 75 85 75 55 75 3 1000 15 3 0= − + − + − =[{( ) ( ) ( ) }/ ]/[ / ] .

Table 6.4 gives the approximate power for various values of �, at the 5% level, as
a function of the number of treatment groups and the d.f. for error for 3 and 4 treatments.
(More detailed tables, in addition to graphs, are given in Dixon and Massey [4].) Here,
we have 42 d.f. and three treatments with � � �3 � 1.73. The power is approximately
0.72 by simple linear interpolation (42 d.f. for � � 1.7). The correct answer with more
extensive tables is closer to 0.73.
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Table 6.4 Factors for Computing Power
for Analysis of Variance

alpha � 0.05 k � 3

d.f. error � Power

10 1.6 0.42
2.0 0.76
2.4 0.80
3.0 0.984

20 1.6 0.62
1.92 0.80
2.00 0.83
3.0 �0.99

30 1.6 0.65
1.9 0.80
2.0 0.85
3.0 �0.99

60 1.6 0.67
1.82 0.80
2.0 0.86
3.0 �0.99

inf 1.6 0.70
1.8 0.80
2.0 0.88
3.0 �0.99

alpha � 0.05 k � 4

d.f. error � Power

10 1.4 0.48
2.0 0.80
2.6 0.96

20 1.4 0.56
2.0 0.88
2.6 986

30 1.4 0.59
2.0 0.90
2.6 �0.99

60 1.4 0.61
2.0 0.92
2.6 �0.99

inf 1.4 0.65
2.0 0.94
2.6 �0.99
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Table 6.4 can also be used to determine sample size. For example, how many patients
per treatment group are needed to obtain a power of 0.80 in the above example? Applying
Eq. (6.12),

[{( ) ( ) ( ) }/ ] /[ / ]85 75 85 75 55 75 3 10002 2 2 2− + − + − =n ψ

Solve for �2

ψ2 0 2= . n

We can calculate n by trial and error. For example, with N � 20,

0 2 4 22. N = = =ψ ψand

For � � 2 and N � 20 (d.f. � 57), the power is approximately 0.86 (for d.f. �
60, power 0.86). For N � 15 (d.f. � 42, � � �3), we have calculated (above) that the
power is approximately 0.72. A sample size of between 15 and 20 patients per treatment
group would give a power of 0.80. In this example, we might guess that 17 patients per
group would result in approximately 80% power. Indeed, more exact tables show that a
sample size of 17 (� � �(0.2 � 17) � 1.85) corresponds to a power of 0.79.

The same approach can be used for two-way designs, using the appropriate error term
from the analysis of variance.

6.7 SAMPLE SIZE FOR BIOEQUIVALENCE STUDIES
(SEE CHAPTER 11)

In its early evolution, bioequivalence was based on the acceptance or rejection of a hypothe-
sis test. Sample sizes could then be determined by conventional techniques as described
in Section 6.2. Because of inconsistencies in the decision process based on this approach,
the criteria for acceptance was changed to a two-sided 90% confidence interval, or equiva-
lently, two one-sided t tests, where the hypotheses are (�1/�2) � 0.8 and (�1/�2) 
 1.25
vs the alternative of 0.8 � (�1/�2) � 1.25. This test is based on the antilog of the differ-
ence between the averages of the log-transformed parameters (the geometric mean).
This test is equivalent to a two-sided 90% confidence interval for the ratio of means
falling in the interval 0.80 to 1.25 in order to accept the hypothesis of equivalence.
Again, for the currently accepted log-transformed data, the 90% confidence interval
for the antilog of the difference between means must lie between 0.80 and 1.25, i.e.,
0.8 � antilog (�1/�2) � 1.25. The sample size determination in this case is not as sim-
ple as the conventional determination of sample size described earlier in this chapter. The
method for sample size determination for non-transformed data has been published by
Phillips [6] along with plots of power as a function of sample size, relative standard
deviation (computed from the ANOVA) and treatment differences. Although the theory
behind this computation is beyond the scope of this book, Chow and Liu [7] give a simple
way of approximating the power and sample size. The sample size for each sequence
group is approximately:

(6.13)n = (1.69 + 0.85)2[0.20/(0.20 − 0.10)]2 = 25.8

where
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n � no. of subjects per sequence
t � the appropriate value from the t distribution

� � the significance level (usually 0.10)
1 � 	 � the power (usually 0.8)

CV � coefficient of variation
V � bioequivalence limit
� � difference between products

One would have to have an approximation of the magnitude of the required sample
size in order to approximate the t values. For example, suppose that RSD � 0.20, � �

Table 6.5 Sample Sizes for Given CV Power and Ratio (T/R) for Log-Transformed
Parameters*

CV Power ��/�x

(%) (%) 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

5.0 70 10 6 4 4 4 4 6 16
7.5 16 6 6 4 6 6 10 34

10.0 28 10 6 6 6 8 16 58
12.5 42 14 8 8 8 12 24 90
15.0 60 18 10 10 10 16 32 128
17.5 80 22 12 12 12 20 44 172
20.0 102 30 16 14 16 26 56 224
22.5 128 36 20 16 20 30 70 282
25.0 158 44 24 20 22 38 84 344
27.5 190 52 28 24 26 44 102 414
30.0 224 60 32 28 32 52 120 490
3.0 80 12 6 4 4 4 6 8 22
7.5 22 8 6 6 6 8 12 44

10.0 36 12 8 6 8 10 20 76
12.5 54 16 10 8 10 14 30 118
15.0 78 22 12 10 12 20 42 168
17.5 104 30 16 14 16 26 56 226
20.0 134 38 20 16 18 32 72 294
22.5 168 46 24 20 24 40 90 368
25.0 206 56 28 24 28 48 110 452
27.5 248 68 34 28 34 58 132 544
30.0 292 80 40 32 38 68 156 642
5.0 90 14 6 4 4 4 6 8 28
7.5 28 10 6 6 6 8 16 60

10.0 48 14 8 8 8 14 26 104
12.5 74 22 12 10 12 18 40 162
15.0 106 30 16 12 16 26 58 232
17.5 142 40 20 16 20 34 76 312
20.0 186 50 26 20 24 44 100 406
22.5 232 64 32 24 30 54 124 510
25.0 284 78 38 28 36 66 152 626
27.5 342 92 44 34 44 78 182 752
30.0 404 108 52 40 52 92 214 888

* From ref. [8].
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0.10, power is 0.8, and an initial approximation of the sample size is 20 per sequence (a
total of 40 subjects). Applying Eq. (6.13):

n = (1.69 + 0.85)2[0.20/(0.20 − 0.10)]2 = 25.8

Use a total of 52 subjects. This agrees closely with Phillip’s more exact computations.
Diletti, et al. [8], have published a method for determining sample size based on the log
transformed variables, which is the currently preferred method. Table 6.5 showing sample
sizes for various values of CV, power and product differences is taken from their publica-
tion.

Based on these tables, using log-transformed estimates of the parameters would result
in a sample size estimate of 38 for a power of 0.8, ratio of 0.9 and CV � 0.20. If the
assumed ratio is 1.1, the sample size is estimated as 32.

Equation (6.13) can also be used to approximate these sample sizes using log values
for V and �: n � (1.69 � 0.85)2[0.20/(0.223 � 0.105)]2 � 19 per sequence or 38 subjects
in total, where 0.223 is the log of 1.25 and 0.105 is the absolute value of the log of 0.9.

For � � 1.10 (log � 0.0953), the sample size is: n � (1.69 � 0.85)2[0.20/ (0.223
� 0.0953)]2 � 16 per sequence or 32 subjects in total.

If the difference between products is specified as zero (ratio � 1.0), the value for
t	,2n�2 in Eq. (6.3) should be two-sided (see Table 6.2). For example, for 80% power
(and a large sample size) use 1.28 rather than 0.84. In the example above with a ratio of
1.0 (0 difference between products), a power of 0.8, and a CV � 0.2, use a value of
(approximately) 1.34 for t	, 2n�2.

n � (1.75 � 1.34)2 [0.2/0.223]2 � 7.7 per group or 16 total subjects

This approach to sample size determination can also be used for studies where the
outcome is dichotomous, often used as the criterion in clinical studies of bioequivalence
(cured or not cured) for topically unabsorbed products or unabsorbed oral products such
as sucralfate. This topic is presented in Chapter 11, section 11.4.8.

KEY TERMS

Alpha level Power curve
Attribute ‘‘Practical’’ significance
Beta error Sample size
Confidence interval Sampling plan
Delta Sensitivity
Power Z transformation

EXERCISES

1. Two diets are to be compared with regard to weight gain of weanling rats. If the
weight gain due to the diets differs by 10 g or more, we would like to be 80% sure
that we obtain a significant result. How many rats should be in each group if the
s.d. is estimated to be 5 and the test is performed at the 5% level?

2. How many rats per group would you use if the standard deviation were known to
be equal to 5 in Problem 1?
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3. In Example 3 where two antibiotics are being compared, how many patients would
be needed for a study with � � 0.05, 	 � 0.10, using a parallel design, and assuming
that the new product must have a cure rate of 90% to be acceptable as a better
product than the standard? (Cure rate for standard � 80%).

4. It is hypothesized that the difference between two drugs with regard to success rate
is 0 (i.e., the drugs are not different). What size sample is needed to show a difference
of 20% significant at the 5% level with a 	 error of 10%? (Assume that the response
rate is about 50% for both drugs, a conservative estimate.) The study is a two-
independent-samples design (parallel groups).

5. How many observations would be needed to estimate a response rate of about 50%
within 	15% (95% confidence limits)? How many observations would be needed
to estimate a response rate of 20 	 15%?

6. Your boss tells you to make a new tablet formulation which should have a dissolution
time (90% dissolution) of 30 min. The previous formulation took 40 min to 90%
dissolution. She tells you that she wants an � level of 5% and that if the new
formulation really has a dissolution time of 30 min or less, she wants to be 99%
sure that the statistical comparison will show significance. (This means that the 	
error is 1%.) The s.d. is approximately 10. What size sample would you use to test
the new formulation?

7. In a clinical study comparing the effect of two drugs on blood pressure, 20 patients
were to be tested on each drug (two groups). The change in blood pressure from
baseline measurements was to be determined. The s.d., measured as the difference
among individuals’ responses, is estimated from past experience to be 5.
(a) If the statistical test is done at the 5% level, what is the power of the test against

an alternative of 3 mmHg difference between the drugs (H0: �1 � �2 or �1

� �2 � 0). This means: What is the probability that the test will show signifi-
cance if the true difference between the drugs is 3 mmHg or more (Ha: �1 �
�2 � 3)?

(b) What is the power if there are 50 people per group? � is 5%.
8. A tablet is produced with a labeled potency of 100 mg. The standard deviation is

known to be 10. What size sample should be assayed if we want to have 90% power
to detect a difference of 3 mg from the target? The test is done at the 5% level.

9. In a bioequivalence study, the ratio of AUCs are to be compared. A sample size of
12 subjects is used in a paired design. The standard deviation resulting from the
statistical test is 0.25. What is the power of this test against a 20% difference if �
is equal to 0.05?

10. How many samples would be needed to have 95% power for Example 8?
11. In a bioequivalence study, the maximum blood level is to be compared for two

drugs. This is a crossover study (paired design) where each subject takes both drugs.
Eighteen subjects entered the study with the following results. The observed differ-
ence is 10 �g/ml. The s.d. (from this experiment) is 40. A practical difference is
considered to be 15 �g/ml. What is the power of the test for a 15-�g/ml difference
for a two-sided test at the 5% level?

12. How many observations would you need to estimate a proportion within 	5% (95%
confidence interval) if the expected proportion is 10%?

13. A parallel design is used to measure the effectiveness of a new antihypertensive
drug. One group of patients receives the drug and the other group receives placebo.
A difference of 6 mmHg is considered to be of practical significance. The standard
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deviation (difference from baseline) is unknown but is estimated as 5 based on some
preliminary data. Alpha is set at 5% and 	 at 10%. How many patients should be
used in each group?

14. From Table 6.3, find the number of samples needed to determine the difference
between the dissolution of two formulations for � � 0.05, 	 � 0.10, S � 25, for
a ‘‘practical’’ difference of 25 (minutes).
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LINEAR REGRESSION AND CORRELATION

Simple linear regression analysis is a statistical technique that defines the functional rela-
tionship between two variables, X and Y, by the ‘‘best-fitting’’ straight line. A straight
line is described by the equation, Y � A � BX, where Y is the dependent variable
(ordinate), X is the independent variable (abscissa), and A and B are the Y intercept
and slope of the line, respectively (see Fig. 7.1).* Applications of regression analysis in
pharmaceutical experimentation are numerous. This procedure is commonly used:

1. To describe the relationship between variables where the functional relationship
is known to be linear, such as in Beer’s law plots, where optical density is plotted
against drug concentration

2. When the functional form of a response is unknown, but where we wish to repre-
sent a trend or rate as characterized by the slope (e.g., as may occur when follow-
ing a pharmacological response over time)

3. When we wish to describe a process by a relatively simple equation that will
relate the response, Y, to a fixed value of X, such as in stability prediction (concen-
tration of drug versus time).

In addition to the specific applications noted above, regression analysis is used to
define and characterize dose-response relationships, for fitting linear portions of pharmaco-
kinetic data, and in obtaining the best fit to linear physical-chemical relationships.

Correlation is a procedure commonly used to characterize quantitatively the relation-
ship between variables. Correlation is related to linear regression, but its application and
interpretation are different. This topic is introduced at the end of this chapter.

* The notation Y � A � BX is standard in statistics. We apologize for any confusion that may
result from the reader’s familiarity with the equivalent, Y � mX � b, used frequently in analytical
geometry.
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Figure 7.1 Straight-line plot.

7.1 INTRODUCTION

Straight lines are constructed from sets of data pairs, X and Y. Two such pairs (i.e., two
points) uniquely define a stright line. As noted previously, a straight line is defined by
the equation

(7.1)Y A BX= +

where A is the Y intercept (the value of Y when X � 0) and B is the slope (�Y/�X).
�Y/�X is (Y2 � Y1)/(X2 � X1) for any two points on the line (see Fig. 7.1). The slope
and intercept define the line; once A and B are given, the line is specified. In the elementary
example of only two points, a statistical approach to define the line is clearly unnecessary.

In general, with more than two X, y points,* a plot of y versus X will not exactly
describe a straight line, even when the relationship is known to be linear. The failure of
experimental data derived from truly linear relationships to lie exactly on a straight line
is due to errors of observation (experimental variability). Figure 7.2 shows the results of
four assays of drug samples of different, but known potency. The assay results are plotted
against the known amount of drug. If the assays are performed without error, the plot
results in a 45� line (slope � 1) which, if extended, passes through the origin; that is, the
Y intercept, A, is 0 (Fig. 7.2A). In this example, the equation of the line Y � A � BX is
Y � 0 � 1(X), or Y � X. Since there is no error in this experiment, the line passes exactly
through the four X, Y points.

Real experiments are not error free, and a plot of X, y data rarely exactly fits a straight
line, as shown in Fig. 7.2B. We will examine the problem of obtaining a line to fit data

* In the rest of this chapter, y denotes the experimentally observed point, and Y denotes the corre-
sponding point on the least squares ‘‘fitted’’ line (or the true value of Y, according to context).
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Figure 7.2 Plot of assay recovery versus known amount: theoretical and actual data.

that are not error free. In these cases, the line does not go exactly through all of the points.
A ‘‘good’’ line, however, should come ‘‘close’’ to the experimental points. When the
variability is small, a line drawn by eye will probably be very close to that constructed
more exactly by a statistical approach (Fig. 7.3A). With large variability, the ‘‘best’’ line
is not obvious. What single line would you draw to best fit the data plotted in Fig. 7.3B?
Certainly, lines drawn through any two arbitrarily selected points will not give the best
(or a unique) line to fit the totality of data.

Given N pairs of variables, X, y, we can define the best straight line describing the
relationship of X and y as that line which minimizes the sum of squares of the vertical

Figure 7.3 Fit of line with variable data.
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Figure 7.4 Lack of fit due to (A) experimental error and (B) nonlinearity.

distances of each point from the fitted line. The definition of ‘‘sum of squares of the
vertical distances of each point from the fitted line’’ (see Fig. 7.4) is written mathematically
as �(y � Y)2, where y represents the experimental points and Y represents the correspond-
ing points on the fitted line. The line constructed according to this definition is called the
least squares line. Applying techniques of calculus, the slope and intercept of the least
squares line can be calculated from the sample data as follows:

(7.2)Slope = =
− −

−
∑

∑
b

X X y y

X X

( )( )

( )2

(7.3)Intercept = = −a y bX

Remember that the slope and intercept uniquely define the line.
There is a shortcut computing formula for the slope, similar to that described previ-

ously for the standard deviation:

(7.4)b
N Xy X y

N X X
=

− ( )( )
− ( )
∑∑ ∑

∑∑ 2 2

where N is the number of X, y pairs. The calculation of the slope and intercept is relatively
simple, and can usually be quickly computed with a hand calculator. Some calculators
have a built-in program for calculating the regression parameter estimates, a and b.*

* a and b are the sample estimates of the true parameters, A and B.
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Table 7.1 Raw Data from Fig. 7.2A to Calculate the Least
Squares Line

Drug potency, X Assay, y Xy

60 60 3,600
80 80 6,400

100 100 10,000
120 120 14,400

∑ X � 360 ∑ y � 360 ∑ Xy � 34,400
∑ X2 � 34,400

For the example shown in Fig. 7.2A, the line that exactly passes through the four
data points has a slope of 1 and an intercept of 0. The line, Y � X, is clearly the best line
for these data, an exact fit. The least squares line, in this case, is exactly the same line,
Y � X. The calculation of the intercept and slope using the least squares formulas, Eqs.
(7.3) and (7.4), is illustrated below. Table 7.1 shows the raw data used to construct the
line in Fig. 7.2A.

According to Eq. (7.4) (N � 4, � X2 � 34,400, � Xy � 34,400, � X � � y �
360),

b = + + + −
−

=( )( , , ) ( )( )

( , ) ( )

4 3600 6400 10 000 14 000 360 360

4 34 400 360 2
11

a is computed from Eq. (7.3); a � ȳ � bX̄ (ȳ � X̄ � 90, b � 1). a � 90 � 1(90) �
0. This represents a situation where the assay results exactly equal the known drug potency
(i.e., there is no error).

The actual experimental data depicted in Fig. 7.2B are shown in Table 7.2. The slope
b and the intercept a are calculated from Eqs. (7.4) and (7.3). According to Eq. (7.4),

b = −
−

=( )( , ) ( )( )

( , ) ( )
.

4 33 600 360 353

4 34 400 360
0 915

2

According to Eq. (7.3),

Table 7.2 Raw Data from Fig. 7.2B Used to Calculate the Least
Squares Line

Drug potency, X Assay, y Xy

60 63 3,780
80 75 6,000

100 99 9,900
120 116 13,920

∑ X � 360 ∑ y � 353 ∑ Xy � 33,600
∑ X2 � 34,400 ∑ y2 � 32,851
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a = − =353

4
0 915 90 5 9. ( ) .

A perfect assay (no error) has a slope of 1 and an intercept of 0, as shown above. The
actual data exhibit a slope close to 1, but the intercept appears to be too far from 0 to be
attributed to random error. Exercise Problem 2 addresses the interpretation of these results
as they relate to assay method characteristics.

This example suggests several questions and problems regarding linear regression
analysis. The line that best fits the experimental data is an estimate of some true relationship
between X and Y. In most circumstances, we will fit a straight line to such data only if
we believe that the true relationship between X and Y is linear. The experimental observa-
tions will not fall exactly on a straight line because of variability (e.g., error associated
with the assay). This situation (true linearity associated with experimental error) is different
from the case where the underlying true relationship between X and Y is not linear. In the
latter case, the lack of fit of the data to the least squares line is due to a combination of
experimental error and the lack of linearity of the X, Y relationship (see Fig. 7.4). Elemen-
tary techniques of simple linear regression will not differentiate these two situations: (a)
experimental error with true linearity and (b) experimental error and nonlinearity. (A
design to estimate variability due to both nonlinearity and experimental error is given in
App. II.)

We will discuss some examples relevant to pharmaceutical research which make
use of least squares linear regression procedures. The discussion will demonstrate how
variability is estimated and used to construct estimates and tests of the line parameters A
and B.

7.2 ANALYSIS OF STANDARD CURVES IN DRUG ANALYSIS:
APPLICATION OF LINEAR REGRESSION

The assay data discussed previously can be considered as an example of the construction
of a standard curve in drug analysis. Known amounts of drug are subjected to an assay
procedure, and a plot of percentage recovered (or amount recovered) versus amount added
is constructed. Theoretically, the relationship is usually a straight line. A knowledge of
the line parameters A and B can be used to predict the amount of drug in an unknown
sample based on the assay results. In most practical situations, A and B are unknown. The
least squares estimates a and b of these parameters are used to compute drug potency (X)
based on the assay response (y). For example, the least squares line for the data in Fig.
7.2B and Table 7.2 is

(7.5)Assay result potency= +5 9 0 915. . ( )

Rearranging Eq. (7.5), an unknown sample which has an assay value of 90 can be predicted
to have a true potency of

Potency X
y

Potency

= = −

= − =

5 9

0 915
90 5 9

0 915
91 9

.

.
.

.
.

This point (91.9, 90) is indicated in Fig. 7.2 by a cross.
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Figure 7.5 Plot of data in Table 7.2 with known (0, 0) intercept.

7.2.1 Line Through the Origin

Many calibration curves (lines) are known to pass through the origin; that is, the assay
response must be zero if the concentration of drug is zero. The calculation of the slope
is simplified if the line is forced to go through the point (0,0). In our example, if the
intercept is known to be zero, the slope is (see also Table 7.2)

(7.6)

b
Xy

X
=

=
+ + +

=

∑
∑ 2

2 2 2 2

33 600

60 80 100 120
0 977

,
.

The least squares line fitted with the zero intercept is shown in Fig. 7.5. If this line were
to be used to predict actual concentrations based on assay results, we would obtain answers
which are different from those predicted from the line drawn in Fig. 7.2B. However, both
lines have been constructed from the same raw data. ‘‘Is one of the lines correct?’’ or ‘‘Is
one line better than the other?’’ Although one cannot say with certainty which is the better
line, a thorough knowledge of the analytical method will be important in making a choice.
For example, a nonzero intercept suggests either nonlinearity over the range of assays or
the presence of an interfering substance in the sample being analyzed. The decision of
which line to use can also be made on a statistical basis. A statistical test of the intercept
can be performed under the null hypothesis that the intercept is 0 (H0: A � 0, Sec.
7.4.1). Rejection of the hypothesis would be strong evidence that the line with the positive
intercept best represents the data.

7.3 ASSUMPTIONS IN TESTS OF HYPOTHESES IN LINEAR
REGRESSION

Although there are no prerequisites for fitting a least squares line, the testing of statistical
hypotheses in linear regression depends on the validity of several assumptions.
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1. The X variable is measured without error. Although not always exactly true, X
is often measured with relatively little error and, under these conditions this
assumption can be considered to be satisfied. In the present example, X is the
potency of drug in the ‘‘known’’ sample. If the drug is weighed on a sensitive
balance, the error in drug potency will be very small. Another example of an X
variable that is often used, which can be precisely and accurately measured, is
‘‘time.’’

2. For each X, y is independent and normally distributed. We will often use the
notation Y.x to show that the value of Y is a function of X.

3. The variance of y is assumed to be the same at each X. If the variance of y is
not constant, but is either known or related to X in some way, other methods [see
Sec. 7.7] are available to estimate the intercept and slope of the line [1].

4. A linear relationship exists between X and Y. Y � A � BX, where A and B are
the true parameters. Based on theory or experience, we have reason to believe
that X and Y are linearly related.

These assumptions are depicted in Fig. 7.6. Except for location (mean), the distribution
of y is the same at every value of X; that is, y has the same variance at every value of X.
In the example in Fig. 7.6, the mean of the distribution of y’s decreases as X increases
(the slope is negative).

Figure 7.6 Normality and variance assumptions in linear regression.
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Figure 7.7 Variance calculation from least squares line.

7.4 ESTIMATE OF THE VARIANCE: VARIANCE OF SAMPLE
ESTIMATES OF THE PARAMETERS

If the assumptions noted in Sec. 7.3 hold, the distributions of sample estimates of the
slope and intercept, b and a, are normal with means equal to B and A, respectively.*
Because of this important result, statistical tests of the parameters A and B can be performed
using normal distribution theory. Also, one can show that the sample estimates are unbiased
estimates of the true parameters (similar to the sample average, X̄, being an unbiased
estimate of the true mean, �). The variances of the estimates, a and b, are calculated as
follows:

(7.7)σ σa Y x N

X

X X
2 2

2

2

1= +
−











∑. ( )

(7.8)σ
σ

b
Y x

X X
2

2

2
=

−∑
.

( )

� 2
Y,x is the variance of the response variable, y. An estimate of � 2

Y,x can be obtained from
the closeness of the data to the least squares line. If the experimental points are far from
the least squares line, the estimated variability is larger than that in the case where the
experimental points are close to the least squares line. This concept is illustrated in Fig.
7.7. If the data exactly fit a straight line, the experiment shows no variability. In real
experiments the chance of an exact fit with more than two X, y pairs is very small. An
unbiased estimate of � 2

Y,x is obtained from the sum of squares of deviations of the observed
points from the fitted line as follows:

(7.9)S
y Y

N

y y b X X

NY x.

( ) ( ) ( )
2

2 2 2 2

2 2
=

−
−

=
− − − 

−
∑ ∑ ∑

* a and b are calculated as linear combinations of the normally distributed response variable, y, and
thus can be shown to be also normally distributed.
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where y is the observed value and Y is the predicted value of Y from the least squares line
(Y � a � bX) (see Fig. 7.7). The variance estimate, S 2

Y,x, has N � 2 rather than (N �
1) d.f. because two parameters are being estimated from the data (i.e., the slope and
intercept).

When � 2
Y,x is unknown, the variances of a and b can be estimated, substituting S 2

Y,x

for � 2
Y,x in the formulas for the variances [Eqs. (7.7) and (7.8)]. Equations (7.10) and

(7.11) are used as the variance estimates, S 2
a and S 2

b, when testing hypotheses concerning
the parameters A and B. This procedure is analogous to using the sample estimate of the
variance in the t test to compare sample means.

(7.10)S S
1

N

X

X Xa Y x
2 2

2

2
= +

−











∑. ( )

×

(7.11)S
S

X Xb
Y x2
2

2
=

−∑
.

( )

7.4.1 Test of the Intercept, A

The background and formulas introduced previously are prerequisites for the construction
of tests of hypotheses of the regression parameters A and B. We can now address the
question of the ‘‘significance’’ of the Y intercept (a) for the line shown in Fig. 7.2B and
Table 7.2. The procedure is analogous to that of testing means with the t test. In this
example, the null hypothesis is H0: A � 0. The alternative hypothesis is Ha: A � 0. Here
the test is two-sided; a priori, if the intercept is not equal to 0, it could be either positive
or negative. A t test is performed as shown in Eq. (7.12). S 2

Y,x and S 2
a are calculated from

Eqs. (7.9) and (7.10), respectively.

(7.12)t t
Sa

d.f. 2

a
= =

−
2

α

where td.f. is the t statistic with N � 2 degrees of freedom, a is the observed value of the
intercept, and � is the hypothetical value of the intercept. From Eq. (7.10)
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From Eq. (7.9)

S

S

Y x

a
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 = 52 245.

From Eq. (7.12)

t2

5 9 0

52 245
0 82=

−
=

.

.
.

Note that this t test has two (N – 2) degrees of freedom. This is a weak test, and a large
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intercept must be observed to obtain statistical significance. To define the intercept more
precisely, it would be necessary to perform a larger number of assays. If there is no reason
to suspect a non-linear relationship between X and Y, a nonzero intercept, in this example,
could be interpreted as being due to some interfering substance(s) in the product (the
‘‘blank’’). If the presence of a nonzero intercept is suspected, one would probably want
to run a sufficient number of assays to establish its presence. A precise estimate of the
intercept is necessary if this linear calibration curve is used to evaluate potency.

7.4.2 Test of the Slope, B

The test of the slope of the least squares line is usually of more interest than the test of
the intercept. Sometimes, we may only wish to be assured that the fitted line has a slope
other than zero. (A horizontal line has a slope of zero.) In our example, there seems to
be little doubt that the slope is greater than zero (Fig. 7.2B). However, the magnitude of
this slope has a special physical meaning. A slope of 1 indicates that the amount recovered
(assay) is equal to the amount in the sample, after correction for the blank (i.e., subtract
the Y intercept from the observed reading of y). An observation of a slope other than 1
indicates that the amount recovered is some constant percentage of the sample potency.
Thus we may be interested in a test of the slope versus 1.

H B H Ba0 1 1: := ≠

A t test is performed using the estimated variance of the slope, as follows:

(7.13)t
b B

Sb

= −
2

In the present example, from Eq. (7.11),

(7.11)
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Applying Eq. (7.13), for a two-sided test, we have

t =
−

=
0 915 1

0 006075
1 09

.

.
.

This t test has two (N – 2) degree of freedom (the variance estimate has 2 d.f.). There is
insufficient evidence to indicate that the slope is significantly different from 1 at the 5%
level. Table IV.4 shows that a t of 4.30 is needed for significance at � � 0.05 and d.f.
� 2. The test in this example has very weak power. A slope very different from 1 would
be necessary to obtain statistical significance. This example again emphasizes the weakness
of the statement ‘‘nonsignificant,’’ particularly in small experiments such as this one. The
reader interested in learning more details of the use and interpretation of regression in
analytical methodology is encouraged to read Chap. 5 in Ref. 2.

7.5 A DRUG STABILITY STUDY: A SECOND EXAMPLE OF THE
APPLICATION OF LINEAR REGRESSION

The measurement of the rate of drug decomposition is an important problem in drug
formulation studies. Because of the significance of establishing an expiration date defining
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the shelf life of a pharmaceutical product, stability data are routinely subjected to statistical
analysis. Typically, the drug, alone and/or formulated, is stored under varying conditions
of temperature, humidity, light intensity, and so on, and assayed for intact drug at specified
time intervals. The pharmaceutical scientist is assigned the responsibility of recommending
the expiration date based on scientifically derived stability data. The physical conditions
of the stability test (e.g., temperature, humidity), the duration of testing, assay schedules,
as well as the number of lots, bottles, and tablets that should be sampled must be defined for
stability studies. Careful definition and implementation of these conditions are important
because the validity and precision of the final recommended expiration date depends on
how the experiment is conducted. Drug stability is discussed further in Chapter 8, Section
8.7.

The rate of decomposition can often be determined from plots of potency (or log
potency) versus storage time, where the relationship of potency and time is either known
or assumed to be linear. The current good manufacturing practices (CGMP) regulations
(3) state that statistical criteria, including sample size and test (i.e., observation or measure-
ment) intervals for each attribute examined, be used to assure statistically valid estimates
of stability (211.166). The expiration date should be ‘‘statistically valid’’ (211.137, 201.17,
211.62).

The mechanics of determining shelf life may be quite complex, particularly if extreme
conditions are used, such as those recommended for ‘‘accelerated’’ stability studies (e.g.,
high-temperature and high-humidity conditions). In these circumstances, the statistical
techniques used to make predictions of shelf life at ambient conditions are quite advanced
and beyond the scope of this book (4). Although extreme conditions are commonly used
in stability testing in order to save time and obtain a tentative expiration date, all products
must eventually be tested for stability under the recommended commercial storage condi-
tions. The FDA has suggested that at least three batches of product be tested to determine
an expiration date. One should understand that different batches may show somewhat
different stability characteristics, particularly in situations where additives affect stability
to a significant extent. In these cases variation in the quality and quantity of the additives
(excipients) between batches could affect stability. One of the purposes of using several
batches for stability testing is to ensure that stability characteristics are similar from batch
to batch.

The time intervals chosen for the assay of storage samples will depend to a great
extent on the product characteristics and the anticipated stability. A ‘‘statistically’’ optimal
design for a stability study would take into account the planned ‘‘storage’’ times when
the drug product will be assayed. This problem has been addressed in the pharmaceutical
literature (5). However, the designs resulting from such considerations are usually cumber-
some or impractical. For example, from a statistical point of view, the slope of the potency
versus time plot (the rate of decomposition) is obtained most precisely if half of the total
assay points are performed at time 0, and the other half at the final testing time. Note that
� (X – X̄)2, the denominator of the expression defining the variance of a slope [Eq. (7.8)],
is maximized under this condition, resulting in a minimum variability of the slope. This
‘‘optimal’’ approach to designating assay sampling times is based on the assumption that
the plot is linear during the time interval of the test. In a practical situation, one would
want to see data at points between the initial and final assay in order to assess the magnitude
of the decomposition as the stability study proceeds, as well as to verify the linearity of
the decomposition. Also, management and regulatory requirements are better satisfied
with multiple points during the course of the study. A reasonable schedule of assays at
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ambient conditions is 0, 3, 6, 9, 12, 18, and 24 months and at yearly intervals thereafter
(6).

The example of the data analysis which will be presented here will be for a single
batch. If the stability of different batches is not different, the techniques described here
may be applied to data from more than one batch. A statistician should be consulted for
the analysis of multibatch data which will require analysis of variance techniques [6,7].
The general approach is described in Chapter 8, Section 8.7.

Typically, stability or shelf life is determined from data from the first three production
batches for each packaging configuration (container type and product strength). (See Sec-
tion 8.7). Because such testing may be onerous for multiple strengths and multiple packag-
ing of the same drug product, matrixing and bracketing techniques have been suggested
to minimize the number of tests needed to demonstrate suitable drug stability (13).

Assays are recommended to be performed at time 0 and 3, 6, 9, 12, 18 and 24 months,
with subsequent assays at 12-month intervals as needed. Usually, three batches of a given
strength and package configuration are tested to define the shelf life. Because many prod-
ucts have multiple strengths and package configurations, the concept of a ‘‘Matrix’’ design
has been introduced to reduce the considerable amount of testing required. In this situation,
a subset of all combinations of product strength, container type and size, etc. is tested at
a given time point. Another subset is tested at a subsequent time point. The design should
be balanced ‘‘such that each combinations of factors is tested to the same extent’’ All
factor combinations should be tested at time 0 and at the last time point of the study. The
simplest such design, called a ‘‘Basic Matrix 2/3 on Time Design,’’ has two of the three
batches tested at each time point, with all three batches tested at time 0 and at the final
testing time, the time equal to the desired shelf life. Table 7.3 shows this design for a 36-
month product. Tables show designs for multiple packages (made from the same blend
or batch) and for multiple packages and strengths. These designs are constructed to be
symmetrical in the spirit of optimality for such designs. For example, this is illustrated in
Table 7.3, looking only at the ‘‘5’’ strength for Package 1. Table 7.3 shows this design
for a 36-month product with multiple packages and strengths (made from the same blend).
These designs are constructed to be symmetrical in the spirit of optimality for such designs.
For example, in Table 7.3, each batch is tested twice, each package from each batch is
tested twice, and each package is tested 6 times at all time points between 0 and 36 months.

Table 7.3 Matrix Design for Three Packages and Three Strengths

Package 1 Package 2 Package 3

Batch strength 3 6 9 12 18 24 36 3 6 9 12 18 24 36 3 6 9 12 18 24 36

1 5 x x x x x x x x x x x x x x x
1 10 x x x x x x x x x x x x x x x
1 15 x x x x x x x x x x x x x x x
2 5 x x x x x x x x x x x x x x x
2 10 x x x x x x x x x x x x x x x
2 15 x x x x x x x x x x x x x x x
3 5 x x x x x x x x x x x x x x x
3 10 x x x x x x x x x x x x x x x
3 15 x x x x x x x x x x x x x x x
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With multiple strengths and packages, other similar designs with less testing have
been described (14).

Another example with three batches and two strengths follows (Table 7.3A).

Table 7.3A Matrix Design for Three Batches and Two Strengths

Time points for testing
(months) 0 3 6 9 12 18 24 36

S Batch 1 T T T T T T
T S1 Batch 2 T T T T T T
R Batch 3 T T T T T
E
N Batch 1 T T T T T
G S2 Batch 2 T T T T T T
T Batch 3 T T T T T
H

The risks of applying such desings are outlined in the Guidance (13). Because of the
limited testing, there is a risk of less precision and shorter dating. If pooling is not allowed,
individual lots will may have short dating, and combinations not tested in the matrix will
not have dating estimates. Read the guidance for further details. The FDA guidance gives
examples of other designs.

The analysis of these designs can be complicated. The simplest approach is to analyze
each strength and configuration separately, as one would do if there were a single strength
and package. Another approach is to model all configurations including interactions. The
assumptions, strengths and limitations of these designs and analyses are explained in more
detail in Reference 14.

A Bracketing design (15) is a design of a stability program such that at any point in
time only extreme samples are tested, such as extremes in container size and dosage. This
is particularly amenable to products that have similar composition across dosage strengths
and that intermediate size and strength products are represented by the extremes (15). (See
also FDA Guideline on Stability for further discussion as to when this is applicable.)

Suppose that we have a product in three strengths and three package sizes. Table 7.4
is an example of a Bracketing design (15).

The testing designated by T should be the full testing as would be required for a
single batch. Note that full testing would require nine combinations, or 27 batches. The
matrix design uses four combinations, or 12 batches.

Table 7.4 Example of Bracketing Design

Strength Low Medium High

Batch 1 2 3 4 5 6 7 8 9
Container Small T T T T T T

Medium
Large T T T T T T
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Table 7.5 Tablet Assays from the Stability Study

Time, X (months) Assay,a y (mg) Average

0 51, 51, 53 51.7
3 51, 50, 52 51.0
6 50, 52, 48 50.0
9 49, 51, 51 50.3

12 49, 48, 47 48.0
18 47, 45, 49 47.0

a Each assay represents a different tablet.

Consider an example of a tablet formulation which is the subject of a stability study.
Three randomly chosen tablets are assayed at each of six time periods: 0, 3, 6, 9, 12, and
18 months after production, at ambient storage conditions. The data are shown in Table
7.5 and Fig. 7.8.

Given these data, the problem is to establish an expiration date defined as that time
when a tablet contains 90% of the labeled drug potency. The product in this example has
a label of 50 mg potency and is prepared with a 4% overage (i.e., the product is manufac-
tured with a target weight of 52 mg of drug).

Figure 7.8 shows that the data are variable. A careful examination of this plot suggests
that a straight line would be a reasonable representation of these data. The application of
least squares line fitting is best justified in situations where a theoretical model exists
showing that the decrease in concentration is linear with time (a zero-order process in this
example). The kinetics of drug loss in solid dosage forms is complex and a theoretical
model is not easily derived. In the present case, we will assume that concentration and
time are truly linearly related:

(7.14)C C Kt= −0

where

Figure 7.8 Plot of stability data from Table 7.3.
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C � concentration at time t
Co � concentration at time 0 (Y intercept, A)
K � rate constant (�slope, �B)
t � time (storage time)

With the objective of estimating the shelf life, the simplest approach to the analysis of
these data is to estimate the slope and intercept of the least squares line, using Eqs. (7.4)
and (7.3). (An interesting exercise would be to first try and estimate the slope and intercept
by eye from Fig. 7.8.) When performing the least squares calculation, note that each value
of the time (X) is associated with three values of drug potency (y). When calculating C0

and K, each ‘‘time’’ value is counted three times and N is equal to 18. From Table 7.3,

X y Xy

X y N

X X X y

= = =

= = =

= − =

∑ ∑ ∑
∑ ∑

∑

144 894 6984

1782 44 476 18

8 630

2 2

2

,

( ) ( −− =∑ y )2 74

From Eqs. (7.4) and (7.3), we have

(7.4)

b
N Xy X y

N X X
=

−

− ( )
= −

−
= −

∑ ∑∑
∑∑ 2 2

2

18 6984 144 894

18 1782 144

30( ) ( )

( ) ( )

224

11 340
0 267

,
.= − mg/month

(7.3)

a y bX= −

= − − =894

18
0 267

144

18
51 80( . ) .

The equation of the straight line best fitting the data in Fig. 7.8 is

(7.15)C t= −51 8 0 267. .

The variance estimate, S 2
Y,x, represents the variability of tablet potency at a fixed time,

and is calculated from Eq. (7.9):

S
y y N b (X X

NY x.

/ )

, ( ) / ( . ) (

2

2 2 2 2

2 2

2

44 476 894 18 0 267 6

=
− ( ) − −

−

= − − −

∑ ∑∑

330

18 2
1 825

)
.

−
=

To calculate the time at which the tablet potency is 90% of the labeled amount, 45 mg,
solve Eq. (7.15) for t when C equals 45 mg.

45 51 80 0 267

25 5

= −
=

. .

.

t

t month

The best estimate of the time needed for these tablets to retain 45 mg of drug is 25.5
months (see the point marked with a cross in Fig. 7.9). This is an average result based
on the data from 18 tablets. For any single tablet, the time for decomposition to 90% of
the labeled amount will vary, depending, for example, on the amount of drug present at
time zero. Nevertheless, the shelf-life estimate is based on the average result.
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Figure 7.9 95% confidence band for ‘‘stability’’ line.

7.6 CONFIDENCE INTERVALS IN REGRESSION ANALYSIS

A more detailed analysis of the stability data is warranted if one understands that 25.5
months is not the true shelf life, but only an estimate of the true value. A confidence
interval for the estimate of time to 45 mg potency would give a range that probably
includes the true value. The concept of a confidence interval in regression is similar to
that previously discussed for means. Thus the interval for the shelf life probably contains
the true shelf life—that time when the tablets retain 90% of their labeled potency, on the
average. The lower end of this confidence interval would be considered a conservative
estimate of the true shelf life. Before giving the solution to this problem we will address
the calculation of a confidence interval for Y (potency) at a given X (time). The width of
the confidence interval for Y (potency) is not constant, but depends on the value of X,
since Y is a function of X. In the present example, one might wish to obtain a range for
the potency at 25.5 months’ storage time.

7.6.1 Confidence Interval for Y at a Given X

We will construct a confidence interval for the true mean potency (Y) at a given time (X).
The confidence interval can be shown to be equal to

(7.16)Y t S
N

X X

X XY x± + −
−∑

( )
( )

( ).

1 2

2

t is the appropriate value (N � 2 degrees of freedom, Table IV.4) for a confidence interval
with confidence coefficient P. For example, for a 95% confidence interval, use t values
in the column headed 0.975 in Table IV.4.

In the linear regression model, y is assumed to have a normal distribution with variance
� 2

Y,x at each X. As can be seen from Eq. (7.16), confidence limits for Y at a specified value
of X depend on the variance, degrees of freedom, number of data points used to fit the
line, and X � X̄ the distance of the specified X (time, in this example) from X̄, the average
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time used in the least squares line fitting. The confidence interval is smallest for the Y
that corresponds to the value of X equal to X̄, [the term, X � X̄, in Eq. (7.16) will be
zero]. As the value of X is farther from X̄, the confidence interval for Y corresponding to
the specified X is wider. Thus the estimate of Y is less precise, as the X corresponding to
Y is farther away from X̄. A plot of the confidence interval for every Y on the line results
in a continuous confidence ‘‘band’’ as shown in Fig. 7.9. The curved, hyperbolic shape
of the confidence band illustrates the varying width of the confidence interval at different
values of X, Y. For example, the 95% confidence interval for Y at X � 25.5 months [Eq.
(7.16)] is

45 2 12 1 35
1

18

25 5 8

630
45 2 1

2

± + − = ±. ( . )
( . )

.

Thus the result shows that the true value of the potency at 25.5 months is probably between
42.9 and 47.1 mg (45 	 2.1).

7.6.2 A Confidence Interval for X at a Given Value of Y

Although the interval for the potency may be of interest, as noted above, this confidence
interval does not directly answer the question about the possible variability of the shelf-
life estimate. A careful examination of the two-sided confidence band for the line (Fig.
7.9) shows that 90% potency (45 mg) may occur between approximately 20 and 40 months,
the points marked ‘‘a’’ in Fig. 7.9. To obtain this range for X (time to 90% potency),
using the approach of graphical estimation as described above requires the computation
of the confidence band for a sufficient range of X. Also, the graphical estimate is relatively
inaccurate. The confidence interval for the true X at a given Y can be directly calculated,
although the formula is more complex than that used for the Y confidence interval [Eq.
(7.16)].

This procedure of estimating X for a given value of Y is often called ‘‘inverse predic-
tion.’’ The complexity results from the fact that the solution for X, X � (Y � a)/b, is a
quotient of variables. (Y � a) and b are random variables; both have error associated with
their measurement. The ratio has a more complicated distribution than a linear combination
of variables such as is the case for Y � a � bX. The calculation of the confidence interval
for the true X at a specified value of Y is

(7.17)
( ) [ ( ) / ] ( ) / ( ) ( ).X gX t S b g N X X X X

g

Y x− ± − + − −





−

∑1

1

2 2

where

g
t S

b X X
Y x=

−∑
2 2

2 2

( )

( )
.

t is the appropriate value for a confidence interval with confidence coefficient equal to
P; for example, for a two-sided 95% confidence interval, use values of t in the column
headed 0.975 in Table IV.4.

A 95% confidence interval for X will be calculated for the time to 90% of labeled
potency. The potency is 45 mg (Y) when 10% of the labeled amount decomposes. The
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corresponding time (X) has been calculated above as 25.5 months. For a two-sided confi-
dence interval, applying Eq. (7.17), we have

g

X X N

=
−

=

= = =

( . ) ( . )

( . ) ( )
.

.

2 12 1 825

0 267 630
0 183

25 5 8 18

2

2

The confidence interval is

[ . . ( )] [ . ( . ) /( . )][ . / ( . ) /25 5 0 183 8 2 12 1 35 0 267 0 817 18 17 5 6302− ± − +
00 817

19 8
.

.= to 39.0 months

]

Thus, using a two-sided confidence interval, the true time to 90% of labeled potency
is probably between 19.8 and 39.0 months. A conservative estimate of the shelf life would
be the lower value, 19.8 months.

The Food and Drug Administration has suggested that a one-sided confidence interval
may be more appropriate than a two-sided interval to estimate the expiration date. For
most drug products, drug potency can only decrease with time, and only the lower confi-
dence band of the potency vs. time curve may be considered relevant. (An exception may
occur in the case of liquid products where evaporation of the solvent could result in an
increased potency with time.) The 95% one-sided confidence limits for the time to reach
a potency of 45 is computed using Eq. (7.17). Only the lower limit is computed using the
appropriate t value that cuts off 5% of the area in a single tail. For 16 d.f., this value is
1.75 (Table IV.4), ‘‘g’’ � 0.1244. The calculation is

[ . . ( )] [ . ( . ) /( . )][ . / ( . ) /25 5 0 1244 8 1 75 1 35 0 267 0 8756 18 17 5 62− + − + 330

0 8756
20 6

.
.=  months

The one-sided 95% interval for X can be interpreted to mean that the time to decompose
to a potency of 45 is probably greater than 20.6 months. Note that the shelf life based on
the one-sided interval is longer than that based on a two-sided interval (see Fig. 7.9).

7.6.3 Prediction Intervals

The confidence limits for Y and X discussed above are limits for the true values, having
specified a value of Y (potency or concentration, for example) corresponding to some
value of X, or an X (time, for example) corresponding to a specified value of Y. An
important application of confidence intervals in regression is to obtain confidence intervals
for actual future measurements based on the least squares line.

1. We may wish to obtain a confidence interval for a value of Y to be actually
measured at some value of X (some future time, for example).

2. In the example of the calibration (Sec. 7.2), having observed a new value, y, after
the calibration line has been established, we would want to use the information
from the fitted calibration line to predict the concentration, or potency, X, and
establish the confidence limits for the concentration at this newly observed value
of y. This is an example of inverse prediction.
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For the example of the stability study, we may wish to obtain a confidence interval
for an actual assay (y) to be performed at some given future time, after having performed
the experiment used to fit the least squares line (case 1 above).

The formulas for calculating a ‘‘prediction interval,’’ a confidence interval for a
future determination, are similar to those presented in Eqs. (7.16) and (7.17), with one
modification. In Eq. (7.16) we add 1 to the sum under the square root portion of the
expression. Similarly, for the inverse problem, Eq. (7.17) the expression (1 � g)/N is
replaced by (N � 1)(1 � g)/N. Thus the prediction interval for Y at a given X is

(7.18)Y t S
N

X X

X XY x± + + −
−∑

( )
( )

( ). 1
1 2

2

The prediction interval for X at a specified Y is

(7.19)
( ) [ ( ) / ] ( )( ) / ( ) ( )X gX t S b N g N X X X X

g

− ± + − + − −





−

∑1 1

1

2 2

The following examples should clarify the computations. In the stability study example,
suppose that one wishes to construct a 95% confidence (prediction) interval for an assay
to be performed at 25.5 months. (An actual measurement is obtained at 25.5 months.)
This interval will be larger than that calculated based on Eq. (7.16), because the uncertainty
now includes assay variability for the proposed assay in addition to the uncertainty of the
least squares line. Applying Eq. (7.18) (Y � 45), we have

45 2 12 1 35 1
1

18

17 5

630
45 3 55

2

± + + = ±. ( . )
.

. mg

In the example of the calibration line, consider an unknown sample which is analyzed
and shows a value (y) of 90. A prediction interval for X is calculated using Eq. (7.19). X
is predicted to be 91.9 (see Sec. 7.2).

g =

− ±

( . ) ( . )

( . ) ( )

[ . . ( )] ( . )( . )

4 30 12 15

0 915 2000

91 9 0 134 90 4 3 3 49

2

2

// . [ ( . ) / ( . ) / ]

.
.

0 915 5 0 866 4 1 9 2000

0 866
72 5

2+

= to 111.9

= 0.134

The relatively large uncertainty of the estimate of the true value is due to the small number
of data points (four) and the relatively large variability of the points about the least squares
line (S 2

Y,x � 12.15).

7.6.4 Confidence Intervals for Slope (B) and Intercept (A)

A confidence interval can be constructed for the slope and intercept in a manner analogous
to that for means [Eq. (6.2)]. The confidence interval for the slope is

(7.20)b t S b
t S

X X
b

Y x± = ±
−∑

( )
( )

( )

.

2
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A confidence interval for the intercept is

(7.21)a t S a t S
N

X

X Xa Y x± = ± +
−∑

( ) ( )
( ).

1 2

2

A 95% confidence interval for the slope of the line in the stability example is [Eq. (7.20)]

( . )
. ( . )

. .

. .

− ± = − ±

= − −

0 267
2 12 1 35

630
0 267 0 114

0 381 0 153to 

A 90% confidence interval for the intercept in the calibration line example (Sec. 7.2) is
[Eq. (7.21)]

5 9 2 93 3 49
1

4

90

2000
5 9 21 2 15 3

2

. . ( . ) . . .± + = ± = − to 27.1

(Note that the appropriate value of t with 2 d.f. for a 90% confidence interval is 2.93.)

7.7 WEIGHTED REGRESSION

One of the assumptions implicit in the applications of statistical inference to regression
procedures is that the variance of y be the same at each value of X. Many situations occur
in practice when this assumption is violated. One common occurrence is the variance of
y being approximately proportional to X2. This occurs in situations where y has a constant
coefficient of variation (CV) and y is proportional to X (y � BX), commonly observed
in instrumental methods of analysis in analytical chemistry. Two approaches to this prob-
lem are (a) a transformation of y to make the variance homogeneous, such as the log
transformation (see Chapter 10), and (b) a weighted regression analysis.

Below is an example of weighted regression analysis in which we assume a constant
CV and the variance of y proportional to X2 as noted above. This suggests a weighted
regression, weighting each value of Y by a factor that is inversely proportional to the
variance, 1/X2. Table 7.6 shows data for the spectrophotometric analysis of a drug per-
formed at 5 concentrations in duplicate.

Equation (7.22) is used to compute the slope for the weighted regression procedure.

(7.22)b
wXy wX wy w

wX wX w
=

−

− ( )
∑ ∑ ∑ ∑

∑∑ ∑2 2
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Table 7.6 Analytical Data for a Spectrophotometric Analysis

Concentration (X) Optical density (y) CV Weight (w)

5 0.105 0.098 0.049 0.04
10 0.201 0.194 0.025 0.01
25 0.495 0.508 0.018 0.0016
50 0.983 1.009 0.018 0.0004

100 1.964 2.013 0.017 0.0001

The computations follow:

�w�0.04�0.04�...�0.0001�0.0001�0.1042

�wXy�(0.04)(5)(0.105)�(0.04)(5)(0.098)�...�(0.0001)(100)(1.964)

�(0.0001)(100)(2.013)�0.19983

�wX�2(0.04)(5)�2(0.01)(10)�...�2(0.0001)(100)�0.74

�wy�(0.04)(0.105)�(0.04)(0.098)�...�(0.0001)(1.964)

�(0.0001)(2.013)�0.0148693

�wX2�2(0.04)(5)2�2(0.01)(10)2�...�2(0.0001)(100)2�10

Therefore, the slope b �

0 19983 0 74 0 0148693 0 1042

10 0 74 0 1042
0 01986

2

. ( . )( . ) / .

( . ) / .
.

−
−

=

Figure 7.10 Weighted regression plot for data from Table 7.6.
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The intercept is

(7.23)a � ȳw � b (X̄w)

where ȳw � � wy/� w and X̄w � � wX/� w

(7.23)a � 0.0148693/0.1042 � 0.01986(0.74/0.1042) � 0.00166

The weighted least squares line is shown in Fig. 7.10

7.8 ANALYSIS OF RESIDUALS

Emphasis is placed elsewhere in this book on the importance of carefully examining and
graphing data prior to performing statistical analyses. The approach to examining data in
this context is commonly known as Exploratory Data Analysis (EDA) [8]. One aspect of
EDA is the examination of residuals. Residuals can be thought of as deviations of the
observed data from the fit to the statistical model. Examination of residuals can reveal
problems such as variance heterogeneity or nonlinearity. This brief introduction to the
principle of residual analysis uses the data from the regression analysis in Sec. 7.7.

The residuals from a regression analysis are obtained from the differences between
the observed and predicted values. Table 7.7 shows the residuals from an unweighted least
squares fit of the data of Table 7.6. Note that the fitted values are obtained from the least
squares equation y � 0.001789 � 0.019874(X).

If the linear model and the assumptions in the least squares analysis are valid, the
residuals should be approximately normally distributed, and no trends should be apparent.

Figure 7.11 shows a plot of the residuals as a function of X. The fact that the residuals
show a fan-like pattern, expanding as X increases, suggests the use of a log transformation
or weighting procedure to reduce the variance heterogeneity. In general, the intelligent
interpretation of residual plots requires knowledge and experience. In addition to the
appearance of patterns in the residual plots that indicate relationships and character of
data, outliers usually become obviously apparent [11].

Figure 7.12 shows the residual plot after a log (In) transformation of X and Y. Much
of the variance heterogeneity has been removed.

Table 7.7 Residuals from Least Squares Fit of Analytical Data (Table 7.4)

Unweighted Log transform

Actual Predicted value Residual Actual Predicted value Residual

0.105 0.101 �0.00384 �2.254 �2.298 �0.044
0.201 0.201 �0.00047 �1.604 �1.6073 �0.0033
0.495 0.499 �0.00364 �0.703 �0.695 �0.008
0.983 0.995 �0.0126 �0.017 �0.0004 �0.0166
1.964 1.989 �0.025 �0.675 �0.6863 �0.0113
0.098 0.101 �0.00316 �2.323 �2.298 �0.025
0.194 0.201 �0.00653 �1.640 �1.6073 �0.0033
0.508 0.499 �0.00936 �0.677 �0.6950 �0.018
1.009 0.995 �0.0135 �0.009 �0.0042 �0.0132
2.013 1.989 �0.00238 �0.700 0.6863 �0.0137
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Figure 7.11 Residual plot for unweighted analysis of data of Table 7.5.

Figure 7.12 Residual plot for analysis of ln transformed data of Table 7.5.



197Linear Regression and Correlation

For readers who desire more information on this subject, the book Graphical Explora-
tory Data Analysis [12] is recommended.

7.9 NONLINEAR REGRESSION**

Linear regression applies to the solution of relationships where the function of Y is linear
in the parameters. For example, the equation

Y A BX= +

is linear in A and B, the parameters. Similarly, the equation

Y A Be X= + −

is also linear in the parameters. One should also appreciate that a linear equation can exist
in more than two dimensions. The equation

Y A BX CX= + + 2

an example of a quadratic equation, is linear in the parameters, A, B, and C. These param-
eters can be estimated by using methods of multiple regression [1].

An example of a relationship that is nonlinear in this context is

Y A eBX= +

Here the parameter B is not in a linear form.
If a linearizing transformation can be made, then this approach to estimating the

parameters would be easiest. For example, the simple first-order kinetic relationship

Y Ae BX= −

is not linear in the parameters, A and B. However, a log transformation results in a linear
equation

ln lnY A BX= −

Using the least squares approach, we can estimate ln A (A is the antilog) and B, where ln
A is the intercept and B is the slope of the straight line when ln Y is plotted vs. X. If
statistical tests and other statistical estimates are to be made from the regression analysis,
the assumptions of normality of Y (now ln Y) and variance homogeneity of Y at each X
are necessary. If Y is normal and the variances of Y at each X are homogeneous to start
with, the ln transformation will invalidate the assumptions. (On the other hand, if Y is
lognormal with constant coefficient of variation, the log transformation will be just what
is needed to validate the assumptions.)

Some relationships cannot be linearized. For example, in pharmacokinetics, the one-
compartment model with first order absorption and excretion has the following form

C D e eket kat= −− −( )

where D, ke and ka are constants (parameters). This equation cannot be linearized. The
use of nonlinear regression methods can be used to estimate the parameters in these
situations as well as the situations in which Y is normal with homogeneous variance prior
to a transformation, as noted above.

The solutions to nonlinear regression problems require more advanced mathematics
relative to most of the material in this book. A knowledge of elementary calculus is
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Table 7.8 Data from a Stability Study

Time (t) Concentration mg/L (C)

1 hour 63
2 hours 34
3 hours 22

necessary, particularly the application of Taylor’s theorem. Also, a knowledge of matrix
algebra is useful in order to solve these kinds of problems. A simple example will be
presented to demonstrate the principles. The general matrix solutions to linear and multiple
regression will also be demonstrated.

In a stability study, the data in Table 7.8 were available for analysis. The equation
representing the degradation process is

(7.24)C C e kt= −
0

The concentration values are known to be normal with the variance constant at each value
of time. Therefore, the usual least squares analysis will not be used to estimate the param-
eters C0 and k after the simple linearizing transformation:

ln lnC C kt= −0

The estimate of the parameters using nonlinear regression as demonstrated here uses
the first terms of Taylor’s expansion, which approximates the function and results in a
linear equation. It is important to obtain good initial estimates of the parameters, which
may be obtained graphically. In the present example, a plot of ln C vs. time (Fig. 7.13)

Figure 7.13 Plot of stability data from Table 7.8.
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results in initial estimates of 104 for C0 and �0.53 for k. The process then estimates a
change in C0 and a change in k that will improve the equation based on the comparison
of the fitted data to the original data. Typical of least squares procedures, the fit is measured
by the sum of the squares of the deviations of the observed values from the fitted values.
The best fit results from an iterative procedure. The new estimates result in a better fit to
the data. The procedure is repeated using the new estimates, which results in a better fit
than that observed in the previous iteration. When the fit, as measured by the sum of the
squares of deviations, is negligibly improved, the procedure is stopped. Computer programs
are available to carry out these tedious calculations.

The Taylor expansion requires taking partial derivatives of the function with respect
to C0 and k. For the equation, C � C0e�kt, the resulting expression is:

(7.25)dC dC e dk C tek t k t= −− −
0 0
' ( ) ( )( )' ' ''

In Eq. (7.25), dC is the change in C resulting from small changes in C0 and k evaluated
at the point, C′0 and k′. dC′0 is the change in the estimate of C0, and dk′ is the change in
the estimate of k. (e�k′t) and C′0(te�k′t are the partial derivatives of Eq. (7.24) with respect
to C0 and k, respectively.

Equation (7.25) is linear in dC′0 and dk′. The coefficients of dC′0 and dk′ are (e�k′t)
and � (C′0)(te�k′t), respectively. In the computations below, the coefficients are referred
to as X1 and X2, respectively, for convenience. Because of the linearity, we can obtain
the least squares estimates of dC′0 and dk′ by the usual regression procedures.

The computations for two iterations are shown below. The solution to the least squares
equation is usually accomplished using matrix manipulations. The solution for the coeffi-
cients can be proven to have the following form:

B X X X Y= −( ) ( )1' '

The matrix B will contain the estimates of the coefficients. With two coefficients, this
will be a 2 � 1 (2 rows and 1 column) matrix.

In Table 7.9, the values of X1 and X2 are (e�k′t) and (C′0) (te�k′t), respectively, using
the initial estimates of C′0 � 104 and k′ � � 0.53 (Fig. 7.13). Note that the fit is measured
by the � dC′2 � 7.94.

The solution of (X′X)�1 (X′Y) gives the estimates of the parameters, dC′0 and k′:

X X X Y' '

. .

. .

.

.

.

−

−
=

1

11 5236 0 06563

0 06563 0 00045079

0 5296

16 9611

4 99

00 027.

Table 7.9 Results of First Iteration

Time (t) C C� dC X1 X2

1 63 61.2 1.79 0.5886 �61.2149
2 34 36.0 �2.03 0.3465 �72.0628
3 22 21.2 0.79 0.2039 �63.6248

∑ dC�2 � 7.94
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Table 7.10 Results of Second Iteration

Time (t) C C� dC� X1 X2

1 63 62.4 0.6 0.5729 �62.4431
2 34 35.8 �1.8 0.3282 �71.5505
3 22 20.5 1.5 0.18806 �61.4896

∑ dC�2 � 5.85

The new estimates of C0 and k are:

C

k
0 104 4 99 108 99

0 53 0 027 0 557

' . .

. . .

= + =
= + = +'

With these estimates, new values of C′ are calculated in Table 7.10.
Note that the � dC′2 is 5.85, which is reduced from 7.94, from the initial iteration.
The solution of (X′X)�1 (X′Y) is:

12 587 0 06964

0 06964 0 0004635

0 0351

0 909

0 378

0 002

. .

. .

.

.

.

.

+
+ −

=

Therefore, the new estimates of C0 and k are

C

k
0 108 99 0 38 109 37

0 557 0 002 0 559

' . . .

. . .

= + =
= + =

The reader can verify that the new value of dC′2 is now 5.74. The process is repeated
until dC′2 becomes stable. The final solution is C0 � 109.22, k 0.558.

Another way of expressing the decomposition is:

C e C kt= −ln 0

or

ln lnC C kt= −0

The ambitious reader may wish to try a few iterations using this approach. Note
that the partial derivatives of C with respect to C0 and k are (1/C0) (elnC0�kt) and
�t(elnC0�kt), respectively.

7.10 CORRELATION

Correlation methods are used to measure the ‘‘association’’ of two or more variables.
Here we will be concerned with two observations for each sampling unit. We are interested
in determining if the two values are related, in the sense that one variable may be predicted
from a knowledge of the other. The better the prediction, the better the correlation. For
example, if we could predict the dissolution of a tablet based on tablet hardness, we say
that dissolution and hardness are correlated. Correlation analysis assumes a linear or
straight-line relationship between the two variables.



201Linear Regression and Correlation

Correlation is usually applied to the relationship of continuous variables, and is best
visualized as a scatter plot or correlation diagram. Figure 7.14A shows a scatter plot for
two variables, tablet weight and tablet potency. Tablets were individually weighed and
then assayed. Each point in Fig. 7.14A represents a single tablet (X � weight, Y �
potency). Inspection of this diagram suggests that weight and potency are positively corre-
lated, as is indicated by the positive slope, or trend. Low-weight tablets are associated
with low potencies, and vice versa. This positive relationship would probably be expected
on intuitive grounds. If the tablet granulation is homogeneous, a larger weight of material
in a tablet would contain larger amounts of drug. Figure 7.14B shows the correlation of
tablet weights and dissolution rate. Smaller tablet weights are related to higher dissolution
rates, a negative correlation (negative trend).

Inspection of Fig. 7.14A and B reveals what appears to be an obvious relationship.
Given a tablet weight, we can make a good ‘‘ballpark’’ estimate of the dissolution rate
and potency. However, the relationship between variables is not always as apparent as in
these examples. The relationship may be partially obscured by variability, or the variables
may not be related at all. The relationship between a patient’s blood pressure reduction
after treatment with an antihypertensive agent and serum potassium levels is not as obvious
(Fig. 7.14C). There seems to be a trend toward higher blood pressure reductions associated

Figure 7.14 Examples of various correlation diagrams or scatter plots. The correlation
coefficient, r, is defined in Sec. 7.10.1.
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with higher potassium levels—or is this just an illusion? The data plotted in Fig. 7.14D,
illustrating the correlation of blood pressure reduction and age, show little or no correlation.

The various scatter diagrams illustrated in Fig. 7.14 should give the reader an intuitive
feeling for the concept of correlation. There are many experimental situations where a
researcher would be interested in relationships among two or more variables. Similar to
applications of regression analysis, correlation relationships may allow for prediction and
interpretation of experimental mechanisms. Unfortunately, the concept of correlation is
often misused, and more is made of it than is deserved. For example, the presence of a
strong correlation between two variables does not necessarily imply a causal relationship.
Consider data that show a positive relationship between cancer rate and consumption of
fluoridated water. Regardless of the possible validity of such a relationship, such an ob-
served correlation does not necessarily imply a causal effect. One would have to investigate
further other factors in the environment occurring concurrently with the implementation
of fluoridation, which may be responsible for the cancer rate increase. Have other industries
appeared and grown during this period, exposing the population to potential carcinogens?
Have the population characteristics (e.g., racial, age, sex, economic factors) changed during
this period? Such questions may be resolved by examining the cancer rates in control
areas where fluoridation was not enforced.

The correlation coefficient is a measure of the ‘‘degree’’ of correlation, which is
often erroneously interpreted as a measure of ‘‘linearity.’’ That is, a strong correlation is
sometimes interpreted as meaning that the relationship between X and Y is a straight line.
As we shall see further in this discussion, this interpretation of correlation is not necessarily
correct.

7.10.1 Correlation Coefficient

The correlation coefficient is a quantitative measure of the relationship or correlation
between two variables.

(7.26)Correlation coefficient = =
− −

− −
∑

∑∑
r

X X y y

X X y y

( )( )

( ) ( )2 2

A shortcut computing formula is

(7.27)r
N Xy X y

N X X
=

−

− ( )





∑ ∑ ∑
∑∑ 2 2

NN y y2 2
− ( )



∑∑

where N is the number of X, y pairs.
The correlation coefficient, r, may be better understood by its relationship to S 2

Y,x,
the variance calculated from regression line fitting procedures. r2 represents the relative
reduction in the sum of squares of the variable y resulting from the fitting of the X, y line.
For example, the sum of squares [� (y � ȳ)2] for the y values 0, 1, and 5 is equal to 14
[see Eq. (1.4)].

( )
( )

y y− = + + − + + =∑ 2 2 2 2
2

0 1 5
0 1 5

3
14
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Figure 7.15 Reduction in sum of squares due to regression.

If these same y values were associated with X values, the sum of squares of y from the
regression of y and X will be equal to or less than � (y � ȳ)2, or 14 in this example.
Suppose that X and y values are as follows (see Fig. 7.15):

X y Xy

X   X

y y

0 0 0 2

1 1 1

2 5 10 4

3 6 11

2

2

∑ − =

∑ − = 1  

( )

( )

sum 

According to Eq. (7.9), the sum of squares due to deviations of the y values from the
regression line is

(7.28)( ) ( )y y b X X− − −∑∑ 2 2 2

where b is the slope of the regression line (y on X). The term b2 � (X � X̄)2 is the reduction
in the sum of squares due to the straight-line regression fit. Applying Eq. (7.28), the sum
of squares is

14 � (2.5)2(2) � 14 � 12.5 � 1.5 (the slope, b, is 2.5)

r2 is the relative reduction of the sum of squares:

14 1 5

14
0 893 0 893 0 945

− = = =.
. . .r

The usual calculation of r, according to Eq. (7.27), follows:

3 11 3 6

3 5 3 3 26 36

15

6 42
0 945

2

( ) ( )( )

[ ( ) ( ) ][ ( ) ( )] ( )
.

−

− −
= =

Thus, according to this notion, r can be interpreted as the relative degree of scatter about
the regression line. If X and y values lie exactly on a straight line (a perfect fit), S 2

Y,x is
0, and r is equal to 	1; �1 for a line of positive slope and �1 for a line of negative
slope. For a correlation coefficient equal to 0.5, r2 � 0.25. The sum of squares for y is
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reduced 25%. A correlation coefficient of 0 means that the X, y pairs are not correlated
(see Fig. 7.14D).

Although there are no assumptions necessary to calculate the correlation coefficient,
statistical analysis of r is based on the notion of a bivariate normal distribution of X and
y. We will not delve into the details of this complex probability distribution here. However,
there are two interesting aspects of this distribution which deserve some attention with
regard to correlation analysis.

1. In typical correlation problems, both X and y are variable. This is in contrast to
the linear regression case, where X is considered fixed, chosen, a priori, by the
investigator.

2. In a bivariate normal distribution, X and y are linearly related. The regression of
both X on y and y on X is a straight line.* Thus, when statistically testing correla-
tion coefficients, we are not testing for linearity. As described below, the statistical
test of a correlation coefficient is a test of correlation or independence. According
to Snedecor and Cochran, the correlation coefficient ‘‘estimates the degree of
closeness of a linear relationship between two variables, Y and X, and the meaning
of this concept is not easy to grasp’’ [8].

7.10.2 Test of Zero Correlation

The correlation coefficient is a rough measure of the degree of association of two variables.
The degree of association may be measured by how well one variable can be predicted from
another; the closer the correlation coefficient is to �1 or �1, the better the correlation, the
better the predictive power of the relationship. A question of particular importance from
a statistical point of view is whether or not an observed correlation coefficient is ‘‘real’’
or due to chance. If two variables from a bivariate normal distribution are uncorrelated
(independent), the correlation coefficient is 0. Even in these cases, in actual experiments,
random variation will result in a correlation coefficient different from zero. Thus, it is of
interest to test an observed correlation coefficient, r, versus a hypothetical value of 0. This
test is based on an assumption that y is a normal variable (8). The test is a t test with (N
� 2) degrees of freedom, as follows:

H ρ H ρa0 0 0: := ≠

where  is the true correlation coefficient, estimated by r.

(7.29)t
r N

r
N − =

−

−
2 2

2

1

The value of t is referred to a t distribution with (N � 2) d.f., where N is the sample size
(i.e., the number of pairs). Interestingly, this test is identical to the test of the slope of the
least squares fit, Y � a � bX [Eq. (7.13)]. In this context, one can think of the test of
the correlation coefficient as a test of the significance of the slope versus 0.

* The regression of y on X means that X is assumed to be the fixed variable when calculating the
line. This line is different from that calculated when Y is considered the fixed variable (unless the
correlation coefficient is 1, when both lines are identical). The slope of the line is rSy/Sx for the
regression of y on X and rSx/Sy for x on Y.
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Table 7.11 Diastolic Blood Pressure and Serum Cholesterol of 10 Persons

Diastolic blood
Person pressure (DBP), y Cholesterol (C), X Xy

1 80 307 24,560
2 75 259 19,425
3 90 341 30,690
4 74 317 23,458
5 75 274 20,550
6 110 416 45,760
7 70 267 18,690
8 85 320 27,200
9 88 274 24,112

10 78 336 26,208
∑ y � 825 ∑ X � 3,111 ∑ Xy � 260,653

∑ y2 � 69,279 ∑ X2 � 987,893

To illustrate the application of Eq. (7.29), Table 7.11 shows data of diastolic blood
pressure and cholesterol levels of 10 randomly selected men. The data are plotted in Fig.
7.16. r is calculated from Eq. (7.27):

(7.27)

r
N Xy X y

N X X N y y
=

−

− ( )



 − ( )





=

∑ ∑ ∑
∑∑ ∑∑2 2 2 2

10(26,653)− (3111)(825)
0 809

[10(987,893)−31112][10(69,279)−8252]
.=

Figure 7.16 Plot of data from Table 7.11.
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r is tested for significance using Eq. (7.29).

t8 2

0 809 8

1 0 809
3 89=

−
=

.

( . )
.

A value of t equal to 2.31 is needed for significance at the 5% level (see Table IV.4).
Therefore, the correlation between diastolic blood pressure and cholesterol is significant.
The correlation is apparent from inspection of Fig. 7.16.

Significance tests for the correlation coefficient versus values other than 0 are not
very common. However, for these tests, the t test described above [Eq. (7.29)] should not
be used. An approximate test is available to test for correlation coefficients other than 0
(e.g., H0:  � 0.5). Since applications of this test occur infrequently in pharmaceutical
experiments, the procedure will not be presented here. The statistical test is an approxima-
tion to the normal distribution, and the approximation can also be used to place confidence
intervals on the correlation coefficient. A description of these applications is presented in
Ref. 8.

7.10.3 Miscellaneous Comments

Before leaving the topic of correlation, the reader should once more be warned about
the potential misuses of interpretations of correlation and the correlation coefficient. In
particular, the association of high correlation coefficients with a ‘‘cause and effect’’ and
‘‘linearity’’ is not necessarily valid. Strong correlation may imply a direct causal relation-
ship, but the nature of the measurements should be well understood before firm statements
can be made about cause and effect. One should be keenly aware of the common occurrence
of spurious correlations due to indirect causes or remote mechanisms.

The correlation coefficient does not test the linearity of two variables. If anything, it
is more related to the slope of the line relating the variables. Linearity is assumed for the
routine statistical test of the correlation coefficient. As has been noted above, the correlation
coefficient measures the degree of correlation, a measure of the variability of a predictive
relationship. A proper test for linearity (i.e., do the data represent a straight-line relationship
between X and Y?) is described in App. II and requires replicate measurements in the
regression model. Usually, correlation problems deal with cases where both variables, X
and y, are variable in contrast to the regression model where X is considered fixed. In
correlation problems, the question of linearity is usually not of primary interest. We are
more interested in the degree of association of the variables. Two examples will show
that a high correlation coefficient does not necessarily imply ‘‘linearity’’ and that a small
correlation coefficient does not necessarily imply lack of correlation (if the relationship
is nonlinear).

Table 7.12 shows two sets of data which are plotted in Fig. 7.17. Both data sets A
and B show perfect (but nonlinear) relationships between X and y. Set A is defined by Y
� 4 � X2. Set B is defined by Y � X2. Yet the correlation coefficient for set A is 0, an
implication of no correlation, and set B has a correlation coefficient of 0.96, very strong
correlation (but not linearity!). These examples should emphasize the care needed in the
interpretation of the correlation coefficient, particularly in nonlinear systems.

Another example of data for which the correlation coefficient can be misleading is
shown in Table 7.13 and Fig. 7.18. In this example, drug stability is plotted versus pH.
Five experiments were performed at low pH and one at high pH. The correlation coefficient
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Table 7.12 Two Data Sets Illustrating
Some Problems of Interpreting Correlation
Coefficients

Set A Set B

X y X y

�2 0 0 0
�1 3 2 4

0 4 4 16
�1 3 6 36
�2 0

Figure 7.17 Plot of data in Table 7.12 showing problems with interpretation of the
correlation coefficient.

Table 7.13 Data to Illustrate a Problem
that Can Result in Misinterpretation of
the Correlation Coefficient

pH Stability, t1/2 (weeks)

2.0 48
2.1 50
1.9 50
2.0 46
2.1 47
5.5 12
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Figure 7.18 Plot of data from Table 7.10.

is 0.994, a highly significant result (P � 0.01). Can this be interpreted that the data in
Fig. 7.18 are a good fit to a straight line? Without some other source of information, it
would take a great deal of imagination to assume that the relationship between pH and
t1/2 is linear over the range of pH equal to 2.0 to 5.5. Even if the relationship were linear,
had data been available for points in between pH 2.0 and 5.5, the fit may not be as good
as that implied by the large value of r in this example. This situation can occur when one
value is far from the cluster of the main body of data. One should be cautious in ‘‘over-
interpreting’’ the correlation coefficient in these cases. When relationships between vari-
ables are to be quantified for predictive or theoretical reasons, regression procedures, if
applicable, are recommended. Correlation, per se, is not as versatile or informative as
regression analysis for describing the relationship between variables.

7.11 COMPARISON OF VARIANCES IN RELATED SAMPLES

In Sec. 5.3, a test was presented to compare variances from two independent samples. If
the samples are related, the simple F test for two independent samples is not valid (8).
Related, or paired-sample tests arise, for example, in situations where the same subject
tests two treatments, such as in clinical or bioavailability studies. To test for the equality
of variances in related samples, we must first calculate the correlation coefficient and the
F ratio of the variances. The test statistic is calculated as follows:

(7.30)r
F

F r F
ds = −

+ −

1

1 42 2( )

where F is the ratio of the variances in the two samples and r is the correlation coefficient.
The ratio in Eq. (7.30), rds, can be tested for significance in the same manner as the

test for the ordinary correlation coefficient, with (N � 2) d.f., where N is the number of
pairs [Eq. (7.29)]. As is the case for tests of the correlation coefficient, we assume a
bivariate normal distribution for the related data. The following example demonstrates the
calculations.
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Table 7.14 AUC Results of the
Bioavailability Study (A versus B)

Formulation

Subject A B

1 88 88
2 64 73
3 69 86
4 94 89
5 77 80
6 85 71
7 60 70
8 105 96
9 68 84

10 73 78
Mean 78.1 81.5
S2 202.8 73.8

In a bioavailability study, 10 subjects were given each of two formulations of a drug
substance on two occasions, with the results for AUC (area under the blood level versus
time curve) given in Table 7.14.

The correlation coefficient is calculated according to Eq. (7.27).

r = −

−

( , )( ) ( )( )

[( , )( ) ( ) ][( , )(

64 421 10 781 815

62 821 10 781 67 087 102 )) ( ) ]
.

−
=

815
0 699

2

The ratio of the variances (Table 7.14), F, is

202 8

73 8
2 75

.

.
.=

[Note: The ratio of the variances may also be calculated as 73.8/202.8 � 0.36, with the
same conclusions based on Eq. (7.30).]

The test statistic, rds, is calculated from Eq. (7.30).

rds = −

+ −
=2 75 1

2 75 1 4 0 699 2 75
0 593

2 2

.

( . ) ( . ) ( . )
.

rds is tested for significance using Eq. (7.29).

t8 2

0 593 8

1 0 593
2 08=

−
=

.

.
.

Referring to the t table (Table IV.4, 8 d.f.), a value of 2.31 is needed for significance at
the 5% level. Therefore, we cannot reject the null hypothesis of equal variances in this
example. Formulation A appears to be more variable, but more data would be needed to
substantiate such a claim.
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A discussion of correlation of multiple outcomes and adjustment of the significance
level is given in Chapter 8, section 8.2.2.

KEY TERMS

Best-fitting line Nonlinear regression
Bivariate normal distribution Nonlinearity
Confidence band for line One-sided confidence interval
Confidence interval for X and Y Prediction interval
Correlation Reduction of sum of squares
Correlation coefficient Regression
Correlation diagram Regression analysis
Dependent variable Residuals
Fixed value (X) Scatter plot
Independence Simple linear regression
Independent variable Slope
Intercept S 2

Y,x

Inverse prediction Trend
Lack of fit Variance of correlated samples
Linear regression Weighted regression
Line through the origin

EXERCISES

1. A drug seems to decompose in a manner such that appearance of degradation
products is linear with time (i.e., Cd � kt).

t Cd

1 3
2 9
3 12
4 17
5 19

(a) Calculate the slope (k) and intercept from the least squares line.
(b) Test the significance of the slope (test versus 0) at the 5% level.
(c) Test the slope versus 5 (Ho: B � 5) at the 5% level.
(d) Put 95% confidence limits on Cd at t � 3 and t � 5.
(e) Predict the value of Cd at t � 20. Place a 95% prediction interval on Cd at

t � 20.
(f) If it is known that Cd � 0 at t � 0, calculate the slope.

2. A Beer’s law plot is constructed by plotting ultraviolet absorbance versus concen-
tration, with the following results:
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Concentration, X Absorbance, y Xy

1 0.10 0.10
2 0.36 0.72
3 0.57 1.71
5 1.09 5.45

10 2.05 20.50

(a) Calculate the slope and intercept.
(b) Test to see if the intercept is different from 0 (5% level). How would you

interpret a significant intercept with regard to the actual physical nature of
the analytical method?

**(c) An unknown has an absorbance of 1.65. What is the concentration? Put
confidence limits on the concentration (95%).

3. Five tablets were weighed and then assayed with the following results:

Weight (mg) Potency (mg)

205 103
200 100
202 101
198 98
197 98

(a) Plot potency versus weight (weight � X). Calculate the least squares line.
(b) Predict the potency for a 200-mg tablet.
(c) Put 95% confidence limits on the potency for a 200-mg tablet.

4. Tablets were weighed and assayed with the following results:

Weight Assay Weight Assay

200 10.0 198 9.9
205 10.1 200 10.0
203 10.0 190 9.6
201 10.1 205 10.2
195 9.9 207 10.2
203 10.1 210 10.3

(a) Calculate the correlation coefficient.
(b) Test the correlation coefficient versus 0 (5% level).
(c) Plot the data in the table (scatter plot).

** This is a more advanced topic.
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5. Tablet dissolution was measured in vitro for 10 generic formulations. These prod-
ucts were also tested in vivo. Results of these studies showed the following time
to 80% dissolution and time to peak (in vivo).

Time to 80%
Formulation dissolution (min) Tp (hr)

1 17 0.8
2 25 1.0
3 15 1.2
4 30 1.5
5 60 1.4
6 24 1.0
7 10 0.8
8 20 0.7
9 45 2.5

10 28 1.1

Calculate r and test for significance (versus 0) (5% level). Plot the data.
6. Shah et al. (10) measured the percent of product dissolved in vitro and the time

to peak (in vivo) of nine phenytoin sodium products, with approximately the
following results:

Time to Percentage
Product peak (hr) dissolved in 30 min

1 6 20
2 4 60
3 2.5 100
4 4.5 80
5 5.1 35
6 5.7 35
7 3.5 80
8 5.7 38
9 3.8 85

Plot the data. Calculate the correlation coefficient and test to see if it is significantly
different from 0 (5% level). (Why is the correlation coefficient negative?)

7. In a study to compare the effects of two pain-relieving drugs (A and B), 10 patients
took each drug in a paired design with the following results (drug effectiveness
based on a rating scale).
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Patient Drug A Drug B

1 8 6
2 5 4
3 5 6
4 2 5
5 4 5
6 7 4
7 9 6
8 3 7
9 5 5

10 1 4

Are the drug effects equally variable?
8. Compute the intercept and slope of the least squares line for the data of Table 7.6

after a ln transformation of both X and Y. Calculate the residuals and compare to
the data in Table 7.7.

9. In a drug stability study, the following data were obtained:

Time (months) Concentration (mg)

0 2.56
1 2.55
3 2.50
9 2.44

12 2.40
18 2.31
24 2.25
36 2.13

(a) Fit a least squares line to the data.
(b) Predict the time to decompose to 90% of label claim (2.25 mg).
(c) Based on a two-sided 95% confidence interval, what expiration date should

be applied to this formulation?
(d) Based on a one-sided 95% confidence interval, what expiration date should

be applied to this formulation?
**10. Fit the following data to the exponential y � eax. Use nonlinear least squares.

x y

1 1.62
2 2.93
3 4.21
4 7.86

** This is an optional, more difficult problem.
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ANALYSIS OF VARIANCE

Analysis of variance, also known as ANOVA, is perhaps the most powerful statistical tool.
ANOVA is a general method of analyzing data from designed experiments, whose objec-
tive is to compare two or more group means. The t test is a special case of ANOVA in
which only two means are compared. By designed experiments, we mean experiments
with a particular structure. Well-designed experiments are usually optimal with respect to
meeting study objectives. The statistical analysis depends on the design, and the discussion
of ANOVA therefore includes common statistical designs used in pharmaceutical research.
Analysis of variance designs can be more or less complex. The designs can be very simple,
as in the case of the t-test procedures presented in Chapter 5. Other designs can be quite
complex, sometimes depending on computers for their solution and analysis. As a rule of
thumb, one should use the simplest design that will achieve the experimental objectives.
This is particularly applicable to experiments otherwise difficult to implement, such as is
the case in clinical trials.

8.1 ONE-WAY ANALYSIS OF VARIANCE

An elementary approach to ANOVA may be taken using the two-independent-groups t
test as an example. This is an example of one-way analysis of variance, also known as a
‘‘completely randomized’’ design. (Certain simple ‘‘parallel-groups’’ designs in clinical
trials correspond to the one-way analysis of variance design.) In the t test, the two treat-
ments are assigned at random to different independent experimental units. In a clinical
study, the t test is appropriate when two treatments are randomly assigned to different
patients. This results in two groups, each group representing one of the two treatments.
One-way ANOVA is used when we wish to test the equality of treatment means in experi-
ments where two or more treatments are randomly assigned to different, independent
experimental units. The typical null hypothesis is H0: �1 � �2 � �3 � … where �1

refers to treatment 1, and so on.
Suppose that 15 tablets are available for the comparison of three assay methods, five

tablets for each assay. The one-way ANOVA design would result from a random assign-
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ment of the tablets to the three groups. In this example, five tablets are assigned to each
group. Although this allocation (five tablets per group) is optimal with regard to the
precision of the comparison of the three assay methods, it is not a necessary condition
for this design. The number of tablets analyzed by each analytical procedure need not be
equal for the purposes of comparing the mean results. However, one can say, in general,
that symmetry is a desirable feature in the design of experiments. This will become more
apparent as we discuss various designs. In the one-way ANOVA, symmetry can be defined
as an equal number of experimental units in each treatment group.

We will pursue the example above to illustrate the ANOVA procedure. Five replicate
tablets are analyzed in each of the three assay method groups, one assay per tablet. Thus
we assay the 15 tablets, five tablets by each method, as shown in Table 8.1. If only two
assay methods were to be compared, we could use a t test to compare the means statistically.
If more than two assay methods are to be compared, the correct statistical procedure to
compare the means is the one-way analysis of variance (ANOVA).

Analysis of variance is a technique of separating the total variability in a set of data
into component parts, represented by a statistical model. In the simple case of the one-
way ANOVA, the model is represented as

(8.1)Y Gij i ij= + +µ ε

where

Yij � jth response in treatment group i (e.g., i � 3, j � 2, second tablet in third
group)

Gi � deviation of the ith treatment (group) mean from the overall mean, �
εij � random error in the experiment (measurement error, biological variability, etc.)

assumed to be normal with mean 0 and variance �2

The model says that the response is a function of the true treatment mean (� � Gi) and
a random error that is normally distributed, with mean zero and variance �2. In the case
of a clinical study, Gi � � is the true average of treatment i. If a patient is treated with
an antihypertensive drug whose true mean effect is a 10-mmHg reduction in blood pressure,
then Yij � 10 � εij, where Yij is the jth observation among patients taking the drug i.
(Note that if treatments are identical, Gi is the same for all treatments.) The error, εij, is
a normally distributed variable, identically distributed for all observations. It is composed
of many factors, including interindividual variation and measurement error. Thus the ob-

Table 8.1 Results of Assays Comparing Three
Analytical Methods

Method A Method B Method C

102 99 103
101 100 100
101 99 99
100 101 104
102 98 102

X̄ 101.2 99.4 101.6
s.d. 0.84 1.14 2.07
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served experimental values will be different for different people, a consequence of the
nature of the assigned treatment and the random error, εij (e.g., biological variation).
Section 8.5 expands the concept of statistical models.

In addition to the assumption that the error is normal with mean 0 and variance �2,
the errors must be independent. This is a very important assumption in the analysis of
variance model. The fact that the error has mean 0 means that some people will show
positive deviations from the treatment mean, and others will show negative deviations;
but on the average, the deviation is zero.

As in the t test, statistical analysis and interpretation of the ANOVA is based on the
following assumptions.

1. The errors are normal with constant variance.
2. The errors (or observations) are independent.

As will be discussed below, ANOVA separates the variability of the data into parts,
comparing that due to treatments to that due to error.

8.1.1 Computations and Procedure for One-Way Analysis of Variance

Analysis of variance for a one-way design separates the variance into two parts, that due
to treatment differences and that due to error. It can be proven that the total sum of squares
(the squared deviations of each value from the overall mean)

( )Y Yij −∑ 2

is equal to

(8.2)( ) ( )Y Y N Y Yij i i i− + −∑∑ 2 2

where Ȳ is the overall mean and Ȳi is the mean of the ith group. Ni is the number of
observations in treatment group i. The first term in expression (8.2) is called the within
sum of squares, and the second term is called the between sum of squares.

A simple example to demonstrate the equality in Eq. (8.2) is shown below, using the
data of Table 8.2.
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− = − +

( ) ( ) ( )

( )

( ) ( )N Y Yi i 22 3 4 2 8 4 522 2( ) ( )− + − =∑
Thus, according to Eq. (8.2), 64 � 12 � 52.

Table 8.2 Sample Data to Illustrate Eq. (8.2)

Group I (Y1j) Group II (Y2j) Group III (Y3j)

0 2 6
2 4 10

Ȳt 1 3 8
Ȳ � (1 � 3 � 8)/3 � (0 � 2 � 2 � 4 � 6 � 10)/6 � 4
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The calculations for the analysis make use of simple arithmetic with shortcut formulas
for the computations similar to that used in the t-test procedures. Computer programs are
available for the analysis of all kinds of analysis of variance designs from the most simple
to the most complex. In the latter cases, the calculations can be very extensive and tedious,
and use of computers may be almost mandatory. For the one-way design, the calculations
pose no difficulty. In many cases, use of a pocket calculator will result in a quicker answer
than can be obtained using a less accessible computer. A description of the calculations,
with examples, are presented below.

The computational process consists first of obtaining the sum of squares (SS) for all
of the data.

(8.3)Total sum of squares SS( ) ( )= −∑ Y Yij
2

The total sum of squares is divided into two parts: (a) the SS due to treatment differences
(between-treatment sum of squares), and (b) the error term derived from the within-treat-
ment sum of squares. The within-treatment sum of squares (within SS) divided by the
appropriate degrees of freedom is the pooled variance, the same as that obtained in the t
test for the comparison of two treatment groups. The ratio of the between-treatment mean
square to the within-treatment mean square is a measure of treatment differences (see
below).

To illustrate the computations, we will use the data from Table 8.1, a comparison of
three analytical methods with five replicates per method. Remember that the objective of
this experiment is to compare the average results of the three methods. We might think
of method A as the standard, accepted method, and methods B and C as modifications of
the method, meant to replace method A. As in the other tests of hypotheses described in
Chap. 5, we first state the null and alternative hypotheses as well as the significance level,
prior to the experiment. For example, in the present case*,

H Ha i j0: :µ µ µ µ µBA = = ≠c for any two means*

1. First, calculate the total sum of squares (total SS or TSS). Calculate � (Yij � Ȳ)2

[Eq. (8.3)] using all of the data, ignoring the treatment grouping. This is most easily
calculated using the shortcut formula

(8.4)Y
Y

N
2

2

−
( )∑∑

(�Y)2 is the grand total of all of the observations squared, divided by the total number of
observations N, and is known as the correction term, C.T. As mentioned in Chapter 1,
the correction term is commonly used in statistical calculations, and is important in the
calculation of the sum of squares in the ANOVA.

Total sum of squares = −
( )

= + + + +

+ −

∑∑Y
Y

N
2

2

2 2 2

2

102 101 103

102

(

)

… …

(( )

, , . .

1511

15
152 247 152 208 07 38 93

2

= − =

* Alternatives to H0 may also include more complicated comparisons than �i � �J; see, for example,
Sec. 8.2.1.
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2. The between-treatment sum of squares (between SS or BSS) is calculated as
follows:

(8.5)Between-treatment sum of squares C.T.= −∑T

N
i

i

2

Ti is the sum of observations in treatment group i and Ni is the number of observations
in treatment group i. Ni need not be the same for each group. In our example, the BSS is
equal to

506

5

497

5

508

5
152 208 07 13 73

2 2 2

+ +








 − =, . .

As previously noted, the treatment sum of squares is a measure of treatment differences.
A large sum of squares means that the treatment differences are large. If the treatment
means are identical, the treatment sum of squares will be exactly equal to zero (0).

3. The within-treatment sum of squares (WSS) is equal to the difference between
the TSS and BSS; that is, TSS � BSS � WSS. The WSS can also be calculated, as in
the t test, by calculating � (Yij � Ȳi)2 within each group, and pooling the results.

(8.6)

Within-treatment sum of squares Total SS  between SS=
=

−
38 9. 33 13 73

25 20

−
=

.

.

Having performed the calculations above, the sum of squares for each ‘‘source’’ is set
out in an ‘‘analysis of variance table,’’ as shown in Table 8.3. The ANOVA table includes
the source, degrees of freedom, sum of squares (SS), mean square (MS) and the probability
based on the statistical test (F ratio).

The degrees of freedom, noted in Table 8.3, are calculated as Ni � 1 for the total
(Ni is the total number of observations); number of treatments minus one for the treatments;
and for the within error, subtract d.f. for treatments from the total degrees of freedom.
In our example,

Total degrees of freedom � 15 � 1 � 14
Between-treatment degrees of freedom � 3 � 1 � 2
Within-treatment degrees of freedom � 14 � 2 � 12

Note that for the within degrees of freedom, we have 4 d.f. from each of the three groups.
Thus there are 12 d.f. for the within error term. The mean squares are equal to the sum
of squares divided by the degrees of freedom.

Table 8.3 Analysis of Variance for the Data Shown in Table 8.1: Comparison of
Three Analytical Methods

Source d.f. SS MS F

Between methods 2 13.73 6.87 F � 3.27*
Within methods 12 25.20 2.10
Total 14 38.93

* 0.05 � P � 0.10.
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Before discussing the statistical test, the reader is reminded of the assumptions under-
lying the analysis of variance model: independence of errors, equality of variance, and
normally distributed errors.

Testing the Hypothesis of Equal Treatment Means

The mean squares are variance estimates. One can demonstrate that the variance estimated
by the treatment mean square is a sum of the within variance plus a term that is dependent
on treatment differences. If the treatments are identical, the term due to treatment differ-
ences is zero, and the between mean square (BMS) will be approximately equal to the
within mean square (WMS) on the average. In any given experiment, the presence of
random variation will result in nonequality of the BMS and WMS terms, even though the
treatments may be identical. If the null hypothesis of equal treatment means is true, the
distribution of the BMS/WMS ratio is described by the F distribution. Note that under
the null hypothesis, both WMS and BMS are estimates of �2, the within-group variance.

The F distribution is defined by two parameters, degrees of freedom in the numerator
and denominator of the F ratio:

F=
BMS(2 d.f.)

WMS(12 d.f.)
= =6 87

2 10
3 27

.

.
.

In our example, we have an F with 2 d.f. in the numerator and 12 d.f. in the denominator.
A test of significance is made by comparing the observed F ratio to a table of the F
distribution with appropriate d.f. at the specified level of significance. The F distribution
is an asymmetric distribution with a long tail at large values of F, as shown in Fig. 8.1.
(See also Secs. 3.5 and 5.3.)

To tabulate all the probability points of all F distributions would not be possible.
Tables of F, similar to the t table, usually tabulate points at commonly used � levels. The
cutoff points (� � 0.01, 0.05) for F with n1 and n2 d.f. (numerator and denominator) are
given in Table IV.6. the probabilities in this table (1% and 5%) are in the upper tail, usually
reserved for one-sided tests. This table is used to determine statistical ‘‘significance’’ for
the analysis of variance. Although the alternative hypothesis in ANOVA (Ha: at least two
treatment means not equal) is two-sided, the ANOVA F test (BMS/WMS) uses the upper

Figure 8.1 Some F distributions.



221Analysis of Variance

tail of the F distribution because, theoretically, the BMS cannot be smaller than the WMS.*
(Thus the F ratio will be less than 1 only due to chance variability.) The BMS (between
mean square) is composed of the WMS plus a possible ‘‘treatment’’ term. Only large
values of the F ratio are considered to be significant. In our example, Table 8.3 shows the
F ratio to be equal to 3.27. Referring to Table IV.6, the value of F needed for significance at
the 5% level is 3.89 (2 d.f. in the numerator and 12 d.f. in the denominator). Therefore,
we cannot reject the hypothesis that all means are equal: method A � method B �
method C (�A � �B � �C).

8.1.2 Summary of Procedure for One-Way ANOVA

1. Choose experimental design and state the null hypothesis.
2. Define the � level.
3. Choose samples, perform the experiment, and obtain data.
4. Calculate the total sum of squares and between sum of squares.
5. Calculate the within sum of squares as the difference between the total SS and

the between SS.
6. Construct an analysis of variance table with mean squares.
7. Calculate the F statistic (BMS/WMS).
8. Refer the F ratio statistic to Table IV.6 (n1 and n2 d.f., where n1 is the d.f. for

the BMS and n2 is the d.f. for the WMS).
9. If the calculated F is equal to or greater than the table value for F at the specified

� level of significance, at least two of the treatments can be said to differ.

8.1.3 A Common but Incorrect Analysis of the Comparison of Means from
More Than Two Groups

In the example in Sec. 8.1.1, if more than two assay methods are to be compared, the
correct statistical procedure is a one-way ANOVA. A common error made by those persons
not familiar with ANOVA is to perform three separate t tests on such data: comparing
method A to method B, method A to method C, and method B to method C. This would
require three analyses and ‘‘decisions,’’ which can result in apparent contradictions. For
example, decision statements based on three separate analyses could read:

Method A gives higher results than method B (P � 0.05).
Method A is not significantly different from method C (P 
 0.05).
Method B is not significantly different from method C (P 
 0.05).

These are the conclusions one would arrive at if separate t tests were performed on the
data in Table 8.1 (see Exercise Problem 1). One may correctly question: If A is larger
than B, and C is slightly larger than A, how can C not be larger than B? The reasons
for such apparent contradictions are (a) the use of different variances for the different
comparisons, and (b) performing three tests of significance on the same set of data. Analy-
sis of variance obviates such ambiguities by using a common variance for the single test

* This may be clearer if one thinks of the null and alternative hypotheses in ANOVA as H0: � 2
B

� � 2
w; H0 � 2

B 
 � 2
w.
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of significance (the F test).* The question of multiple comparisons (i.e., multiple tests of
significance) is addressed in the following section.

8.2 PLANNED VERSUS A POSTERIORI (UNPLANNED)
COMPARISONS IN ANOVA

Often, in an experiment involving more than two treatments, more specific hypotheses
than the global hypotheses, �1 � �2 � �3 � …, are proposed in advance of the experi-
ment. These are known as a priori or planned comparisons. For example, in our example
of the three analytical methods, if method A is the standard method, we may have been
interested in a comparison of each of the two new methods, B and C, with A (i.e., H0:
�A � �C and �A � �B). We may proceed to make these comparisons at the conclusion
of the experiment using the usual t-test procedure with the following proviso: The estimate
of the variance is obtained from the ANOVA, the pooled within mean square term. This
estimate comes from all the groups, not only the two groups being compared. ANOVA
procedures, like the t test, assume that the variances are equal in the groups being tested.*
Therefore, the within mean square is the best estimate of the common variance. In addition,
the increased d.f. resulting from this estimate results in increased precision and power
(Chapter 7) of the comparisons. A smaller value of t is needed to show ‘‘significance’’
compared to the t test, which uses only the data from a specific comparison, in general.
Tests of only those comparisons planned a priori should be made using this procedure.
This means that the � level (e.g., 5%) applies to each comparison.

Indiscriminate comparisons made after the data has been collected, such as looking
for the largest differences as suggested by the data, will always result in more significant
differences than those suggested by the stated level of significance. We shall see in Sec.
8.2.1 that a posteriori tests (i.e., unplanned tests made after data have been collected)
can be made. However, a ‘‘penalty’’ is imposed which makes it more difficult to find
‘‘significant’’ differences. This keeps the ‘‘experiment-wise’’ � level at the stated value
(e.g., 5%). (For a further explanation, see Sec. 8.2.1.) The statistical tests for the two
planned comparisons as described above are performed as follows (a two-independent-
groups t test with WMS equal to error, the pooled variance):

Method B vs. method A:

101.2

Method C 

− 99.4

2 1 1 5 1 5
1 96

. ( / / )
.

+
=

vvs. method A:

101.2 −101.6

2 1 1 5 1 5
0 44

. ( / / )
.

+
=

Since the t value needed for significance at the 5% level (d.f. � 12) is 2.18 (Table IV.4),
neither of the comparisons noted previously is significant. However, when reporting such

* We have assumed in the previous discussion that the variances in the different treatment groups
are the same. If the number of observations in each group are equal, the ANOVA will be close
to correct in the case of moderate variance heterogeneity. If in doubt, a test to compare variances
may be performed; see Sec. 5.3.
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results, a researcher should be sure to include the actual averages. A confidence interval for
the difference may also be appropriate. The confidence interval is calculated as described
previously [Eq. (5.2)]; but remember to use the WMS for the variance estimate (12 d.f.).
Also, the fact that methods A and B are not significantly different does not mean that
they are the same. If one were looking to replace method A, other things being equal,
method C would be the most likely choice.

If the comparison of methods B and C had been planned in advance, the t test would
show a significant difference at the 5% level (see Exercise Problem 3). However, it would
be unfair to decide to make such a comparison using the t-test procedure described above
only after having seen the results. Now, it should be more clear why the analysis of
variance results in different conclusions from that resulting from the comparison of all
pairs of treatments using separate t tests:

1. The variance is pooled from all of the treatments. Thus it is the pooled variance
from all treatments which is used as the error estimate. When performing separate t tests,
the variance estimate differs depending on which pair of treatments is being compared.
The pooled variance for the ordinary t test uses only the data from the specific two groups
that are being compared. The estimates of the variance for each separate t test differ due
to chance variability. That is, although an assumption in ANOVA procedures is that the
variance is the same in all treatment groups, the observed sample variances will be different
in different treatment groups because of the variable nature of the observations. This is
what we have observed in our example. By chance, the variability for methods A and B
was smaller than that for method C. Therefore, when performing individual t tests, a
smaller difference of means is necessary to obtain significance when comparing methods
A and B than that needed for the comparison of methods A and C, or methods B and C.
Also, the degrees of freedom for the t tests are 8 for the separate tests, compared to 12
when the pooled variance from the ANOVA is used. In conclusion, we obtain different
results because we used different variance estimates for the different tests, which can
result in ambiguous and conflicting conclusions.

2. The F test in the ANOVA takes into account the number of treatments being
compared. An � level of 5% means that if all treatments are identical, 1 in 20 experiments
(on the average) will show a significant F ratio. That is, the risk of erroneously observing
a significant F is 1 in 20. If separate t tests are performed, each at the 5% level, for each
pair of treatments (three in our example), the chances of finding at least one pair of
treatments different in a given experiment will be greater than 5%, when the treatments
are, in fact, identical. We should differentiate between the two situations (a) where we
plan, a priori, specific comparisons of interest, and (b) where we make tests a posteriori
suggested by the data. In case (a), each test is done at the � level, and each test has an
� percent chance of being rejected if treatments are the same. In case (b), having seen
the data we are apt to choose only those differences that are large. In this case, experiments
will reveal differences where none truly exist much more than � percent of the time.

Multiple testing of data from the same experiment results in a higher significance
level than the stated � level on an experiment-wise basis. This concept may be made more
clear if we consider an experiment in which five assay methods are compared. If we
perform a significance (t) test comparing each pair of treatments, there will be 10 tests,
(n)(n � 1)/2, where n is the number of treatments: 5(4)/2 � 10 in this example. To
construct and calculate 10 t tests is a rather tedious procedure. If treatments are identical
and each t test is performed at the 5% level, the probability of finding at least one significant
difference in an experiment will be much more than 5%. Thus the probability is very high
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that at the completion of such an experiment, this testing will lead to the conclusion that
at least two methods are different. If we perform 10 separate t tests, the � level, on an
experiment-wise basis, would be approximately 29%; that is, 29% of experiments analyzed
in this way would show at least one significant difference, when none truly exists [2].

The Bonferroni method is often used to control the alpha level for multiple compari-
sons. For an overall level of alpha, the level is set at �/k for each test, where k is the number
of comparisons planned. For the data of Table 8.1, for a test of 2 planned comparisons at
an overall level of 0.05, each would be performed at the 0.05/2 � 0.025 level. If the tests
consisted of comparisons of the means (A vs. C) and (A vs. B), t tests could be performed.
A more detailed t table than IV.4 would be needed to identify the critical value of t for
a two-sided test at the 0.025 level with 12 d.f. This value lies between the tabled values
for the 0.05 and 0.01 level and is equal to 2.56. The difference needed for significance
at the 0.025 level is

2 56 2 1 2 5 2 35. . / .× × =

Since the absolute differences for the two comparisons (A vs. C) and (A vs. B) are 0.4
and 1.8, respectively, neither difference is statistically significant.

In the case of preplanned comparisons, significance may be found even if the F
test in the ANOVA is not significant. This procedure is considered acceptable by many
statisticians. Comparisons made after seeing the data which were not preplanned fall
into the category of a posteriori multiple comparisons. Many such procedures have been
recommended and are commonly used. Several frequently used methods are presented in
the following section.

8.2.1 Multiple Comparisons in Analysis of Variance

The discussion above presented compelling reasons to avoid the practice of using many
separate t tests when analyzing data where more than two treatments are compared. On
the other hand, for the null hypothesis of no treatment differences, a significant F in
the ANOVA does not immediately reveal which of the multiple treatments tested differ.
Sometimes, with a small number of treatments, inspection of the treatment means is suffi-
cient to show obvious differences. Often, differences are not obvious. Table 8.4 shows
the average results and ANOVA table for four drugs with regard to their effect on the
reduction of pain, where the data are derived from subjective pain scores (see also Fig.
8.2). The null hypothesis is H0: �A � �B � �C � �D. The alternative hypothesis here
is that at least two treatment means differ. The � level is set at 5%. Ten patients were
assigned to each of the four treatment groups. The F test with 3 and 36 d.f. is significant
at the 5% level. An important question that we wish to address here is: Which treatments
are different? Are all treatments different from one another, or are some treatments not
significantly different? This problem may be solved using ‘‘multiple comparison’’ proce-
dures. The many proposals that address this question result in similar but not identical
solutions. Each method has its merits and deficiencies. We will present some approaches
commonly used for performing a posteriori comparisons. Using these methods, we can
test differences specified by the alternative hypothesis, as well as differences suggested
by the final experimental data. These methods will be discussed with regard to comparing
individual treatment means. Some of these methods can be used to compare any linear
combination of the treatment means, such as the mean of drug A versus the average of



225Analysis of Variance

Table 8.4 Average Results and ANOVA for Four Analgesic Drugs

Reduction in pain with drugs

A B C D

X̄ 4.5 5.7 7.1 6.3
S2 3.0 4.0 4.5 3.8
S 1.73 2.0 2.12 1.95
N 10 10 10 10

ANOVA

Source d.f. SS MS F

Between drugs 3 36 12 F3,36 � 3.14*
Within drugs 36 137.7 3.83
Total 39 173.7

* P � 0.05.

the means for drugs B, C, and D [Ā versus (B̄ � C̄ � D̄)/3]. For a further discussion of
this problem, see the Scheffé method below.

Least Significant Difference

The method of ‘‘least significant difference’’ (LSD) proposed by R. A. Fisher, is the
simplest approach to a posteriori comparisons. This test is a simple t test comparing all

Figure 8.2 Result of pain reduction (	 standard deviation) for four drugs with 10 pa-
tients per treatment group.
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possible pairs of treatment means. (Note that this approach is not based on preplanned
comparisons, discussed in the previous section.) However, the LSD method results in
more significant differences than would be expected according to the � level. Because of
this, many statisticians do not recommend its use. The LSD test differs from the indiscrimi-
nate use of multiple t tests in that one proceeds (a) only if the F test in the ANOVA is
significant, and (b) the pooled (within MS) variance is used as the variance estimate in
the t test procedure. The least significant difference (LSD) approach is illustrated using
the data from Table 8.4.

(8.7)

Since

LSD

t X X S N N

X X t S
N N

= − +

= − = +










( ) / ( / / ),
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1 2
2

1 2

1 2
2

1 2

1 1

1 1

If the sample sizes are equal in each group (N1 � N2 � N),

(8.8)LSD t
S

N
= 2 2

where S2 is the within mean square variance and t is the tabulated value of t at the � level,
with appropriate degrees of freedom (d.f. � the number of degrees of freedom from the
WMS of the ANOVA table). Any difference of two means that is equal to or exceeds the
LSD is significant at the � level. From Table IV.4, the value of t at the 5% level with 36
d.f. is 2.03. The variance (from the ANOVA in Table 8.4) is 3.83. Therefore, the LSD is

LSD = =2 03
2 3 83

10
1 78.

( . )
.

The average pain reductions for drugs C and D are significantly greater than that for drug
A (C̄ � Ā � 2.6; D̄ � Ā � 1.8).

Note that in the example shown in Table 8.1 (ANOVA table in Table 8.3), the F test
is not significant. Therefore, one would not use the LSD procedure to compare the methods,
after seeing the experimental results. If a comparison had been planned a priori, the LSD
test could be correctly applied to the comparison.

Tukey’s Multiple Range Test

Tukey’s multiple range test is a commonly used multiple comparison test based on keeping
the error rate at � (e.g., 5%) from an ‘‘experiment-wise’’ viewpoint. By ‘‘experiment-
wise’’ we mean that if no treatment differences exist, the probability of finding at least
one significant difference for a posteriori tests in a given experiment is � (e.g., 5%). This
test is more conservative than the LSD test. This means that a larger difference between
treatments is needed for significance in the Tukey test than in the LSD test. On the other
hand, although the experiment-wise error is underestimated using the LSD test, the LSD
test is apt to find real differences more often than will the Tukey multiple range test. (The
LSD test has greater power.) Note that a trade-off exists. The easier it is to obtain signifi-
cance, the greater the chance of mistakenly calling treatments different (� error), but the
less chance of missing real differences (	 error). The balance between these risks depends
on the costs of errors in each individual situation. (See Chapter 6 for a further discussion
of these risks.)
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In the multiple range test, treatments can be compared without the need for a prior
significant F test. However, the analysis of variance should always be carried out. The
error term for the treatment comparisons comes from the ANOVA, the within mean square
in the one-way ANOVA. Similar to the LSD procedure, a least significant difference can
be calculated. Any difference of treatment means exceeding

(8.9)Q
S

N

2

is significant. S2 is the ‘‘error’’ variance from the ANOVA (within mean square for the
one-way ANOVA) and N is the sample size. This test is based on equal sample sizes in
each group. If the sample sizes are not equal in the two groups to be compared, an
approximate method may be used with N replaced by 2N1N2/(N1 � N2), where N1 and
N2 are the sample sizes of the two groups. Q is the value of the ‘‘studentized range’’
found in Table IV.7, a short table of Q at the 5% level. More extensive tables of Q may
be found in Ref. 1 (Table A-18a). The value of Q depends on the number of means being
tested (the number of treatments in the ANOVA design) and the degrees of freedom for
error (again, the within mean square d.f. in the one-way ANOVA). In the example of
Table 8.4, the number of treatments is 4, and the d.f. for error is 36. From Table IV.7,
the value of Q is approximately 3.81. Any difference of means greater than

3 81
3 83

10
2 36.

.
.=

is significant at the 5% level. Therefore, this test finds only drugs A and C to be significantly
different.

This test is more conservative than the LSD test. However, one must understand that
the multiple range test tries to keep the error rate at � on an experiment-wise basis. In
the LSD test, the error rate is greater than � for each experiment.

Scheffé Method

The Tukey method should be used if we are only interested in the comparison of treatment
means (after having seen the data). However, for more complicated comparisons (also
known as contrasts) for a large number of treatments, the Scheffé method will often result
in shorter intervals needed for significance. As in the Tukey method, the Scheffé method
is meant to keep the � error rate at 5%, for example, on an experiment-wise basis. For
the comparison of two means, the following statistic is computed:

(8.10)S k F
N N

2

1 2

1
1 1

( )− +










S2 is the appropriate variance estimate (WMS for the one-way ANOVA), k is the number
of treatments in the ANOVA design, and N1 and N2 are the sample sizes of the two groups
being compared. F is the table value of F (at the appropriate level) with d.f. of (k � 1)
in the numerator, and d.f. in the denominator equal to that of the error term in the ANOVA.
Any difference of means equal to or greater than the value computed from expression
(8.10) is significant at the � level. Applying this method to the data of Table 8.4 results
in the following [S2 � 3.83, k � 4, F(3, 36 d.f.) � 2.86, N1 � N2 � 10]:
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Using this method, treatments A and C are significantly different. This conclusion is
the same as that obtained using the Tukey method. However, treatments A and C barely
make the 5% level; the difference needed for significance in the Scheffé method is greater
than that needed for the Tukey method for this simple comparison of means. However,
one should appreciate that the Scheffé method can be applied to more complicated contrasts
with suitable modification of Eq. (8.10).

Suppose that drug A is a control or standard drug, and drugs B and C are homologous
experimental drugs. Conceivably, one may be interested in comparing the results of the
average of drugs B and C to drug A. From Table 8.4, the average of the means of drugs
B and C is

5 7 7 1

2
6 4

. .
.

+ =

For tests of significance of comparisons (contrasts) for the general case, Eq. (8.10) may
be written as

(8.11)( ) ( )k FV−1 contrast

where (k � 1) and (F) are the same as in Eq. (8.10), and V(contrast) is the variance
estimate of the contrast. Here the contrast is

X X
XB C

A

+
−

2

The variance of this contrast is (see also App. I)
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(Note that NA � NB � NC � 10 in this example.) From Eq. (8.11), a difference of (X̄B

� X̄C)/2 � X̄A exceeding

3 2 86 3 83
3

20
2 22( . )( . ) .=

will be significant at the 5% level. The observed difference is

6 4 4 5 1 9. . .− =

Since the observed difference does not exceed 2.22, the difference between the average
results of drugs B and C versus drug A is not significant (P 
 0.05). For a further discussion
of this more advanced topic, the reader is referred to Ref. 3.

Newman–Keuls Test

The Newman-Keuls test uses the multiple range factor Q (see Tukey’s Multiple Range
Test) in a sequential fashion. In this test, the means to be compared are first arranged in
order of magnitude. For the data of Table 8.4, the means are 4.5, 5.7, 6.3, and 7.1 for
treatments A, B, D, and C, respectively.
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To apply the test, compute the difference needed for significance for the comparison
of 2, 3, …, n means (where n is the total number of treatment means). In this example,
the experiment consists of 4 treatments. Therefore, we will obtain differences needed for
significance for 2, 3, and 4 means.

Initially, consider the first two means using the Q test:

(8.12)Q S N2 /

From Table IV.7, with 2 treatments and 36 d.f. for error, Q � approximately 2.87. From
Eq. (8.12),

Q S N2 2 87 3 83 10 1 78= =. . / .

For 3 means, find Q from Table IV.7 for k � 3.

3 45 3 83 10 2 14. . / .=

For 4 means, find Q from Table IV.7 for k � 4

3 81 3 83 10 2 36. . / .=

Note that the last value, 2.36, is the same value as that obtained for the Tukey test.
Thus, the differences needed for 2, 3, and 4 means to be considered significantly

different are 1.78, 2.14, and 2.36. This can be represented as follows:

Number of treatments 2

Critical difference 1.78

3 4

2 14 2 36. .

The 4 ordered means are

A B D C

4.5 5 7 6 3 7 1. . .

The above notation is standard. Any two means connected by the same underscored line
are not significantly different. Two means not connected by the underscored line are
significantly different. Examination of the two underscored lines in this example shows
that the only two means not connected are 4.5 and 7.1, corresponding to treatments A and
C, respectively.

The determination of significant and nonsignificant differences follows. The differ-
ence between treatments A and C, covering 4 means, is equal to 2.6, which exceeds 2.36,
resulting in a significant difference. The difference between treatments A and D is 1.8,
which is less than the critical value of 2.14 for 3 means. This is described by the first
underscore. (Note that we need not compare A and B or B and D since these will not be
considered different based on the first underscore.) Treatments B, D, and C are considered
to be not significantly different because the difference between B and C, encompassing
3 treatment means, is 1.4, which is less than 2.14. Therefore, a second underscore includes
treatments B, D, and C.

Dunnett’s Test

Sometimes experiments are designed to compare several treatments against a control but
not among each other. For the data of Table 8.4, treatment A may have been a placebo
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treatment, whereas treatments B, C, and D are 3 different active treatments. The compari-
sons of interest are A vs. B, A vs. C, and A vs. D. Dunnett [4,5] devised a multiple
comparison procedure for treatments vs. a control. The critical difference for a 2-sided
test for any of the comparisons vs. control, D′, is defined as:

D t S N N' ' ( / /= +2
1 21 1

where t′ is obtained from Table IV.7B
In the present example, p, the number of treatments, is equal to 3, and d.f. � 36. For

a 2-sided test at the 0.05 level, the value of t′ is 2.48 from Table IV.7A. Therefore the
critical difference is:

2 48 3 83 1 10 1 10 2 17. . ( / / ) .+ =

Again, the only treatment with a difference from treatment A greater than 2.17 is treatment
C. Therefore, only treatment C can be shown to be significantly different from treatment
A, the control.

Those readers interested in further pursuing the topic of multiple comparisons are
referred to Ref. 4.

8.2.2 Multiple Correlated Outcomes**

Many clinical studies have a multitude of endpoints that are evaluated to determine effi-
cacy. Studies of antiarthritic drugs, antidepressants, and heart disease, for example, may
consist of a measure of multiple outcomes. In a comparative study, if each measured
outcome is evaluated independently, the probability of finding a significant effect when
the drugs are not different, for at least one outcome, is greater than the alpha level for the
study. In addition, these outcomes are usually correlated. For example, relief of gastrointes-
tinal distress and bloating may be highly correlated when evaluating treatment of gastroin-
testinal symptoms. If all the measures are independent, Bonferroni’s inequality may be
used to determine the significance level. For example, for 5 independent measures and a
level of 0.01 for each measure, separate analyses of each measure will yield an overall
alpha level of approximately 5% for the experiment as a whole (see Sec. 8.2). However,
if the measures are correlated, the Bonferroni adjustment is too conservative, making it
more difficult to obtain significance. The other extreme is when all the outcome variables
are perfectly correlated. In this case, one alpha level (e.g., 5%) will apply to all the
variables. (One need test for only one of the variables; all other variables will share the
same conclusion.) Dubey (8) has presented an approach to adjusting the alpha (�) level
for multiple correlated outcomes. If we calculate the Bonferroni adjustment as 1 � (1 �
�)k where k is the number of outcomes and � is the level for testing each outcome,
then the adjusted level for each outcome will lie between � (perfect correlation) and
approximately �/k (no correlation). The problem can be formulated as:

(8.13)α γ= =overall  level  of  significance  1 (1− − )m

where m lies between 1 and k, k being the number of outcome variables. If there is perfect

** A more advanced topic.
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correlation among all of the variables, m � 1, the level for each variable, � is equal to
�. For zero correlation, m � k, resulting in the Bonferroni adjustment.
Dubey defines

(8.14)m k Ri= −1

where Ri is an ‘‘average’’ correlation.

(8.15)R R ki ij
i j

= −
≠
∑[ /( )]1

This calculation will be clarified in the example following this paragraph.
To obtain the alpha level for testing each outcome, �, use Eq. (8.16) which is derived

from Eq. (8.13) by solving for �.

(8.16)γ α= − −1 1 1( ) / m

The following example shows the calculation.
Suppose 5 variables are defined for the outcome of a study comparing an active and

placebo for the treatment of heart disease: (1) trouble breathing, (2) pains in chest, (3)
numbing/tingling, (4) rapid pulse, (5) indigestion. The overall level for significance is set
at 0.05. First, form the correlation matrix for the 5 variables. Table 8.5 is an example of
such a matrix.

This matrix is interpreted for example, as the correlation between numbing/tingling
and rapid pulse being 0.41 (variables 3 and 4), etc.

Calculate the ‘‘average’’ correlation, ri from Eq. (8.15).

r

r

1

2

0 74 0 68 0 33 0 40 4 0 538

0 74 0 25 0 66 0 85 4

= + + + ={
= + + + =

. . . . ) / .

. . . . ) / 00 625

0 68 0 25 0 41 0 33 4 0 425

0 33 0 66 0 41 0

3

4

.

. . . . ) / .

. . .

{
= + + + ={
= + + +

r

r .. ) / .

. . . . ) / .

42 4 0 455

0 40 0 85 0 33 0 42 4 0 5005

={
= + + + ={r

The average correlation is

( . . . . . ) / .0 538 0 625 0 425 0 455 0 500 5 0 509+ + + + =

From Eq. (8.14),

Table 8.5 Correlation Matrix for 5 Variables Measuring Heart “Disease”

Variable

1 2 3 4 5

1 1.00 0.74 0.68 0.33 0.40
2 0.74 1.00 0.25 0.66 0.85
3 0.68 0.25 1.00 0.41 0.33
4 0.33 0.66 0.41 1.00 0.42
5 0.40 0.85 0.33 0.42 1.00
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m k= = =−1 0 509 0 4915 2 203. . .

From Eq. (8.16), the level for each variable is adjusted to

γ α= − − = − − =1 1 1 1 0 05 0 0231 1 2 203( ) ( . ) ./ / .m

Therefore, testing of the individual outcome variables should be performed at the
0.023 level.

Equation (8.13) can also be used to estimate the sample size of a study with multiple
endpoints. Comelli (9) gives an example of a study with eight endpoints, and an estimated
average correlation of 0.7. First, solve for �, where alpha � 0.05 and Ri is 0.7.

� � 1 � (1 � �)1/m � 0.05, where m � 8(1�0.7)

� is equal to 0.027. The sample size can then be computed by standard methods (see
Chap. 6). For the sample size calculation, use an alpha of 0.027 with desired power, and
with the endpoint that is likely to show the smallest standardized treatment difference.
For example, in a parallel design, suppose we wish to have a power of 0.8, and the endpoint
with the smallest standardized difference is 0.5/1 (difference/standard deviation). Using
Eq. (6.6), N � 2 (1/0.5)2 (2.21 � 0.84)2 � 2 � 77 per group.

8.3 ANOTHER EXAMPLE OF ONE-WAY ANALYSIS OF VARIANCE:
UNEQUAL SAMPLE SIZES AND THE FIXED AND RANDOM
MODELS

Before leaving the topic of one-way ANOVA, we will describe an example in which the
sample sizes of the treatment groups are not equal. We will also introduce the notion of
‘‘fixed’’ and ‘‘random’’ models in analysis of variance.

Table 8.6 shows the results of an experiment comparing tablet dissolution as performed
by five laboratories. Each laboratory determined the dissolution of tablets from the same

Table 8.6 Percent Dissolution After 15 Min for Tablets from a Single Batch Tested in
Five Laboratories

Laboratory

A B C D E

68 55 78 75 65
78 62 63 60 60
63 67 78 66 66
56 60 65 69 75
61 67 70 58 75
69 73 74 64 70

71
71
65
77
60
63

Total 395 384 428 799 411
X̄ 65.8 64.0 71.3 66.6 68.5
s.d. 7.6 6.3 6.4 6.1 6.0
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Table 8.7 Analysis of Variance Table for the Data in Table 8.6 for Tablet Dissolution

Source d.f. SS MS F

Between labs 4 189.726 47.43 F4,31 � 1.15
Within labs 31 1282.58 41.37
Total 35 1472.306

batch of a standard product. Because of a misunderstanding, one laboratory (D) tested 12
tablets, whereas the other four laboratories tested six tablets. The null hypothesis is

H a0: µ µ µ µ µ= = = =B C D E

and

Ha i j: µ µ≠ for  at  least two means 

The analysis of variance calculations are performed in an identical manner to that
shown in the previous example (Sec 8.1.1). The analysis of variance table is shown in
Table 8.7.. The F test for laboratories (4, 31 d.f.) is 1.15, which is not significant at the
5% level (Table IV.6)). Therefore, the null hypothesis that the laboratories obtain the same
average result for dissolution cannot be rejected.

X X N

X
X

N

∑ ∑
∑∑

= = =

= −
( )

=

2417 163 747 36

1472 306

2

2

2

,

.Total  SS

Between lab SS = + + +

+ −

( ) ( ) ( ) ( )

( ) (

395

6

384

6

428

6

799

12

411

6

2

2 2 2 2

2 4417

36
189 726

1472 306 189 726 128

2)
.

. .

=

= = − =Within lab SS TSS BSS− 22 58.

One should always question the validity of ANOVA assumptions. In particular, the
assumption of independence may be suspect in this example.

Are tablets tested in sets of six, or is each tablet tested separately? If tablets are tested
one at a time in separate runs, the results are probably independent. However, if six tablets
are tested at one time, it is possible that the dissolution times may be related due to
particular conditions which exist during the experiment. For example, variable temperature
setting and mixing speed would affect all six tablets in the same (or similar) way. A
knowledge of the particular experimental system and apparatus, and/or experimental inves-
tigation, are needed to assess possible dependence in such experiments. The assumption
of equality of variance seems to be no problem in this experiment (see the standard
deviations in Table 8.6).

8.3.1 Fixed and Random Models

In this example, the interpretation (and possible further analysis) of the experimental results
depends on the nature of the laboratories participating in the experiment. The laboratories
can be considered to be:
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1. The only laboratories of interest with respect to dissolution testing; for example,
perhaps the laboratories include only those which have had trouble performing
the procedure.

2. A random sampling of five laboratories, selected to determine the reproducibility
(variability) of the method when performed at different locations.

The former situation is known as a fixed model. Inferences based on the results apply only
to those laboratories included in the experiment. The latter situation is known as a random
model. The random selection of laboratories suggests that the five laboratories are a sample
chosen among many possible laboratories. Thus inferences based on these results can be
applied to all laboratories in the population of laboratories being sampled.

One way of differentiating a fixed and random model is to consider which treatment
groups (laboratories) would be included if the experiment were to be run again. If the same
groups would always be chosen in these perhaps hypothetical subsequent experiments, then
the groups are fixed. If the new experiment includes different groups, the groups are
random.

The statistical test of the hypothesis of equal means among the five laboratories is
the same for both situations, fixed and random. However, in the random case, one may
also be interested in estimating the variance. The estimates of the within-laboratory and
between-laboratory variance are important in defining the reproducibility of the method.
This concept is discussed further in Sec. 12.4.1.

8.4 TWO-WAY ANALYSIS OF VARIANCE (RANDOMIZED BLOCKS)

As the one-way ANOVA is an extension of the two-independent-groups t test when an
experiment contains more than two treatments, two-way ANOVA is an extension of the
paired t test to more than two treatments. The two-way design, which we will consider
here, is known as a randomized block design (the nomenclature in statistical designs is
often a carryover based on the original application of statistical designs in agricultural
experiments). In this design, treatments are assigned at random to each experimental unit
or ‘‘block.’’ (In clinical trials, where a patient represents a block, each patient receives
each of the two or more treatments to be tested in random order.)

The randomized block design is advantageous when the level of response of the
different experimental units are very different. The statistical analysis separates these
differences from the experimental error, resulting in a more precise (sensitive) experiment.
For example, in the paired t test, taking differences of the two treatments should result in
increased precision if the experimental units receiving the treatments are very different
from each other, but they differentiate the treatments similarly. In Fig. 8.3, the three
patients are very different in their levels of response (blood pressure). However, each
patient shows a similar difference between drugs A and B (A 
 B). In a two-independent-
groups design (parallel groups), the experimental error is estimated from differences among
experimental units within treatments. This is usually larger than the experimental error in
a corresponding two-way design.

Another example of a two-way (randomized block) design is the comparison of analyt-
ical methods using product from different batches. The design is depicted in Table 8.8.
If the batches have a variable potency, a rational approach is to run each assay method
on material from each batch. The statistical analysis will separate the variation due to
different batches from the other random error. The experimental error is free of batch
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Figure 8.3 Increased precision in two-way designs.

differences, and will be smaller than that obtained from a one-way design using the same
experimental material. In the latter case, material would be assigned to each analytical
method at random.

A popular type of two-way design which deserves mention is that which includes
pretreatment or baseline readings. This design, a repeated measures design, often consist
of pretreatment readings followed by treatment and posttreatment readings observed over
time. Repeated measure designs are discussed further in Chapter 11. In these designs,
order (order is time in these examples) cannot be randomized. One should be careful to
avoid bias in situations where a concomitant control is not part of these experiments. For
example, suppose that it is of interest to determine if a drug causes a change in a clinical
effect. One possible approach is to observe pretreatment (baseline) and posttreatment
measurements, and to perform a statistical test (a paired t test) on the ‘‘change from
baseline.’’ Such an experiment lacks an adequate control group and interpretation of the
results may be difficult. For example, any observed change or lack of change could be
dependent on the time of observation, when different environmental conditions exist, in

Table 8.8 Two-Way Layout for Analytical Procedures
Applied to Different Batches of Material

Analytical method

Batch A B C …

1
2
3
.
.
.
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addition to any possible drug effect. A better experiment would include a parallel group
taking a control product: a placebo or an active drug (positive control). The difference
between change from baseline in the placebo group and test drug would be an unbiased
estimate of the drug effect.

8.4.1 A Comparison of Dissolution of Various Tablet Formulations:
Random and Fixed Models in Two-Way ANOVA

Eight laboratories were requested to participate in an experiment whose objective was to
compare the dissolution rates of two generic products and a standard drug product. The
purpose of the experiment was to determine (a) if the products had different rates of
dissolution, and (b) to estimate the laboratory variability (differences) and/or test for signif-
icant differences among laboratories. If the laboratory differences are large, the residual
or error sum of squares will be substantially reduced compared to the corresponding error
in the one-way design. The laboratory sum of squares and the product sum of squares in
the analysis of variance are computed in a manner similar to the calculations in the one-
way design. The residual sum of squares is calculated as the total sum of squares minus
the laboratory and product sum of squares. (The laboratory and product sum of squares
are also denoted as the row and column sum of squares, respectively.) The error or
residual sum of squares, that part of the total sum of squares remaining after subtracting
out that due to rows and columns, is also often denoted as the interaction (C � R)
sum of squares.

The hypothesis of interest is

H0: µ µ µA = =B C

That is, the average dissolution rates of the three products are equal. The level of signifi-
cance is set at 5%. The experimental results are shown in Table 8.9.

The analysis proceeds as follows:

Table 8.9 Tablet Dissolution After 30 Min for Three Products (Percent Dissolution)

Generic

Laboratory A B Standard Row total

1 89 83 94 266
2 93 75 78 246
3 87 75 89 251
4 80 76 85 241
5 80 77 84 241
6 87 73 84 244
7 82 80 75 237
8 68 77 75 220
Column total 666 616 664 1946

X̄ 83.25 77.0 83.0
� X2 � 158,786
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Total sum of squares (TSS)

= − = + + + + −

= − =

∑ X2 2 2 2 2
2

89 93 75 75
1946

24
158 786 157 788 2 99
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ootal of row   is the number of columns)i C,

Residual (C � R) sum of squares (ESS) � TSS � CSS � RSS

= − − =997 8 200 3 391 8 405 7. . . .

The ANOVA table is shown in Table 8.10. The degrees of freedom are calculated as
follows:

Total total number of observations

Column numbe

= − =
= − =

N N

C C
t t1

1 rr of columns

Row number of rows

Residual ( ( (

= − =
× = −

R R

C R C R

1

1) ) −−1)

Tests of Significance

To test for differences among products (H0: �A � �B � �C), an F ratio is formed:

drug product MS

residual MS
= =100 2

29
3 5

.
.

The F distribution has 2 and 14 d.f. According to Table IV.6, an F of 3.74 is needed for
significance at the 5% level. Therefore, the products are not significantly different at the
5% level. However, had the a priori comparisons of each generic product versus the

Table 8.10 Analysis of Variance Table for the Data (Dissolution) from Table 8.8

Source d.f. SS MS Fa

Drug products 2 200.3 100.2 F2,14 � 3.5
Laboratories 7 391.8 56.0 F7,14 � 1.9
Residual (C � R) 14 405.7 29.0
Total 23 997.8

a See the text for a discussion of proper F tests.
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standard been planned, one could perform a t test for each of the two comparisons (using
29.0 as the error from the ANOVA), generic A versus standard and generic B versus
standard. Generic A is clearly not different from the standard. The t test for generic B
versus the standard is

t
X XS=

−

+
= =B

29 1 8 1 8)

6

2 69
2 23

( / / .
.

This is significant at the 5% level (see Table IV.4, t with 14 d.f. � 2.14). Also, one could
apply one of the multiple comparisons tests, such as the Tukey test described in Sec. 8.2.1.
According to Eq. (8.9), any difference exceeding Q �S2 (1/N) will be significant. From

Table IV.7, Q for three treatments and 14 d.f. for error is 3.70 at the 5% level. Therefore,
the difference needed for significance for any pair of treatments for a posteriori tests is

3 70 29
1

8
7 04. .=

Since none of the means differ by more than 7.04, individual comparisons decided upon
after seeing the data would show no significance in this experiment.

The test for laboratory differences is (laboratory MS)/(residual MS), which is an F
test with 7 and 14 d.f. According to Table IV.6, this ratio is not significant at the 5% level
(a value of 2.77 is needed for significance). As discussed further below, if drug products
is a fixed effect, this test is valid only if interaction (drug product � laboratories) is
absent. Under these conditions, the laboratories are not sufficiently different to show a
significant F value at the 5% level.

**Fixed and Random Effects in the Two-Way Model

The proper test of significance in the two-way design depends on the model and the
presence of interaction. The notion of interaction will be discussed further in the presenta-
tion of factorial designs (Chapter 9). In the previous example, the presence of interaction
means that the three products are ranked differently with regard to dissolution rate by at
least some of the eight laboratories. For example, laboratory 2 shows that generic A
dissolves fastest among the three products, with generic B and the standard being similar.
On the other hand, laboratory 8 shows that generic A is the slowest-dissolving product.
Interaction is conveniently shown graphically as in Figure 8.4. ‘‘Parallel curves’’ indicate
no interaction.

Of course, in the presence of error (variability), it is not obvious if the apparent lack
of parallelism is real or is due to the inherent variability of the system. An experiment in
which a lab makes a single observation on each product, such as is the case in the present
experiment, usually contains insufficient information to make decisions concerning the
presence or absence of interaction. To test for interaction, an additional error term is
needed to test for the significance of the C � R residual term. In this case, the experiment
should be designed to have replicates (at least duplicate determinations). In the absence
of replication, it is best (usually) to assume that interaction is present. This is a conservative
point of view. A knowledge of the presence or absence of interaction is important in order

** A more advanced topic.
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Figure 8.4 Average results of dissolution for eight laboratories.— · standard;—generic
A;- - -generic B.

that one may choose the proper error term for statistical testing (the term in the denominator
of the F test) as described below.

The concept of fixed and random effects was introduced under the topic of one-way
ANOVA. A ‘‘fixed’’ category includes all the treatments of interest. In the present exam-
ple, it is apparent that the columns, drug products, are fixed. We are only interested in
comparing the two generic products with the standard. Otherwise, we would have included
other products of interest in the experiment. On the other hand, the nature of the rows,
laboratories, is not obvious. Depending on the context, laboratories may be either random
or fixed. If the laboratories were selected as a random sample among many laboratories
that perform such dissolution tests, then ‘‘laboratories’’ is a random factor. In the present
situation, the laboratories are chosen as a means of replication in order to compare the
dissolution of the three products. Then, inferences based on the result of the experiment
are applied to the population of laboratories from which this sample of eight was drawn.
We might also be interested in estimating the variance among laboratories in order to
have some estimate of the difference to be expected when two or more laboratories perform
the same test (see Sec. 12.4.1). If the laboratories chosen were the only laboratories of
interest, and inferences based on the experimental results apply only to these eight laborato-
ries, then laboratories are considered to be fixed. Table 8.11 shows when the F tests in
the two-way ANOVA are valid depending on the model and the presence of interaction.

In the usual situation, columns are fixed (e.g., drug treatments, formulations) and rows
are random (patients, batches, laboratories). In these cases, in the absence of replication, the
proper test for columns is (column mean square)/(residual mean square).

Usually, the test for rows is not pertinent if rows are ‘‘random.’’ For example, in a
clinical study, in which two or more treatments are to be compared, the rows are ‘‘pa-
tients.’’ The statistical test of interest in such situations is a comparison of the treatments;
one does not usually test for patient differences. However, in many laboratory experiments,
both column and row effects are of interest. In these cases, if significance testing is to be
performed for both row and column effects (where either or both are fixed), it is a good
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Table 8.11 Tests in the Two-Way Analysis of Variance (One Observation per Cell)

Columns Rows Interaction Error term for the F testa

Fixed Fixed None Residual (C � R) or within
Fixed Random None Residual (C � R) or within
Random Random None Residual (C � R) or within
Fixed Fixed Present Within
Fixed Random Present Residual (C � R) for fixed effect; use

within for random effect
Random Random Present Residual (CR)

a Residual is the usual residual mean square and includes (C � R), column � row interaction. Within is the within
mean square calculated from replicate determinations and will be called “error” in future discussions.

idea to include proper replication (see Table 8.11). Duplicate assays on the same sample
such as may be performed in a dissolution experiment are not adequate to estimate the
relevant variability. Replication in this example would consist of repeat runs, using differ-
ent tablets for each run. An example of a two-way analysis in which replication is included
is described in the following section.

8.4.2 Two-Way Analysis of Variance with Replication

Before discussing an example of the analysis of two-way designs with replications, two
points should be addressed regarding the implementation of such experiments.

1. It is best to have equal number of replications for each cell of the two-way design.
In the dissolution example, this means that each lab replicates each formulation
an equal number of times. If the number of replicates is very different for each
cell, the analysis and interpretation of the experimental results can be very compli-
cated and difficult.

2. The experimenter should be sure that the experiment is properly replicated. As
noted above, merely replicating assays on the same tablet is not proper replication
in the dissolution example. Replication is an independently run sample in most
cases. Each particular experiment has its own problems and definitions regarding
replication. If there is any doubt about what constitutes a proper replicate, a
statistician should be consulted.

As an example of a replicated, two-way experiment, we will consider the dissolution
data of Table 8.9. Suppose that the data presented in Table 8.9 are the average of two
determinations (either two tablets or two averages of six tablets each—a total of 12 tablets).
The actual duplicate determinations are shown in Table 8.12. We will consider ‘‘products’’
fixed and ‘‘laboratories’’ random.

The analysis of these data results in one new term in the ANOVA, that due to the within
cell sum of squares. The within cell SS represents the variability or error due to replicate
determinations, and is the pooled SS from within the cells. In the example shown previously,
the SS is calculated for each cell, � (X � X̄)2. For example, for the first cell (generic A in
laboratory 1), � (X � X̄)2 � (87 � 89)2 � (91 � 89)2 � (87 � 91)2/2 � 8.
The sum of squares is equal to 8. The within sum of squares is the total of the sum
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Table 8.12 Replicate Tablet Dissolution Data for Eight Laboratories Testing Three
Products (Percent Distribution)

Generic

Laboratory A B Standard Row total

1 87, 91 81, 85 93, 95 532
2 90, 96 74, 76 74, 82 492
3 84, 90 72, 78 84, 94 502
4 75, 85 73, 79 81, 89 482
5 77, 83 76, 78 80, 88 482
6 85, 89 70, 76 80, 88 488
7 79, 85 74, 86 71, 79 474
8 65, 71 73, 81 70, 80 440
Total 1332 1232 1328 3892
Average 83.25 77.0 83.0

of squares for the 24 (8 � 3) cells. The residual or interaction SS is calculated as the
difference between the total SS and the sum of the column SS, row SS, and within-cell
SS. The calculations for Table 8.12 are shown below.

Total sum of squares C.T.= −

= + + + + + + +

∑ X2

2 2 2 2 2 287 91 90 71 79 70 80… 22
23892

48
318 160 315 576 3 2583 7

−

= − =, , . .

Product sum of squares C.T.= −

= + + −

∑C

Rr

j

2

2 2 21332 1232 1328

16

38922

48
315 977 315 576 3

400 7

2

= −

=
=

, , .

.

Cj sum of observations in coluumn 

number of rows

number of replicates per cell

j

R

r

=
=

Laboratory sum of squares C.T.= −

= + + + −

∑R

Cr

i

2

2 2 2532 492 440

6

38… 992

48
316 360 315 576 3

783 7

2

= −

=
=

, , .

.

Ri sum of observations in roww

number of columns

number of replicates per cell

i

C

r

=
=
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Table 8.13 ANOVA Table for the Replicated Dissolution Data Shown in Table 8.12

Source d.f. SS MS Fa

Drug products 2 400.7 200.4 F2,14 � 3.5
Laboratories 7 783.7 112 F7,24 � 4.6*
C � R (residual) 14 811.3 58.0 F14,24 � 2.37*
Within cells (error) 24b 588 24.5

a Assume drug products fixed, laboratories random.
b d.f. for within cells is the pooled d.f., one d.f. for each of 24 cells; in general, d.f. � R � C (n � 1), where n is
the number of replicates.
* P � 0.05

Within-cell sum of squares*

( where the sum extends ovX X∑ − )2 eer all cells

2 2 2 2
= − + − + − + + −

=

( ) ( ) ( ) ( )87 91 90 96 84 90 70 80

58

2 2 2 2

…

88

C R× =
=

sum of squares TSS PSS LSS WSS

2583.7

− − −
− 400.7 − 783.7 − 588

= 8111.3

The ANOVA table is shown in Table 8.13. Note that the F test for drug products is
identical to the previous test, where the averages of duplicate determinations were ana-
lyzed. However, the laboratory MS is compared to the within MS to test for laboratory
differences. This test is correct if laboratories are considered either to be fixed (all FDA
laboratories, for example), or random, when drug products are fixed (see Table 8.13). For
significance F7,24 must exceed 2.43 at the 5% level (Table IV.6). The significant result
for laboratories suggests that at least some of the laboratories may be considered to give
different levels of response. For example, compare the results for laboratory 1 versus
laboratory 8.

Another statistical test, not previously discussed, is available in this analysis. The F
test (C � R MS/within MS) is a test of interaction. In the absence of interaction (laboratory
� drug product), the C � R mean square would equal the within mean square on the
average. A value of the ratio sufficiently larger than 1 is an indication of interaction. In
the present example, the F ratio is 2.37, 58.0/24.5. This is significant at the 5% level (see
Table IV.6, F14,24 � 2.13 at the 5% level). The presence of a laboratory � drug product
interaction in this experiment suggests that laboratories are not similar in their ability to
distinguish the three products (see Figure 8.4).

**8.4.3 Another Worked Example of Two-Way Analysis of Variance

Before leaving the subject of the basic analysis of variance designs, we will present one
further example of a two-way experiment. The design is a form of a factorial experiment,

* For duplicate determinations, � (X � X̄)2 � (X1 � X2)2/2.
** A more advanced topic.
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discussed further in Chapter 9. In this experiment, three drug treatments are compared at
three clinical sites. The treatments consist of two dosages of an experimental drug (low
and high dose) and a control drug. Eight patients were observed for each treatment at each
site. The data represent increased performance in an exercise test in asthmatic patients.
The results are shown in Table 8.14. In order to follow the computations, the following
table of totals (and definitions) should be useful.

C.T.

number of rows  3

number of col

= =

= =
=

( . )
.

371 5

72
1916 84

2

R

C uumns  3

number of replicates  8

total of row  (row 

=
= =
=

r

R ii 11 108.9, row 2 140.7, row 3 121.9)

total of column  (c

= = =
=C jj oolumn 1 69.7, column 2 156.1, column 3 145.7)= = =

The cell totals are shown below:

A B C Total

Site I 27.8 29.4 51.7 108.9
Site II 25 63.8 51.9 140.7
Site III 16.9 62.9 42.1 121.9
Total 69.7 156.1 145.7 371.5

The computations for the statistical analysis proceed as described in the previous
example. The within-cell mean square is the pooled variance over the nine cells with 63
degrees of freedom (7 d.f. from each cell). In this example (equal number of observations
in each cell), the within-cell mean square is the average of the nine variances calculated
from within-cell replication (eight values per cell). The computations are detailed below.

Total sum of squares C.T.= −

= + + + + + −

∑ X2

2 2 2 2 24 0 2 3 2 1 6 8 5 2. . . . .
(… 3371 5

72
2416 77 1916 84 499 93

2. )

. . .= − =
Column sum of squares (treatment SS)

C.T.= − = +∑C

Rr
j
2 269 7 156. .. .

.

.

1 145 7

3 8
1916 84

185 40

2 2+
×

−

=
Row sum of squares (site SS)

C.T.= − = + +∑R

Cr
i
2 2 2108 9 140 7 121. . ..

.

.

9

3 8
1916 84

21 30

2

×
−

=
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Within cell mean square = pooled sum of squares from the ninee cells

cell total
= − =

− + + + +

∑ ∑X
r

2
2

2 2 2

2416 7

27 8 29 4 51 7 42 1

( )
.

. . . .… 22

8
2416 77 2214 2

202 57

= −

=

. .

.

C R× ×
= −

sum of squares (treatment site interaction SS)

total SS ttreatment SS site SS within SS− −
= − − −
=

499 93 185 40 21 30 202 57

90

. . . .

..66

Note the shortcut calculation for within SS using the squares of the cell totals. Also note
that the C � R SS is a measure of interaction of sites and treatments. Before interpreting
the results of the experiment from a statistical point of view, both the ANOVA table
(Table 8.15) and a plot of the average results should be constructed (Fig 8.5). The figure
helps as a means of interpretation of the ANOVA as well as a means of presenting the
experimental results to the ‘‘client’’ (e.g., management).

Conclusions of the Experiment Comparing Three Treatments at Three Sites:
Interpretation of the ANOVA Table

The comparisons of most interest come from the treatment and treatment � site terms.
The treatment MS measures differences among the three treatments. The treatment � site
MS is a measure of how the three sites differentiate the three treatments. As is usually
the case, interactions are most easily visualized by means of a plot (Fig. 8.5). The lack
of ‘‘parallelism’’ is most easily seen as a difference between site I and the other two sites.
Site I shows that treatment C has the greatest increase in exercise time, whereas the other
two sites find treatment B most efficacious. Of course, the apparent differences, as noted
in Fig. 8.5, may be due to experimental variability. However, the treatment � site interac-
tion term (Table 8.15) is highly significant (F4,63 � 7.05). Therefore, this interaction can
be considered to be real. The presence of interaction has important consequences on the
interpretation of the results. The lack of consistency makes it difficult to decide if treatment
B or treatment C is the better drug. Certainly, the decision would have been easier had

Table 8.15 Analysis of Variance Table for the Data of Table 8.14 (Treatments and
Sites Fixed)

Source d.f. SS MS F

Treatments 2 185.4 92.7 F2.63 � 28.8a

Sites 2 21.3 10.7 F2.63 � 3.31b

Treatment � site 4 90.66 22.7 F4.63 � 7.05a

Within 63 202.57 3.215
Total 71 499.93

a P � 0.01.
b P � 0.05.
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Figure 8.5 Plot of average results from data of Table 8.14.——site III;——site II;
——site I.

all sites found the same drug best. The final statistical decision depends on whether one
considers sites fixed or random. In this example treatments are fixed.

Case 1: Sites fixed. If both treatments and sites are fixed, the proper error term for
treatments and sites is the within MS. As shown in Table 8.15, both treatments and sites
(as well as interaction) are significant. Inspection of the data suggests that treatments B
and C are not significantly different, but that both of these treatments are significantly
greater than treatment A (see Exercise Problem 11 for an a posteriori test). Although not
of primary interest in such studies, the significant difference among sites may be attributed
to the difference between site II and site I, site II showing greater average exercise times
(due to higher results for treatment B). However, this difference is of less importance than
the interaction of sites and treatments which exists in this study. Thus, although treatment
B and C do not differ, on the average, in the fixed site case, site I is different from the
other sites in the comparison of treatments B and C. One may wish to investigate further
to determine the cause of such differences (e.g., different kinds of patients, different
exercise equipment, etc.). If the difference between the results for treatments B and C
were dependent on the type of patient treated, this would be an important parameter in
drug therapy. In most multiclinic drug trials, clinical sites are selected at random, although
it is impractical, if not impossible, to choose clinical sites in a truly random fashion (see
also Sec. 11.5). Nevertheless, the interpretation of the data is different if sites are considered
to be a random effect.

Case 2: Sites random. If sites are random, and interaction exists, the correct error
term for treatments is the treatment � site (interaction) mean square. In this case the F
test (F2,4 � 4.09) shows a lack of significance at the 5% level. The apparently ‘‘obvious’’
difference between treatment A and treatments B and C is not sufficiently large to result
in significance because of the paucity of degrees of freedom (4 d.f.). The disparity of the
interpretation here compared to the fixed sites case is due to the large interaction. The
data suggest that differences among treatments are dependent on the site at which the
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Table 8.16 Tests for Treatment Differences in Two-Way ANOVA with Replicate
Observations (Treatments Fixed)

Rows Interaction Proper error term

Fixed Present Within MS
Fixed Absent Within MS or C � R MS
Random Present C � R (interaction) MS
Random Absent Within MS (conservative test: use C � R MS:

pool C � R and within MS—see the text)

drugs are tested. If the three sites are random selection from among many possible sites,
this very small sample of sites does not give a reliable estimate of the population averages.

Table 8.16 abstracted from Table 8.11, shows the proper error terms for testing treat-
ment differences, depending on whether sites (rows) are random or fixed. The testing also
depends on whether or not there is interaction in the model. Ordinarily, it is not possible
to predict the presence (or absence) of interaction in advance of the study. The conservative
approach for statistical tests is to assume interaction exists. In this example, if sites are
random, the C � R (interaction) mean square is the proper error term for treatments.
Often, however, the interaction mean square has few degrees of freedom. This can consid-
erably reduce the power of the test, as is the case in this example. In these situations, if
the interaction mean square is not significant, the interaction and within mean squares
may be pooled. This gives a pooled error term with more degrees of freedom than either
term alone. This is a controversial procedure, but can be considered acceptable if interaction
is clearly not present.

8.4.4 Missing Data

Missing data can result from overt errors in measurements, patients not showing up for
scheduled visits in a clinical trial, loss of samples, etc. In general, the problems of dealing
with missing data are complex. Missing data can be considered to be caused by missing
observations from a statistically valid, symmetric design. A common manifestation is when
a ‘‘cell’’ is empty, i.e., contains no values. A cell may be defined as the intersection of
factor levels in a factorial or related design. For example, in a two-way crossover design,
if a subject misses a visit, we have an empty cell. In a one-way design, missing values
do not cause computational problems in general, because the analysis is valid when sample
sizes in the independent groups are not equal.

For a two-way design with one missing value, the missing value may be estimated
using the following formula:

(8.17)Y rY cY Y r cij i j= + − − −( )/[( )( )]. . .. 1 1

where r � number of rows, c � number of columns, Yij � observation in ith row and
jth column. Yi. � total of ith row, Y.j � total of jth column, and Y.. � grand total of all
observations.
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Table 8.17 Illustration of Estimation of a Single Missing Data
Point

Columns

1 2 3 Total

Rows
1 3 5 6 14
2 7 4 9 20
3 4 — 6 10

Total 14 9 21 44

For example, Table 8.17 shows data with a missing value in the 2nd column and third
row. From Eq. (8.17), Y32 � (3 � 10 � 3 � 9 � 44)/[(3 � 1)(3 � 1)] � 3.25.

An analysis of variance is performed including the estimated observation (3.25), but
the d.f. for error is reduced by 1 due to the missing observation. (See Exercise Problem
12.)

For more than one missing value and for further discussion, see Snedecor and Cochran
[6]. For more complicated designs, computer software programs may be used to analyze
data with missing values. One should be aware that in certain circumstances depending
on the nature of the missing values and the design, a unique analysis may not be forthcom-
ing. In some cases, some of the observed data may have to be removed in order to arrive
at a viable analysis.

Another problem with missing data occurs in clinical studies with observations made
over time where patients drop out prior to the anticipated completion of treatments (cen-
sored data). A common approach when analyzing such data where some patients start but
do not complete the study for various reasons, is to carry the last value forward. For
example, in analgesic studies measuring pain, patients may give pain ratings over time.
If pain is not relieved, patients may take a ‘‘rescue’’ medication and not complete the
study as planned. The last pain rating on study medication would then be continued forward
for the missed observation periods. For example, such a study might require pain ratings
(1–5, where 5 is the worst pain and 1 is the least) every half-hour for six hours. Consider
a patient who gives ratings of 5, 4, and 4 for hours 0 (baseline), 1/2 and 1 hour, respectively.
He then decides to take the rescue medication. The patient would be assigned a rating of
4 for all periods after 1 hour (1.5 hours to 6 hours, inclusive). Statistical methods are then
used as usual. Another variations on the Last Value Carried forward (LVCF) concept is
to carry forward either the best or worst reading prior to dropout as defined and justified
in the study protocol. (See also Intent to Treat, Sec. 11.2.7.) Other methods include the
average of all observations for a given patient as the final result. These are still controversial
and should be discussed with FDA prior to implementation. One problem with this ap-
proach occurs in disease states that are self-limiting. For example, in studies of single
doses of analgesics in acute pain, if the study extends for a long enough period of time,
pain will eventually be gone. To include patients who have dropped out prior to these
extended time periods could bias the results at these latter times.
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8.5 **STATISTICAL MODELS

Statistical analyses for estimating parameters and performing statistical tests are usually
presented as linear models as introduced in Section 8.1. (See also Appendices II and III).
The parameters to be included in the model are linearly related to the dependent variable
in the form of

(8.18)Y B X B X B X= + + + +0 0 1 1 2 2
… ε

where the Bs are the parameters to be estimated and the various Xi represent the independent
variables. Epsilon, ε, represents the random error associated with the experiment, and is
usually assumed to be normal with mean 0 and variance, �2. This suggests that the estimate
of Y is unbiased, with a variance, �2. For a simple model, where we wish to fit a straight
line, the model would appear as:

Y B X B X= +0 0 1 1

where X0 � 1, and X1 (the independent variable) has a coefficient B1.
In this example, we observe data pairs, Xi, Yi, from which we estimate B0 (intercept)

and B1 (slope). Again, this particular model represents the model of a straight line.
Although simple methods for analyzing such data have been presented in Chapter 7,

the data could also be analyzed using analysis of variance based on the model. This analysis
would first compute the total sum of squares (SS), which is the SS from a model with
only a mean (Y � � � ε), with Nt � 1 d.f. This is the SS obtained as if all the data
were in a single group. The Nt � 1 d.f. is based on the fact that, in the computation of
SS, we are subtracting each observation from the mean before squaring. Having computed
the SS from this simple model, a new SS would then be computed from a model that
looks like a straight line. Each observation is subtracted from the least squares line and
squared (the residuals are subtracted from a model with 2 parameters, slope and intercept).
The difference between the SS with one parameter (the mean) and the SS with two param-
eters (slope and intercept) has 1 d.f. and represents the SS due to the slope. The inclusion
of a slope in the model reduces the SS. In general, as we include more parameters in the
model, the SS is reduced. Eventually, if we have as many observations as terms in the
model, we will have 0 residual SS, a perfect fit.

Typically, we include terms in the model that have meaning in terms of the experimen-
tal design. For example, for a one way ANOVA (see Section 8.1), we have separated the
experimental material into k groups and assigned Nt subjects randomly to the k groups.
The model consists of groups and a residual error, which represents the variability of
observations within the groups:

Y Gik k ik= + +µ ε

� represents the overall mean of the data, Gk represents the mean of the kth group (treat-
ment), and εik is the common variance (residual error). Note that the Xs are not written
in the model statement, and are assumed to be equal to 1. A more detailed description of
the model including 3 groups might look like this (One-way ANOVA; see Section 8.1):

** A more advanced topic.



250 Chapter 8

Y G G Gik ik= + + + +µ ε1 2 3

We then estimate �, G1, G2 and G3 from the model, and the the residual is the error
SS. Note that as before, ignoring groups, the total d.f. � Nt � 1. The fit of the model
without groups, compared to the fit with groups (Nk � 1 d.f. for each group) has 2 d.f.
[(Nt � 1) � (Nt � 3)] which represents the SS for differences between groups. If groups
have identical means, the residual SS will be approximately the same for the full model
(3 separate groups) and the reduced model (one group).

A somewhat more complex design is a two-way design, such as a randomized block
design, where, for example, in a clinical study, each patient may be subjected to several
treatments. This model includes both patient and group effects. The residual error is a
combination of both group � subject interaction (GS) and within-individual variability.
To separate these two sources of variability, patients would have to be replicated in each
group (treatment). If such replication exists (see Section 8.42), the model would appear
as follows with g groups (i � 1 to g), and p patients (j � 1 to p) per group, each subject
being replicated k times in each group:

Y G P GPijk i j ij ijk= + + + +µ ε

Models may become complicated, but the procedure for their construction and analysis
follow the simple approaches shown above. For experiments that are balanced (no missing
data), the calculations are simple and give unambiguous results. For unbalanced experi-
ments, the computations are more complex, and the interpretation is more difficult, some-
times impossible. Computer programs can analyze unbalanced data, but care must be taken
to understand the data structure in order to make the proper interpretation (see also Section
8.4.4, Missing Data).

8.6 **ANALYSIS OF COVARIANCE

The analysis of covariance (ANCOVA) combines analysis of variance with regression. It
is a way to increase precision and/or adjust for bias when comparing two treatments.
Analysis of covariance uses observations (concomitant variables) that are taken indepen-
dently of the test (outcome) variable. These concomitant observations are used to ‘‘adjust’’
the values of the test variable. This usually results in a statistical test that is more precise
than the corresponding non-adjusted analysis. We look for covariates that are highly corre-
lated with the experimental outcome, the greater the better (10). For example, the initial
weight of a patient in a weight reduction study may be correlated with the weight reduction
observed at the end of the study. Also, note that one may choose more than one covariate.
One simple example is the use of baseline measurements when comparing the effect of
two or more treatments. A common approach in such experiments is to examine the change
from baseline (experimental observation—baseline) as discussed in Section 8.4 and 11.3.2.
The analysis can also be approached using ANCOVA, where the baseline measurement
is the covariate. The correction for baseline will then adjust the experimental observation
based on the relationship of the two variables, baseline and outcome. Another example
is the comparison of treatments where a patient characteristic, e.g., weight, may be related
to the clinical outcome; weight is the covariate. In these examples, assignment to treatment

** A more advanced topic.
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Table 8.18 Analytical Results for Eight Batches of Product Comparing Two Assay
Methods

Method I Method II

Raw Material Final Product Raw Material Final Product

98.4 98.0 98.7 97.6
98.6 97.8 99.0 95.4
98.6 98.5 99.3 96.1
99.2 97.4 98.4 96.1

Average 98.70 97.925 98.85 96.30

could have been stratified based on the covariate variable, e.g., weight. ANCOVA substi-
tutes for the lack of stratification by adjusting the results for the covariate, e.g., weight.
Refer to the chapter on regression (Chapter 7) and to the section on one-way analysis of
variance (Section 8.1) if necessary to follow this discussion. Reference 10 is useful reading
for more advanced approaches and discussion of ANCOVA.

In order to facilitate the presentation, Table 8.18 shows the results of an experiment
comparing two methods of analysis for drug in a finished product. In this example, the
analysis of the raw material used in the product was also available.

If the two methods are to be compared using the 4 final (product) assays for each
method, we would use a one-way ANOVA (independent sample t test in this example).
The ANOVA comparing the two methods would be as shown in Table 8.19 and Table
8.21, columns 1 and 2.

The two methods yield different results at the 0.05 level (p � 0.02), with averages
of 97.925 and 96.3, respectively. The question that one may ask is, ‘‘Are the raw material
assays different for the products used in the test, accounting for the difference?’’ We can
perform an ANOVA on the initial values to test this hypothesis. See Table 8.20 and Table
8.21, columns 1 and 3.

Table 8.19 ANOVA Comparing Methods Based on Final Assay

Source d.f. Sum of squares Mean square F value Pr � F

Between Methods 1 5.28125 5.28125 9.88 0.0200
Within Methods 6 3.20750 0.53458
Total 7 8.48875

Table 8.20 ANOVA Comparing Raw Material Assays

Source d.f. Sum of squares Mean square F value Pr � F

Between Methods 1 0.0450 0.0450 0.33 0.5847
Within Methods 6 0.8100 0.1350
Total 7 0.8550
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Ȳ
)]

.
C

ol
um

n 
5 

is
 c

om
pu

te
d 

as
 c

ol
um

n 
4/

co
lu

m
n 

3 
(F

in
al

 A
ss

ay
 is

 th
e 

Y
va

ri
ab

le
; R

aw
 M

at
er

ia
l A

ss
ay

 is
 th

e 
X

va
ri

ab
le

).
C

ol
um

n 
6 

is
 C

ol
um

n 
3 

�
co

lu
m

n 
5 

sq
ua

re
d.

C
ol

um
n 

7 
is

 d
.f

. f
or

 r
es

id
ua

l (
co

lu
m

n 
8)

.
C

ol
um

n 
8 

is
 c

ol
um

n 
2 

– 
co

lu
m

n 
6.



253Analysis of Variance

The average raw material assays for the lots used for the two methods are not signifi-
cantly different (98.7 and 98.85). Thus, we may assume that analyzing the final assay
results are not biased by possible differences in raw material assays. (Note that if the
averages of the raw materials were different for the two methods, then one would want
to take this into consideration when comparing the methods based on the final assay.)
However, it is still possible that use of the initial values may reduce the variability of the
comparison of methods if there is a relationship between the raw material assay and the
final assay. If there is such a relationship, we can compute a linear fit of the final assay
result vs. the raw material assay, and use the residual error from the fit as an estimate of
the variance. If in fact a relationship exists, the variance estimate will be smaller than that
obtained when the relationship is ignored. The lines fit to each treatment are assumed to
be parallel, i.e., the relationship between the covariate and the treatment variables is the
same for each treatment. With this assumption, the difference between treatments, adjusted
for the covariate, is the difference between the lines at any value of the covariate, in
particular the difference of the intercepts of the parallel lines. These concepts are illustrated
in Figure 8.6.

Assumptions for covariance analysis include:

1. The covariate is not dependent on the experimental observation. That is, the
covariate is not affected by the treatment. For example, an individual’s weight
measured prior to and during treatment by a cholesterol-reducing agent is not
affected by his cholesterol reading (s).

2. The covariate is a fixed variable or the covariate and outcome variable have a
bivariate normal distribution. The covariate is specified and measured before
randomization to treatments.

3. Slopes for regression lines within each treatment group are equal, i.e., the lines
are parallel. If not, the analysis is still correct, but if interaction is suspected, we
end up with an average effect. Interaction suggests that the comparison of treat-
ments depends on the covariate level.

Figure 8.6 Illustration of adjusted difference of means in ANCOVA.
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Table 8.22 ANCOVA Software Analysis of Data from Table 8.18

Source d.f. Sum of Squares Mean Square F-Ratio Prob � F

X (Cov) 1 .5377778 .5377778 1.01 0.3616
A (Method) 1 4.278962 4.278962 8.01 0.0366
Error 5 2.669722 .5339444
Total (Adj) 7 8.488751
Method Means
I 97.86389
II 96.36112

Covariance analysis is usually performed with the aid of a statistical software program
as shown in 8.22. However, to interpret the output, it is useful to understand the nature
of the calculations. Table 8.21 is a complete table of the analysis for the example of the
two analytical methods (Table 8.18). The following discussion refers to entries in Table
8.21.

The software (Table 8.22) computes the means, adjusted for the covariate, but does
not perform a test for parallelism of the regression lines. A SAS program which includes
Covariate � Method interaction in the model is a test for parallelism. To test for parallelism
of the treatment vs. covariate fitted lines, an analysis is performed to determine if the
residual SS are significantly increased when all points are fitted to individual (2 or more)
parallel lines as compared to a fit to separate lines. (Note the similarity to stability analysis
for pooling lots, Section 8.7.) An F test comparing the variances is performed to determine
significance:

(8.19)

Fdf1,df2

Residual SS parallel lines Residual SS separate = ( − llines)/(Groups 1)

(Residual SS separate lines)/d.f.

−

The residual SS from the parallel lines is obtained from a least squares fit (Final
Product Assay vs. Raw Material Assay). These residual SS are calculated from line d in
Table 8.21:

� (y � ȳ)2 � b2 � (x � x̄)2 (See Chapter 7, Section 7.4),

This is equal to (3.2075 � 0.8152 � 0.81) � 2.67.
The residual SS when each treatment group is fit separately is in line c, column (8)

in Table 8.21 The analysis is in a form of the Gauss—Markov Theorem which describes
an F test comparing two linear models, where one model has additional parameters. In
this example we fit a model with separate intercepts and slopes, a total of 4 parameters
for the 2 methods, and compare the residual SS to a fit with common slope and separate
intercepts, 3 parameters. The increase in the mean square residual due to the fit with less
parameters is tested for significance using the F distribution as shown in Eq. (8.19). This
is the same approach as that used to determine the pooling of stability lots as discussed
in Section 8.7.

(8.20)F1,4

Residual SS parallel lines Residual SS separate line= ( − ss)/(2 1)

(Residual SS separate lines)/(8

−
− 4)
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In this example, the F test with 1 and 4 d.f. is

[(2.67 � 2.663)/1]/[2.663/4] � 0.01,

which is not significant at p � 0.05 (p 
 0.9). The lines can be considered to be parallel.
This computation may be explained from a different viewpoint. For a common slope,

the residual SS is computed as � (y � ȳ)2 � b2 � (x � x̄)2. Here � (y � ȳ)2 and
� (x � x̄)2 are the sums of the sums of squares for each line, and b is the common slope
(� 0.815). From Table 8.21, line d, columns 2–4, the sum of squares for the common
line is:

0.6275 � 2.58 � (�0.8148)2(0.36 � 0.45) � 2.670

For the separate lines (column 8 in Table 8.21), the sums of the sum of squares is:

SS � 0.325 � 2.338 � 2.663

Another test of interest is the significance of the slope (vs. 0). If the test for the slope
is: not significant, the concomitant variable (raw material assay) is not very useful in
differentiating the methods. The test for the slope is: within regression MS/within residual
MS.

The residual MS is that resulting from the fit of parallel lines (common slope).
In this example, from line d in Table 8.21, F1,5 � 0.538/(2.67/5) � 1.01 (p � 0.36).

The common slope is �0.815 (line d, column 5) which is not significantly different from
0. Thus, we could conclude that use of the raw material assay as an aid in differentiating
the methods is not useful. Nevertheless, the methods are significantly different both when
we ignore the raw material assay (p � 0.02, Table 8.19) and when we use the covariance
analysis (see below).

The test for difference of means adjusted for the covariate is a test for difference of
intercepts of the parallel lines.

F1,5

Residual SS Total Residual SS Within)/(groups 1)

(Res
= ( − −

iidual SS parallel lines)/(d.f.)

In this example, F1,5 � (6.948 � 2.670)/(2.670/5) � 8.01 (p � 0.05) (see column 8,
Table 8.21. This is a comparison of the fit with a common intercept (Total SS) to the fit
with separate intercepts (Within SS) for the parallel lines.

The adjusted difference between treatments can be calculated as the difference be-
tween intercepts or, equivalently, the distance between the parallel lines (Fig. 8.6). The
adjusted means are calculated as follows (6):

The common slope is b. The intercept is Ȳ � bX̄ (see Eq. 7.3, Chapter 7). The difference
of the intercepts is:

( ) ( ) ( )

. . ( . )( .

Y bX Y bX Y Y b X Xa a b b a b a b− − − = − − −
= − − −97 925 96 3 0 815 98 7 −−
=

98 85

1 503

. )

.

The difference between means adjusted for the raw material assay is 1.503.

8.6.1 Comparison of ANCOVA with Other Analyses

Two other common analyses use differences from baseline and ratios of the observed
result to the baseline value when a concomitant variable, such as a baseline value, is
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available. For example, in clinical studies, baseline values are often measured in order to
assess a treatment effect relative to the baseline value. Thus, in addition to ANCOVA,
two other ways of analyzing such data are analysis of differences from baseline or the
ratio of the observed value and baseline value. The use of changes from baseline is a
common approach which is statistically acceptable. If the covariance assumptions are
correct, covariance should improve upon the difference analysis, that is, it should be more
powerful in detecting treatment differences. The difference analysis and ANCOVA will
be similar if the ANCOVA model approximates Y � a � X, that is, the slope of the X
vs. Y relationship is one (1). The use of ratios does disturb the normality assumption, but
if the variance of the covariate is small, this analysis should be more or less correct. This
model suggests that Y/X � a, where a is a constant. This is equivalent to Y � aX, a
straight line that goes through the origin. (If the Y values, the experimentally observed
results, are far from 0, and/or the X values are clustered close together, the statistical
conclusions for ratios (observed/baseline) should be close to that from the ANCOVA.)
See Exercise Problem 13 for further clarification.

A nonparametric ANCOVA is described in Chapter 15, Section 15.7.

8.7 ANOVA FOR POOLING REGRESSION LINES AS RELATED TO
STABILITY DATA

As discussed in Chapter 7, an important application of regression and analysis of variance
(ANOVA) is in the analysis of drug stability for purposes of establishing a shelf life.
Accelerated stability studies are often used to establish a preliminary shelf life (usually
24 months), which is then verified by long-term studies under label conditions (e.g., room
temperature). If more than one lot is to be used to establish a shelf life, then data from
all lots should be used in the analysis. Typically, 3 production lots are put on stability at
room temperature in order to establish an expiration date. The statistical analysis recom-
mended by the FDA [7] consists of preliminary tests for pooling of data from the different
lots. If both slopes and intercepts are considered similar for the multiple lots based on a
statistical test, then data from all lots can be pooled. If not, the data may be analyzed as
separate lots, or if slopes are not significantly different, a common slope with separate
intercepts may be used to analyze the data. Pooling of all of the data gives the most
powerful test (the longest shelf life) because of the increased degrees of freedom and
multiple data points. If lots are fitted separately, suggesting lot heterogeneity, expiration
dating is based on the lot that gives the shortest shelf life. Separate fittings also result in
poor precision because an individual lot will have fewer degrees of freedom and less data
points than that resulting from a pooled analysis. Degrees of freedom when fitting regres-
sion lines is N � 2, so that a stability study with 7 time points will have only 5 d.f. (0,
3, 6, 9, 12, 18, and 24 months). Fitting the data with a common slope will have intermediate
precision compared to separate fits and a single combined fit.

The computations are complex and cannot be described in detail here, but the general
principles will be discussed. The fitting is of the form of regression and covariance (see
also Section 8.6). The following model (Model 1) fits separate lines for each lot.

Potency MODEL ( ) ( )Y a b Xi i= +∑ ∑ 1

For three lots, the model contains six parameters, three intercepts and three slopes.
The residual error sum of squares is computed with N � 6 d.f. for 3 lots, where N is the
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total number of data pairs. Thus, each of the three lines is fit separately, each with its
own slope and intercept. Least squares theory, with the normality assumption (the depen-
dent variable is distributed normally with the same variance at each value, X), can be
applied to construct a test for equality of slopes. This is done by fitting the data with a
reduced number of parameters, where there is a common slope for the lots tested. The fit
is made to a model of the form:

Potency MODEL ( ) ( )Y a bXi= +∑ 2

For 3 lots, this fit has N � 4 d.f., where N is the total number of data pairs (X, Y)
with the 3 intercepts and single slope accounting for the 4 d.f. Statistical theory shows
that the following ratio, Eq. (8.21), has an F distribution:

(8.21)
[Residual SS from model (2) Residual SS from model (1)]/[− P ]

]

−
−

P

N PResidual SS from model (1)/[

'

'

If P′ is the number of parameters to be fitted in Model (1), 6 for 3 lots, and P is the
number of parameters in Model (2), 4 for 3 lots, then the d.f. of this F statistic is [P′ �
P] d.f. in the numerator (2 for 3 lots), and N � P′ d.f. in the denominator (N � 6 for 3
lots). If the F statistic shows significance, then the data can not be pooled with a common
slope, and separate fits for each line are used for predicting shelf life. A significant F (P
� 0.25) suggests that a fit to individual lines is significantly better than a fit with a common
slope, based on the increase in the sums of squares when the model with less parameters
is fit. If slopes are not poolable, a 95% lower, if appropriate, one-sided (or 90% two-
sided) confidence band about the fitted line for each lot is computed, and the expiration
dates are determined for each batch separately.

If the F statistic is not significant, then a model with a common slope, but different
intercepts, may be fit.

The most advantageous condition for estimating shelf life is when data from all lots
can be combined. Before combining the data into a single line, a statistical test to determine
if the lots are poolable is performed. In order to pool all of the data, a two-stage test is
proposed by the FDA. First the test for a common slope is performed as described in the
preceding paragraph. If the test for a common slope is not significant (p 
 0.25), a test
is performed for a common intercept. This is accomplished by computing the residual
sum of squares for a fit to a single line (Model 3) minus the residual sums of squares for
the reduced model with a common slope, Model 2, adjusted for d.f., and divided by the
residual SS from the fit to the full model (separate slopes and intercepts), Model (1).

Potency (Y) � a � bX MODEL (3).

The F test for a common intercept is:

(8.22)
Residual SS from model (3) Residual SS from model (2)]/[− P −− P

P

]

]Residual SS from model (1)/[N−
'

'

For 3 lots the F statistic has 2 d.f. in the numerator (2 parameter fit for a single line
vs. a 4 parameter fit, 3 intercepts and 1 slope for a fit with a common slope), and N �
6 d.f. in the denominator. Again, a significant F suggests that a fit using a common slope
and intercept is not appropriate.

The FDA has developed a SAS program to analyze stability data using the above
rules to determine the degree of pooling, i.e., separate lines for each lot, a common slope
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Table 8.23 Modified and Annotated SAS Output from FDA Stability Program

Source SS d.f. MS F P

A (Pooled line) 9.67 4 2.42 3.10714 0.18935
B (intercept) 8.67 2 4.33 5.57143 0.09770
C (slope) 1.00 2 0.50 0.64286 0.58566
D (error) 2.33 3 0.78

Key to sources of variation:
A � separate intercept, separate slope  common intercept, common slope. This is the residual SS from a fit to a
single line minus the residual SS from fits to separate lines. This is the SS attributed to model 3.
B � separate intercept, common slope  common intercept, common slope. This is the residual SS from a fit to a
single line minus the residual SS from a fit with common slope and separate intercepts (A – C).
C � separate intercept, separate slope  separate intercept, common slope. This is the residual SS from a fit to a
lines with a common slope and separate intercepts line minus the residual SS from fits to separate lines. This is
the SS attributed to model 2.
D � Residual. This is the residual SS from fits to separate lines (9 � 6 � 3 d.f.). This is the SS attributed to model
1.

for all lots, or a single fit with a common slope and intercept. A condensed version of the
output of this program is described below.

The raw data is for three lots (A, B and C), each with three assays at 0, 6 and 12
months.

Lot

Time (mos) A B C

0 100 102 98
6 99 98 97
12 96 97 95

The output testing for pooling is derived from an analysis of covariance with time as
the covariate (Table 8.23). The analysis of variance shows a common slope, indicated by
line C with P 
 0.25 (P � 0.58566). The test for a common intercept is significant, P
� 0.25. Therefore, lines are fitted with a common slope but with separate intercepts.

The shelf life estimates vary from 20 to 25 months. The shortest time, 20 months, is
used as the shelf life.

Stability Analysis

Batch 1
Fitted Line: Y � 100.33 �0.333 X

Batch 2
Fitted Line: Y � 101.00 �0.333 X

Batch 3
Fitted Line: Y � 98.67 �0.333 X
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Stability Analysis: 95% One-Sided
Lower Confidence Limits (Separate
Intercepts and Common Slope)

Estimated Dating Period
Batch (months/weeks)

1 24
2 25
3 20

The data for each batch should be visually inspected to ensure that the average results
based on these calculations have not hidden non-compliant or potentially non-compliant
batches.

The FDA recommends using a significance level of 25% rather than the usual 5%
level. The reason for this is the use of multi-level preliminary testing before coming to a
decision. The use of a 25% level is somewhat arbitrary, and does not seem to have a clear
theoretical rationale. This higher level of significance means that the criterion for pooling
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lots is more difficult to attain, thereby making it more difficult to establish the longer
shelf life that results from pooling data from multiple lots. This may be considered to be
a conservative rule from the point of view that shelf lives will not be overestimated.
However, the analysis is open to interpretation, and it is the author’s opinion that the 25%
level of significance is too high.

Another problem with the FDA approach is that power is not considered in the evalua-
tion. For example, if the model and assay precision is very good, lots which look similar
with regard to degradation may not be poolable, whereas with very poor precision, lots
that appear not to be similar may be judged poolable. Unfortunately, this problem is not
easily solved. Finally, it is not clear why the FDA has not included a test for pooling
based on a common intercept and separate slopes.

Nevertheless, the FDA approach has much to recommend it, as the problem is quite
complex.

KEY TERMS

Alpha level Model
ANCOVA Multiple comparisons
ANOVA Newman—Keuls’ test
ANOVA table One-way analysis of variance
A posteriori comparisons Parallel groups
A priori comparisons Parallelism
Assumptions Placebo
Between-treatment sum of squares or Pooled variance

mean square (BSS or BMS) Pooled regressions
Block Positive control
Bonferroni test Power
Completely randomized design Precision
Components of variance Randomized block design
Contrasts Random model
Control Repeated measures design
Correction term Replicates
Degrees of freedom Residual
Designed experiments Scheffé method for multiple comparisons
Dunnett’s test Shortcut computing formulas
Error Source
Error sum of squares or mean Stability
square (ESS or EMS) Sum of squares
Experimental error Symmetry
Experimental units Total sum of squares (TSS)
F distribution Treatments
Fixed model Treatment sum of squares or mean square
Independence T tests
Interaction Tukey’s multiple range test
LSD procedure for multiple comparisons Two-way analysis of variance

mean square Within sum of squares or mean square
Missing data (WSS or WMS)
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EXERCISES

1. Perform three separate t tests to compare method A to method B, method A to
method C, and method B to method C in Table 8.1. Compare the results to that
obtained from the ANOVA (Table 8.3).

2. Treatments A, B, and C are applied to six experiment subjects with the following
results:

A B C

1 3 4
5 2 1

Perform an ANOVA and interpret the between-treatment mean square.
3. Repeat the t tests from Exercise Problem 1, but use the ‘‘pooled’’ error term for

the tests. Explain why the results are different from those calculated in Problem
1. When is it appropriate to perform separate t tests?

4. It is suspected that four analysts in a laboratory are not performing accurately. A
known sample is given to each analyst and replicate assays performed by each
with the following results:

Analyst

I II III IV

10 9 8 9
11 10 9 9
10 11 8 8

(a) State the null and alternative hypotheses.
(b) Is this a fixed or a random model?
(c) Perform an ANOVA. Use the LSD procedure to show which analysts differ

if the ‘‘analyst’’ mean square is significant at the 5% level.
(d) Use Tukey’s and Scheffé’s multiple comparison procedures to test for treat-

ment (analyst) differences. Compare the results to those in part (c).
5. Physicians from seven clinics in the United States were each asked to test a new

drug on three patients. These physicians are considered to be among those who
are expert in the disease being tested. The seventh physician tested the drug on
only two patients. The physicians had a meeting prior to the experiment to
standardize the procedure so that all measurements were uniform in the seven
sites.
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The results were as follows:

Clinic

1 2 3 4 5 6 7

9 11 6 10 5 7 12
8 9 9 10 3 7 10
7 13 9 7 4 7 —

(a) Perform an ANOVA.
(b) Are the results at the different clinics significantly different at the 5% level?
(c) If the answer to part (b) is yes, which clinics are different? Which multiple

comparison test did you use?
**6. Are the following examples random or fixed? Explain.

(a) Blood pressure readings of rats are taken after the administration of four
different drugs.

(b) A manufacturing plant contains five tablet machines. The same product is
made on all machines, and a random sample of 100 tablets is chosen from
each machine and weighed individually. The problem is to see if the machines
differ with respect to the weight of tablets produced.

(c) Five formulations of the same product are compared. After 6 months, each
formula is assayed in triplicate to compare stability.

(d) Same as part (b) except that the plant has 20 machines. Five machines are
selected at random for the comparison.

(e) Ten bottles of 100 tablets are selected at random in clusters 10 times during
the packaging of tablets (a total of 10,000 tablets). The number of defects
in each bottle are counted. Thus we have 10 groups, each with 10 readings.
We want to compare the average number of defects in each cluster.

7. Dissolution is compared for three experimental batches with the following results
(each point is the time in minutes for 50% dissolution for a single tablet).

Batch 1: 15, 18, 19, 21, 23, 26
Batch 2: 17, 18, 24, 20
Batch 3: 13, 10, 16, 11, 9

(a) Is there a significant difference among batches?
(b) Which batch is different?
(c) Is this a fixed or a random model?

8. In a clinical trial, the following data were obtained comparing placebo and two
drugs:

** A more advanced topic.



263Analysis of Variance

Placebo Drug 1 Drug 2

Patient Predrug Postdrug Predrug Postdrug Predrug Postdrug

1 180 176 170 161 172 165
2 140 142 143 140 140 141
3 175 174 180 176 182 175
4 120 128 115 120 122 122
5 165 165 176 170 171 166
6 190 183 200 195 192 185

(a) Test for treatment differences, using only postdrug values.
(b) Test for treatment differences by testing the change from baseline (predrug).
(c) For problem 8(b), perform a posteriori multiple comparison tests (1) compar-

ing all pairs of treatments using Tukey’s multiple range rest and the New-
man—Keuls’ test and (2) comparing drug 1 and drug 2 to control using
Dunnett’s test.

9. Tablets were made on six different tablet presses during the course of a run (batch).
Five tablets were assayed during the 5-hour run, one tablet during each hour. The
results are as follows:

Press

Hour 1 2 3 4 5 6

1 47 49 46 49 47 50
2 48 48 48 47 50 50
3 52 50 51 53 51 52
4 50 47 50 48 51 50
5 49 46 50 49 47 49

(a) Are presses and hours fixed or random?
(b) Do the presses give different results (5% level)?
(c) Are the assay results different at the different hours (5% level)?
(d) What assumptions are made about the presence of interaction?
(e) If the assay results are significantly different at different hours, which hour(s)

is different from the others?
**10. Duplicate tablets were assayed at hours 1, 3, and 5 for the data in Problem 9,

using only presses 2, 4, and 6, with the following results:

** A more advanced topic.
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Press

Hour 2 4 6

1 49, 52 49, 50 50, 53
3 50, 48 53, 51 52, 55
5 46, 47 49, 52 49, 53

If presses and hours are fixed, test for the significance of presses and hours
at the 5% level. Is there significant interaction? Explain in words what is meant
by interaction in this example.

11. Use Tukey’s multiple range test to compare all three treatments (a posteriori test)
for the data of Tables 8.13 and 8.14.

12. Compute the ANOVA for data of Table 8.17. Are treatments (columns) signifi-
cantly different?

13. Perform an analysis of variance (one-way) comparing methods for the ratios (final
assay/raw material assay) for data of Table 8.18. Compare probability level for
methods to ANCOVA results.
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9

FACTORIAL DESIGNS

Factorial designs are used in experiments where the effects of different factors, or condi-
tions, on experimental results are to be elucidated. Some practical examples where factorial
designs are optimal are experiments to determine the effect of pressure and lubricant on
the hardness of a tablet formulation, to determine the effect of disintegrant and lubricant
concentration on tablet dissolution, or to determine the efficacy of a combination of two
active ingredients in an over-the-counter cough preparation. Factorial designs are the de-
signs of choice for simultaneous determination of the effects of several factors and their
interactions. This chapter introduces some elementary concepts of the design and analysis
of factorial designs.

9.1 DEFINITIONS (VOCABULARY)

9.1.1 Factor

A factor is an assigned variable such as concentration, temperature, lubricating agent,
drug treatment, or diet. The choice of factors to be included in an experiment depends on
experimental objectives and is predetermined by the experimenter. A factor can be qualita-
tive or quantitative. A quantitative factor has a numerical value assigned to it. For example,
the factor ‘‘concentration’’ may be given the values 1%, 2%, and 3%. Some examples of
qualitative factors are treatment, diets, batches of material, laboratories, analysts, and
tablet diluent. Qualitative factors are assigned names rather than numbers. Although facto-
rial designs may have one or many factors, only experiments with two factors will be
considered in this chapter. Single-factor designs fit the category of one-way ANOVA
designs. For example, an experiment designed to compare three drug substances using
different patients in each drug group is a one-way design with the single factor ‘‘drugs.’’

9.1.2 Levels

The levels of a factor are the values or designations assigned to the factor. Examples of
levels are 30� and 50� for the factor ‘temperature,’’ 0.1 molar and 0.3 molar for the factor
‘‘concentration,’’ and ‘‘drug’’ and ‘‘placebo’’ for the factor ‘‘drug treatment.’’

265
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The runs or trials that comprise factorial experiments consist of all combinations of
all levels of all factors. As an example, a two-factor experiment would be appropriate
for the investigation of the effects of drug concentration and lubricant concentration on
dissolution time of a tablet. If both factors were at two levels (two concentrations for each
factor), four runs (dissolution determinations for four formulations) would be required,
as follows:

Symbol Formulation

(1) Low drug and low lubricant concentration
a Low drug and high lubricant concentration
b High drug and low lubricant concentration
ab High drug and high lubricant concentration

‘‘Low’’ and ‘‘high’’ refer to the low and high concentrations pre-selected for the drug
and lubricant. (Of course, the actual values selected for the low and high concentrations
of drug will probably be different from those chosen for the lubricant.) The notation
(symbol) for the various combinations of the factors, (1), a, b, ab, is standard. When both
factors are at their low levels, we denote the combination as (1). When factor A is at its
high level and factor B is at its low level, the combination is called a. b means that only
factor B is at the high level, and ab means that both factors A and B are at their high
levels.

9.1.3 Effects

The effect of a factor is the change in response caused by varying the level(s) of the factor.
The main effect is the effect of a factor averaged over all levels of the other factors.
In the previous example, a two-factor experiment with two levels each of drug and
lubricant, the main effect due to drug would be the difference between the average
response when drug is at the high level (runs b and ab) and the average response
when drug is at the low level [runs (1) and a]. For this example the main effect can
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be characterized as a linear response, since the effect is the difference between the
two points shown in Fig. 9.1.

More than two points would be needed to define more clearly the nature of the response
as a function of the factor drug concentration. For example, if the response plotted against
the levels of a quantitative factor is not linear, the definition of the main effect is less
clear. Figure 9.2 shows an example of a curved (quadratic) response based on experimental
results with a factor at three levels. In many cases, an important objective of a factorial
experiment is to characterize the effect of changing levels of a factor or combinations of
factors on the response variable.

9.1.4 Interaction

Interaction may be thought of as a lack of ‘‘additivity of factor effects.’’ For example,
in a two-factor experiment, if factor A has an effect equal to 5 and factor B has an effect
of 10, additivity would be evident if an effect of 15 (5 � 10) were observed when both

Figure 9.1 Linear effect of drug. a � lubricant; b � drug.
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Figure 9.2 Nonlinear (quadratic) effect.

A and B are at their high levels (in a two-level experiment). (It is well worth the extra
effort to examine and understand this concept as illustrated in Fig. 9.3.)

If the effect is greater than 15 when both factors are at their high levels, the result is
synergistic (in biological notation) with respect to the two factors. If the effect is less than
15 when A and B are at their high levels, an antagonistic effect is said to exist. In statistical
terminology, the lack of additivity is known as interaction. In the example above (two
factors each at two levels), interaction can be described as the difference between the
effects of drug concentration at the two lubricant levels. Equivalently, interaction is also
the difference between the effects of lubricant at the two drug levels. More specifically,

Figure 9.3 Additivity of effects: Lack of interaction.



269Factorial Designs

this means that the drug effect measured when the lubricant is at the low level [a�(1)]
is different from the drug effect measured when the lubricant is at the high level (ab�b).
If the drug effects are the same in the presence of both high and low levels of lubricant,
the system is additive, and no interaction exists. Interaction is conveniently shown graphi-
cally as depicted in Fig. 9.4. If the lines representing the effect of drug concentration at
each level of lubricant are ‘‘parallel,’’ there is no interaction. Lack of parallelism, as
shown in Fig. 9.4B, suggests interaction. Examination of the lines in Fig. 9.4B reveals
that the effect of drug concentration on dissolution is dependent on the concentration of
lubricant. The effects of drug and lubricant are not additive.

Factorial designs have many advantages [1]:

1. In the absence of interaction, factorial designs have maximum efficiency in esti-
mating main effects.

2. If interactions exist, factorial designs are necessary to reveal and identify the
interactions.

3. Since factor effects are measured over varying levels of other factors, conclusions
apply to a wide range of conditions.

4. Maximum use is made of the data since all main effects and interactions are
calculated from all of the data (as will be demonstrated below).

5. Factorial designs are orthogonal; all estimated effects and interactions are inde-
pendent of effects of other factors. Independence, in this context, means that
when we estimate a main effect, for example, the result we obtain is due only to
the main effect of interest, and is not influenced by other factors in the experiment.
In non-orthogonal designs (as is the case in many multiple-regression-type
‘‘fits’’—see App. III), effects are not independent. Confounding is a result of
lack of independence. When an effect is confounded, one cannot assess how

Figure 9.4 Illustration of interaction.
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much of the observed effect is due to the factor under consideration. The effect
is influenced by other factors in a manner that often cannot be easily unraveled,
if at all. Suppose, for example, that two drugs are to be compared, with patients
from a New York clinic taking drug A and patients from a Los Angeles clinic
taking drug B. Clearly, the difference observed between the two drugs is con-
founded with the different locations. The two locations reflect differences in
patients, methods of treatment, and disease state, which can affect the observed
difference in therapeutic effects of the two drugs. A simple factorial design where
both drugs are tested in both locations will result in an ‘‘unconfounded,’’ clear
estimate of the drug effect if designed correctly, e.g., equal or proportional number
of patients in each treatment group at each treatment site.

9.2 TWO SIMPLE HYPOTHETICAL EXPERIMENTS TO ILLUSTRATE
THE ADVANTAGES OF FACTORIAL DESIGNS

The following hypothetical experiment illustrates the advantage of the factorial approach
to experimentation when the effects of multiple factors are to be assessed. The problem
is to determine the effects of a special diet and a drug on serum cholesterol levels. To
this end, an experiment was conducted in which cholesterol changes were measured in
three groups of patients. Group A received the drug, group B received the diet, and group
C received both the diet and drug. The results are shown below. The experimenter con-
cluded that there was no interaction between drug and diet (i.e., their effects are additive).

Drug alone: decrease of 10 mg %
Diet alone: decrease of 20 mg %
Diet � drug: decrease of 30 mg %

However, suppose that patients given neither drug nor diet would have shown a decrease
of serum cholesterol of 10 mg % had they been included in the experiment. (Such a result
could occur because of ‘‘psychological effects’’ or seasonal changes, for example.) Under
these circumstances, we would conclude that drug alone has no effect, that diet results in
a cholesterol lowering of 10 mg %, and that the combination of drug and diet is synergistic.
The combination of drug and diet results in a decrease of cholesterol equal to 20 mg %.
This concept is shown in Fig. 9.5.

Thus, without a fourth group, the control group (low level of diet and drug), we have
no way of assessing the presence of interaction. This example illustrates how estimates
of effects can be incorrect when pieces of the design are missing. Inclusion of a control
group would have completed the factorial design, two factors at two levels. Drug and diet
are the factors, each at two levels, either present or absent. The complete factorial design
consists of the following four groups:

(1) Group on normal diet without drug (drug and special diet at low level)
a Group on drug only (high level of drug, low level of diet)
b Group on diet only (high level of diet, low level of drug)
ab Group on diet and drug (high level of drug and high level of diet)

The effects and interaction can be clearly calculated based on the results of these four
groups (see Fig. 9.5).

Incomplete factorial designs such as those described above are known as the one-at-
a-time approach to experimentation. Such an approach is usually very inefficient. By
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Figure 9.5 Synergism in cholesterol lowering as a result of drug and diet.

performing the entire factorial, we usually have to do less work, and we get more informa-
tion. This is a consequence of an important attribute of factorial designs: effects are mea-
sured with maximum precision. To demonstrate this property of factorial designs, consider
the following hypothetical example. The objective of this experiment is to weigh two
objects on an insensitive balance. Because of the lack of reproducibility, we will weigh
the items in duplicate. The balance is in such poor condition that the zero point (balance
reading with no weights) is in doubt. A typical one-at-a-time experiment is to weigh each
object separately (in duplicate) in addition to a duplicate reading with no weights on the
balance. The weight of item A is taken as the average of the readings with A on the
balance minus the average of the readings with the pans empty. Under the assumption
that the variance is the same for all weighings, regardless of the amount of material being
weighed, the variance of the weight of A is the sum of the variances of the average weight
of A and the average weight with the pans empty (see App. I):

(9.1)
σ σ σ

2 2
2

2 2
+ =

Note that the variance of the difference of the average of two weighings is the sum of the
variances of each weighing. (The variance of the average of two weighings is �2/2.)
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Similarly, the variance of the weight of B is �2 � �2/2 � �2/2. Thus, based on six
readings (two weighings each with the balance empty, with A on the balance and with B
on the balance), we have estimated the weights of A and B with variance equal to �2,
where �2 is the variance of a single weighing.

In a factorial design, an extra reading(s) would be made, a reading with both A and
B on the balance. In the following example, using a full factorial design, we can estimate
the weight of A with the same precision as above using only 4 weighings (instead of 6).
In this case the weighings are made without replication. That is, four weighings are made
as follows:

(1) Reading with balance empty 0.5 kg
a Reading with item A on balance 38.6 kg
b Reading with item B on balance 42.1 kg

ab Reading with both items A and B on balance 80.5 kg

With a full factorial design, as illustrated above, the weight of A is estimated as (the main
effect of A)

(9.2)
a ab b− + −( )1

2

Expression (9.2) says that the estimate of the weight of A is the average of the weight of
A alone minus the reading of the empty balance [a � (1)] and the weight of both items
A and B minus the weight of B. According to the weights recorded above, the weight of
A would be estimated as

38.6 80.5 42.1
kg

− + − =0 5

2
38 25

.
.

Similarly, the weight of B is estimated as

42.1 80.5 38.6
kg

− + − =0 5

2
41 75

.
.

Note how we use all the data to estimate the weights of A and B; the weight of B alone
is used to help estimate the weight of A, and vice versa!

Interaction is measured as the average difference of the weights of A in the presence
and absence of B as follows:

(9.3)
(ab b) a− −[ − (1)]

2

We can assume that there is no interaction, a very reasonable assumption in the present
example. (The weights of the combined items should be the sum of the individual weights.)
The estimate of interaction in this example is

(
.

80.5 42.1) 38.6− − ( − 0.5)
2

0 3=

The estimate of interaction is not zero because of the presence of random errors made on
this insensitive balance.
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Table 9.1 Eight Experiments for a 23 Factorial Designa

Combination A B C

(1) � � �
a � � �
b � � �
ab � � �
c � � �
ac � � �
bc � � �
abc � � �

a �, factor at low level; �, factor at high level.

In this example, we have made four weighings. The variance of the main effects (i.e.,
the average weights of A and B) is �2, exactly the same variance as was obtained using
six weightings in the one-at-a-time experiment!* We obtain the same precision with two-
thirds of the work: four readings instead of six. In addition to the advantage of greater
precision, if interaction were present, we would have had the opportunity to estimate the
interaction effect in the full factorial design. It is not possible to estimate interaction in
the one-at-a-time experiment.

9.3 PERFORMING FACTORIAL EXPERIMENTS:
RECOMMENDATIONS AND NOTATION

The simplest factorial experiment, as illustrated above, consists of four trials, two factors
each at two levels. If three factors, A, B, and C, each at two levels, are to be investigated,
eight trials are necessary for a full factorial design, as shown in Table 9.1. This is also
called a 23 experiment, three factors each at two levels.

As shown in Table 9.1, in experiments with factors at two levels, the low and high
levels of factors in a particular run are denoted by the absence or presence of the letter,
respectively. For example, if all factors are at their low levels, the run is denoted as (1).
If factor A is at its high level, and B and C are at their low levels, we use the notation a.
If factors A and B are at their high levels, and C is at its low level, we use the notation
ab; and so on.

Before implementing a factorial experiment, the researcher should carefully consider
the experimental objectives vis-à-vis the appropriateness of the design. The results of a

* The main effect of A, for example, is [a � (1) � ab � b]/2. The variance of the main effect is
(� 2

a � � 2(1) � � 2
ab � � 2

b)/4 � �2 . �2 is the same for all weighings (App. I).
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factorial experiment may be used (a) to help interpret the mechanism of an experimental
system; (b) to recommend or implement a practical procedure or set of conditions in an
industrial manufacturing situation; or (c) as guidance for further experimentation. In most
situations where one is interested in the effect of various factors or conditions on some
experimental outcome, factorial designs will be optimal.

The choice of factors to be included in the experimental design should be considered
carefully. Those factors not relevant to the experiment, but which could influence the
results, should be carefully controlled or kept constant. For example, if the use of different
technicians, different pieces of equipment, or different excipients can affect experimental
outcomes, but are not variables of interest, they should not be allowed to vary randomly,
if possible. Consider an example of the comparison of two analytical methods. We may
wish to have a single analyst perform both methods on the same spectrophotometer to
reduce the variability that would be present if different analysts used different instruments.
However, there will be circumstances where the effects due to different analysts and
different spectrophotometers are of interest. In these cases, different analysts and instru-
ments may be designed into the experiment as additional factors.

On the other hand, we may be interested in the effect of a particular factor, but because
of time limitations, cost, or other problems, the factor is held constant, retaining the option
of further investigation of the factor at some future time. In the example above, one may
wish to look into possible differences among analysts with regard to the comparison of
the two methods (an analyst � method interaction). However, time and cost limitations
may restrict the extent of the experiment. One analyst may be used for the experiment,
but testing may continue at some other time using more analysts to confirm the results.

The more extraneous variables that can be controlled, the smaller will be the residual
variation. The residual variation is the random error remaining after the ANOVA removes
the variability due to factors and their interactions. If factors known to influence the
experimental results, but of no interest in the experiment, are allowed to vary ‘‘willy-
nilly,’’ the effects caused by the random variation of these factors will become part of
the residual error. Suppose the temperature influences the analytical results in the example
above. If the temperature is not controlled, the experimental error will be greater than if
the experiment is carried out under constant-temperature conditions. The smaller the resid-
ual error, the more sensitive the experiment will be in detecting effects or changes in
response due to the factors under investigation.

The choice of levels is usually well defined if factors are qualitative. For example,
in an experiment where a product supplied by several manufacturers is under investigation,
the levels of the factor ‘‘product’’ could be denoted by the name of the manufacturer:
company X, company Y, and so on. If factors are quantitative, we can choose two or more
levels, the choice being dependent on the size of the experiment (the number of trials and
the amount of replication) and the nature of the anticipated response. If a response is
known to be a linear function of a factor, two levels would be sufficient to define the
response. If the response is ‘‘curved’’ (a quadratic response for example*), at least three
levels of the quantitative factor would be needed to characterize the response. Two levels
are often used for the sake of economy, but a third level or more can be used to meet
experimental objectives as noted above. A rule of thumb used for the choice of levels in

* A quadratic response is of the form Y � A � BX � CX2, where Y is the response and X is the
factor level.
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two-level experiments is to divide extreme ranges of a factor into four equal parts and
take the one-fourth (1/4) and three-fourths (3/4) values as the choice of levels [1]. For
example, if the minimum and maximum concentrations for a factor are 1% and 5%,
respectively, the choice of levels would be 2% and 4% according to this empirical rule.

The trials comprising the factorial experiment should be done in random order if at
all possible. This helps ensure that the results will be unbiased (as is true for many statistical
procedures). The fact that all effects are averaged over all runs in the analysis of factorial
experiments is also a protection against bias.

9.4 A WORKED EXAMPLE OF A FACTORIAL EXPERIMENT

The data in Table 9.2 were obtained from an experiment with three factors each at two
levels. There is no replication in this experiment. Replication would consist of repeating
each of the eight runs one or more times. The results in Table 9.2 are presented in standard
order. Recording the results in this order is useful when analyzing the data by hand (see
below) or for input into computers where software packages require data to be entered in
a specified or standard order. The standard order for a 22 experiment consists of the first
four factor combinations in Table 9.2. For experiments with more than three factors, see
Davies for tables and an explanation of the ordering [1].

The experiment that we will analyze is designed to investigate the effects of three
components (factors)—stearate, drug, and starch—on the thickness of a tablet formulation.
In this example, two levels were chosen for each factor. Because of budgetary constraints,
use of more than two levels would result in too large an experiment. For example, if one
of the three factors were to be studied at three levels, 12 formulations would have to be
tested for a 2 � 2 � 3 factorial design. Because only two levels are being investigated,
nonlinear responses cannot be elucidated. However, the pharmaceutical scientist felt that
the information from this two-level experiment would be sufficient to identify effects that
would be helpful in designing and formulating the final product. The levels of the factors
in this experiment were as follows:

Table 9.2 Results of 23 Factorial Experiment: Effect of Stearate, Drug, and Starch
Concentration on Tablet Thicknessa

Factor Response (thickness)
combination Stearate Drug Starch (cm � 103)

(1) � � � 475
a � � � 487
b � � � 421
ab � � � 426
c � � � 525
ac � � � 546
bc � � � 472
abc � � � 522

a �, factor at low level; �, factor at high level.
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Factor Low level (mg) High level (mg)

A: Stearate 0.5 1.5
B: Drug 60.0 120.0
C: Starch 30.0 50.0

The computation of the main effects and interactions as well as the ANOVA may be done
by hand in simple designs such as this one. Readily available computer programs are
usually used for more complex analyses. (For n factors, an n-way analysis of variance is
appropriate. In typical factorial designs, the factors are usually considered to be fixed.)

For two-level experiments, the effects can be calculated by applying the signs (� or
�) arithmetically for each of the eight responses as shown in Table 9.3. This table is
constructed by placing a � or � in columns A, B, and C depending on whether or not
the appropriate factor is at the high or low level in the particular run. If the letter appears
in the factor combination, a � appears in the column corresponding to that letter. For
example, for the product combination ab, a � appears in columns A and B, and a �
appears in column C. Thus for column A, runs a, ab, ac, and abc have a � because in
these runs, A is at the high level. Similarly, for runs (1), b, c, and bc, a � appears in
column A since these runs have A at the low level.

Columns denoted by AB, AC, BC, and ABC in Table 9.3 represent the indicated
interactions (i.e., AB is the interaction of factors A and B, etc.). The signs in these columns
are obtained by multiplying the signs of the individual components. For example, to obtain
the signs in column AB we refer to the signs in column A and column B. For run (1),
the � sign in column AB is obtained by multiplying the � sign in column A times the
� sign in column B. For run a, the � sign in column AB is obtained by multiplying the
sign in column A (�) times the sign in column B (�). Similarly, for column ABC, we
multiply the signs in columns A, B, and C to obtain the appropriate sign. Thus run ab has

Table 9.3 Signs to Calculate Effects in a 23 Factorial Experimenta

Level of factor
in experiment Interactionb

Factor combination A B C AB AC BC ABC

(1) � � � � � � �
a � � � � � � �
b � � � � � � �
ab � � � � � � �
c � � � � � � �
ac � � � � � � �
bc � � � � � � �
abc � � � � � � �

a �, factor at low level; �, factor at high level.
b Multiply signs of factors to obtain signs for interaction terms in combination [e.g., AB at (1) � (�) � (�) �

(�)].
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Figure 9.6 Main effect of the factor ‘‘stearate.’’

a � sign in column ABC as a result of multiplying the three signs in columns A, B, and
C: (�) � (�) � (�).

The average effects can be calculated using these signs as follows. To obtain the
average effect, multiply the response times the sign for each of the eight runs in a column,
and divide the result by 2n �1, where n is the number of factors (for three factors, 2n�1

is equal to 4). This will be illustrated for the calculation of the main effect of A (stearate).
The main effect for factor A is

(9.4)
[ (− − − − × −1) a b ab c ac bc abc]+ + + + 10

4

3

Note that the main effect of A is the average of all results at the high level of A minus
the average of all results at the low level of A. This is more easily seen if formula (9.4)
is rewritten as follows:

(9.5)Main effect of A
a ab ac abc (1) b c bc= −+ + + + + +

4 4

‘‘Plugging in’’ the results of the experiment for each of the eight runs in Eq. (9.5), we
obtain

[ (

.

487 426 546 10

4
0 022

3+ + + + + +522 475 421 525 472)]

cm

− ×

=

−

The main effect of A is interpreted to mean that the net effect of increasing the stearate
concentration from the low to the high level (averaged over all other factor levels) is to
increase the tablet thickness by 0.022 cm. This result is illustrated in Fig. 9.6.

The interaction effects are estimated in a manner similar to the estimation of the main
effects. The signs in the column representing the interaction (e.g., AC) are applied to the
eight responses, and as before the total divided by 2n�1, where n is the number of factors.
The interaction AC, for example, is defined as one-half the difference between the effect
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of A when C is at the high level and the effect of A when C is at the low level (see Fig.
9.7). Applying the signs as noted above, the AC interaction is estimated as

(9.6)AC interaction abc ac bc c) ab a b (1)]}= + − − − + − −1

4
{( [

The interaction is shown in Fig. 9.7. With starch (factor C) at the high level, 50 mg,
increasing the stearate concentration from the low to the high level (from 0.5 mg to 1.5
mg) results in an increased thickness of 0.0355 cm.* At the low level of starch, 30 mg,
increasing stearate concentration from 0.5 mg to 1.5 mg results in an increased thickness
of 0.0085 cm. Thus stearate has a greater effect at the higher starch concentration, a
possible starch � stearate interaction.

Lack of interaction would be evidenced by the same effect of stearate at both low
and high starch concentrations. In a real experiment, the effect of stearate would not be
identical at both levels of starch concentration in the absence of interaction because of
the presence of experimental error. The statistical tests described below show how to
determine the significance of observed nonzero effects.

The description of interaction is ‘‘symmetrical.’’ The AC interaction can be described
in two equivalent ways: (a) the effect of stearate is greater at high starch concentrations,
or (b) the effect of starch concentration is greater at the high stearate concentration (1.5
mg) compared to its effect at low stearate concentration (0.5 mg). The effect of starch at
low stearate concentration is 0.051. The effect of starch at high stearate concentration is
0.078. (Also see Fig. 9.7.)

* (1/2)(abc � ac � bc � c).

Figure 9.7 Starch � stearate interaction.
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9.4.1 Data Analysis

Method of Yates

Computers are usually used to analyze factorial experiments. However, hand analysis of
simple experiments can give insight into the properties of this important class of experimen-
tal designs. A method devised by Yates for systematically analyzing data from 2n factorial
experiments (n factors each at two levels) is demonstrated in Table 9.4. The data are first
tabulated in standard order (see Ref. 1 for experiments with more than two levels). The
data are first added in pairs, followed by taking differences in pairs as shown in column
(1) in Table 9.4.

475 487 962

421 426 847

525 546 1071

472 522 994

487 475 12

426

+ =
+ =
+ =
+ =

− =
− =
− =
− =

421 5

546 525 21

522 472 50

This addition and subtraction process is repeated sequentially on the n columns. (Remem-
ber that n is the number of factors, three columns for three factors.) Thus the process is
repeated in column (2), operating on the results in column (1) of Table 9.4. Note, for
example, that 1809 in column (2) is 962 � 847 from column (1). Finally, the process is
repeated, operating on column (2) to form column (3). Column (3) is divided by 2n�1

(2n�1 � 4 for 3 factors) to obtain the average effect. The mean squares for the ANOVA
(described below) are obtained by dividing the square of column (n) by 2n. For example,
the mean square attributable to factor A is

Mean square for A = =( )88

8
968

2

Table 9.4 Yates Analysis of the Factorial Tableting Experiment for Analysis Variance

Thickness Effect Mean square
Combination (� 103) (1) (2) (3) (�103)(3)/4 (�106)(3)2/8

(1) 475 962 1809 3874 — —
a 487 847 2065 88 22.0 968
b 421 1071 17 �192 �48.0 4608
ab 426 994 71 22 5.5 60.5
c 525 12 �115 256 64.0 8192
ac 546 5 �77 54 13.5 364.5
bc 472 21 �7 38 9.5 180.5
abc 522 50 29 36 9.0 162
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The mean squares are presented in an ANOVA table, as discussed below.

Analysis of Variance

The results of a factorial experiment are typically presented in an ANOVA table, as shown
in Table 9.5. In a 2n factorial, each effect and interaction has 1 degree of freedom. The
error mean square for statistical tests and estimation) can be estimated in several ways
for a factorial experiment. Running the experiment with replicates is best. Duplicates are
usually sufficient. However, replication may result in an inordinately large number of
runs. Remember that replicates do not usually consist of replicate analyses or observations
on the same run. A true replicate usually is obtained by repeating the run, from ‘‘scratch.’’
For example, in the 23 experiment described above, determining the thickness of several
tablets from a single run [e.g., the run denoted by a (A at the high level)] would probably
not be sufficient to estimate the experimental error in this system. The proper replicate
would be obtained by preparing a new mix with the same ingredients, retableting, and
measuring the thickness of tablets in this new batch.* In the absence of replication, experi-
mental error may be estimated from prior experience in systems similar to that used in
the factorial experiment. To obtain the error estimate from the experiment itself is always
most desirable. Environmental conditions in prior experiments are apt to be different from
those in the current experiment. In a large experiment, the experimental error can be
estimated without replication by pooling the mean squares from higher-order interactions
(e.g., three-way and higher-order interactions) as well as other interactions known to be
absent, a priori. For example, in the tableting experiment, we might average the mean
squares corresponding to the two-way interactions, AB and BC, and the three-way ABC
interaction, if these interactions were known to be zero from prior considerations. The
error estimated from the average of the AB, BC, and ABC interactions is

( . . ) .60 5 180 5 162
10

3
134 2 10

6
6+ + × = ×

−
−

* If the tableting procedure in the different runs were identical in all respects (with the exception
of tablet ingredients), replicates within each run would be a proper estimate of error.

Table 9.5 Analysis of Variance for the Factorial Tableting Experiment

Factor Source d.f. Mean square (�106) Fa

A Stearate 1 968 7.2b

B Drug 1 4608 34.3c

C Starch 1 8192 61.0c

AB Stearate � drug 1 60.5
AC Stearate � starch 1 364.5 2.7
BC Drug � starch 1 180.5
ABC Stearate � drug � starch 1 162

a Error mean square based on AB, BC, and ABC interactions, 3 d.f.
b P � 0.1.
c P � 0.01.
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with 3 degrees of freedom (assuming that these interactions do not exist).

Interpretation

In the absence of interaction, the main effect of a factor describes the change in response
when going from one level of a factor to another. If a large interaction exists, the main
effects corresponding to the interaction do not have much meaning as such. Specifically,
an AC interaction suggests that the effect of A depends on the level of C and a description
of the results should specify the change due to A at each level of C. Based on the mean
squares in Table 9.5, the effects which are of interest are A, B, C, and AC. Although not
statistically significant, stearate and starch interact to a small extent, and examination of
the data is necessary to describe this effect (see Fig. 9.7). Since B does not interact with
A or C, it is sufficient to calculate the effect of drug (B), averaged over all levels of A
and C, to explain its effect. The effect of drug is to decrease the thickness by 0.048 mm
when the drug concentration is raised from 60 mg to 120 mg [Table 9.4, column (3)/4].

9.5 FRACTIONAL FACTORIAL DESIGNS

In an experiment with a large number of factors and/or a large number of levels for the
factors, the number of experiments needed to complete a factorial design may be inordi-
nately large. For example, a factorial design with 5 factors each at 2 levels requires 32
experiments; a 3-factor experiment each at 3 levels requires 27 experiments. If the cost
and time considerations make the implementation of a full factorial design impractical,
fractional factorial experiments can be used in which a fraction (e.g., 1⁄2, 1⁄4, etc.) of the
original number of experiments can be run. Of course, something must be sacrificed for
the reduced work. If the experiments are judiciously chosen, it may be possible to design
an experiment so that effects which we believe are negligible are confounded with impor-
tant effects. (The word ‘‘confounded’’ has been noted before in this chapter.) In fractional
factorial designs, the negligible and important effects are indistinguishable, and thus con-
founded. This will become clearer in the first example.

To illustrate some of the principles of fractional factorial designs, we will discuss
and present an example of a fractional design based on a factorial design where each of
3 factors is at 2 levels, a 23 design. Table 9.3 shows the 8 experiments required for the
full design. With the full factorial design, we can estimate 7 effects from the 8 experiments,
the 3 main effects (A, B, and C), and the 4 interactions (AB, AC, BC, and ABC). In a 1⁄2
replicate fractional design, we perform 4 experiments, but we can only estimate 3 effects.
With 3 factors, a 1⁄2 replicate can be used to estimate the main effects, A, B, and C. The
following procedure is used to choose the 4 experiments.

Table 9.6 shows the 4 experiments that define a 22 factorial design using the notation
described in Sec. 9.3.

Table 9.6 22 Factorial Design

Experiment A level B level AB

(1) � � �
a � � �
b � � �
ab � � �
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To construct the 1⁄2 replicate with 3 factors, we equate one of the effects to the third
factor. In the 22 factorial, the interaction, AB is equated to the third factor, C. Table 9.7
describes the 1⁄2 replicate design for 3 factors. The 4 experiments consist of (1) c at the
high level (a, b at the low level); (2) a at the high level (b, c at the low level); (3) b at
the high level (a, c at the low level); and (4) a, b, c all at the high level.

From Table 9.7, we can define the confounded effects, also known as aliases. An
effect is defined by the signs in the columns of Table 9.7. For example, the effect of A
is

( ) ( )a abc c b+ − +

Note that the effect of A is exactly equal to BC. Therefore, BC and A are confounded
(they are aliases). Also note that C � AB (by definition) and B � AC. Thus, in this
design the main effects are confounded with the two factor interactions. This means that
the main effects cannot be clearly interpreted if interactions are not absent or negligible.
If interactions are negligible, this design will give fair estimates of the main effects. If
interactions are significant, this design is not recommended.

Example 1: Davies [1] gives an excellent example of weighing 3 objects on a balance
with a zero error in a 1⁄2 replicate of a 23 design. This illustration is used because interactions
are zero when weighing two or more objects together (i.e., the weight of two or more
objects is the sum of the individual weights). The three objects are denoted as A, B, and
C; the high level is the presence of the object to be weighed, and the low level is the
absence of the object. From Table 9.7, we would perform 4 weighinings: A alone, B alone,
C alone, and A, B, and C together (call this ABC).

1. The weight of A is the [weight of A � the weight of ABC � the weight of B
� weight of C]/2.

2. The weight of B is the [weight of B � the weight of ABC � the weight of A
� weight of C]/2.

3. The weight of C is the [weight of C � the weight of ABC � the weight of A
� weight of B]/2.

As noted by Davies, this illustration is not meant as a recommendation of how to weigh
objects, but rather to show how the design works in the absence of interaction. (See
Exercise Problem 5 as another way to weigh these objects using a 1⁄2 replicate fractional
factorial design.)

Example 2. A 1⁄2 replicate of a 24 experiment: Chariot et al. [5] reported the results
of a factorial experiment studying the effect of processing variables on extrusion-spheroni-
zation of wet powder masses. They identified 5 factors each at 2 levels, the full factorial

Table 9.7 One-Half Replicate of 23 Factorial Design

Experiment A level B level C � AB AC BC

c � � � � �
a � � � � �
b � � � � �
abc � � � � �



283Factorial Designs

requiring 32 experiments. Initially, they performed a 1⁄4 replicate, requiring 8 experiments.
One of the factors, extrusion speed, was not significant. To simplify this discussion, we
will ignore this factor for our example. The design and results are shown in Table 9.8. A
� spheronization time, B � spheronization speed, C � spheronization load, and D �
extrusion screen.

Note the confounding pattern shown in Table 9.8. The reader can verify these con-
founded effects (see Exercise Problem 6 at the end of this chapter). Table 9.8 was con-
structed by first setting up the standard 23 factorial (Table 9.3) and substituting D for the
ABC interaction. For the estimated effects to have meaning, the confounded effects should
be small. For example, if BC and AD were both significant, the interpretation of BC and/
or AD would be fuzzy.

To estimate the effects, we add the responses multiplied by the signs in the appropriate
column and divide by 4. For example, the effect of AB is

[75.5 � 55.5 � 92.8 � 45.4 � 19.7 � 11.1 � 55.0]/4 � �1.825

Estimates of the other effects are (see Exercise Problem 7)

A

B

C

D

AB

AC

AD

= +
= −
= +
= −
= −
= +
= +

23 98

12 03

2 33

34 78

1 83

21 13

10 83

.

.

.

.

.

.

.

We cannot perform tests for the significance of these parameters without an estimate of
the error (variance). The variance can be estimated from duplicate experiments, nonexistent
interactions, or experiments from previous studies, for example. Based on the estimate
above, factor A, D, and AC are the largest effects. To help clarify the possible confounding

Table 9.8 One-Half Replicate of 24 Factorial Design (Extrusion–Spheronization of Wet
Powder Masses)

Parameter

A B C D
Experiment (min) (rpm) (kg) (mm) ABa � CD AC � BD AD � BC Response

(1) � � � � � � � 75.5
ab � � � � � � � 55.5
ac � � � � � � � 92.8
ad � � � � � � � 45.4
bc � � � � � � � 46.5
bd � � � � � � � 19.7
cd � � � � � � � 11.1
abcd � � � � � � � 55.0

a Illustrates confounding.
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effects, 8 more experiments can be performed. For example, the large effect observed for
the interaction AC, spheronization time � spheronization load could be exaggerated due
to the presence of a BD interaction. Without other insights, it is not possible to separate
these 2 interactions (they are aliases in this design). Therefore, this design would not be
desirable if the nature of these interactions are unknown. Data for the 8 further experiments
that complete the factorial design are given in Exercise Problem 8.

The conclusions given by Chariot et al. are

1. Spheronization time (factor A) has a positive effect on the production of spheres.
2. There is a strong interaction between factors A and C (spheronization time �

spheronization load). Note that the BD interaction is considered to be small.
3. Spheronization speed (factor B) has a negative effect on yield.
4. The interaction between spheronization speed and spheronization load (BC) ap-

pears significant. The AD interaction is considered to be small.
5. The interaction between spheronization speed and spheronization time (AB) ap-

pears to be insignificant. The CD interaction is considered to be small.
6. Extrusion screen (D) has a very strong negative effect.

Table 9.9 presents some fractional designs with up to 8 observations. To find the
aliases (confounded effects), multiply the defining contrast in the table by the effect under
consideration. Any letter that appears twice is considered to be equal to 1. The result is
the confounded effect. For example, if the defining contrast is �ABC and we are interested
in the alias of A, we multiply �ABC by A � �A2BC � �BC. Therefore, A is con-
founded with �BC. Similarly, B is confounded with �AC and C is confounded with
�AB.

9.6 SOME GENERAL COMMENTS

As noted previously, experiments need not be limited to factors at two levels, although
the use of two levels is often necessary to keep the experiment at a manageable size.
Where factors are quantitative, experiments at more than two levels may be desirable
when curvature of the response is anticipated. As the number of levels increase, the size
of the experiment increases rapidly and fractional designs are recommended.

The theory of factorial designs is quite fascinating from a mathematical viewpoint.
Particularly, the algebra and arithmetic lead to very elegant concepts. For those readers
interested in pursuing this topic further, the book The Design and Analysis of Industrial
Experiments, edited by O. L. Davies, is indispensable [1]. This topic is also discussed in
some detail in Ref. 2. Applications of factorial designs in pharmaceutical systems have
appeared in the recent pharmaceutical literature. Plaizier-Vercammen and De Neve investi-
gated the interaction of povidone with low-molecular-weight organic molecules using a
factorial design [3]. Bolton has shown the application of factorial designs to drug stability
studies [4]. Ahmed and Bolton optimized a chromatographic assay procedure based on a
factorial experiment (7).

KEY TERMS

Additivity Main effect
Aliases One-at-a-time experiment
Confounding Replication
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Effects Residual variation
Factor Runs
Fractional factorial designs Standard order
Half replicate 2n factorials
Interaction Yates analysis
Level

EXERCISES

1. A 22 factorial design was used to investigate the effects of stearate concentration
and mixing time on the hardness of a tablet formulation. The results below are the
averages of the hardness of 10 tablets. The variance of an average of 10 determina-
tions was estimated from replicate determinations as 0.3 (d.f. � 36). This is the
error term for performing statistical tests of significance.

Stearate
Mixing
time (min) 0.5% 1%

15 9.6 (1) 7.5 (a)
30 7.4 (b) 7.0 (ab)

(a) Calculate the ANOVA and present the ANOVA table.
(b) Test the main effects and interaction for significance.
(c) Graph the data showing the possible AB interaction.

2. Show how to calculate the effect of increasing stearate concentration at low starch
level for the data in Table 9.2. The answer is an increased thickness of 0.085 cm.
Also, compute the drug � starch interaction.

3. The end point of a titration procedure is known to be affected by (1) temperature,
(2) pH, and (3) concentration of indicator. A factorial experiment was conducted
to estimate the effects of the factors. Before the experiment was conducted, all
interactions were thought to be negligible except for a pH � indicator concentration
interaction. The other interactions are to be pooled to form the error term for statisti-
cal tests. Use the Yates method to calculate the ANOVA based on the following
assay results:

Factor Factor
combination Recovery (%) combination Recovery (%)

(1) 100.7 c 99.9
a 100.1 ac 99.6
b 102.0 bc 98.5
ab 101.0 abc 98.1
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(a) Which factors are significant?
(b) Plot the data to show main effects and interactions which are significant.
(c) Describe, in words, the BC interaction.

4. A clinical study was performed to assess the effects of a combination of ingredients
to support the claim that the combination product showed a synergistic effect com-
pared to the effects of the two individual components. The study was designed as
a factorial with each component at two levels.

Ingredient A: low level, 0; high level, 5 mg
Ingredient B: low level, 0; high level, 50 mg

Following is the analysis of variance table:

Source d.f. MS F

Ingredient A 1 150 12.5
Ingredient B 1 486 40.5
A � B 1 6 0.5
Error 20 12

The experiment consisted of observing six patients in each cell of the 22 experiment.
One group took placebo with an average result of 21. A second group took ingredient
A at a 5-mg dose with an average result of 25. The third group had ingredient B
at a 50-mg dose with an average result of 29, and the fourth group took a combina-
tion of 5 mg of A and 50 mg of B with a result of 35. In view of the results and
the ANOVA, discuss arguments for or against the claim of synergism.

5. The 3 objects in the weighing experiment described in Sec. 9.5, Example 1, may
also be weighed using the other 4 combinations from the 23 design not included
in the example. Describe how you would weigh the 3 objects using these new 4
weighings. (Note that these combinations comprise a 1/2 replicate of a fractional
factorial with a different confounding pattern from that described in Sec. 9.5. [Hint:
See Table 9.9.]

6. Verify that the effects (AB � CD, AC � BD, and AD � BC) shown in Table
9.8 are confounded.

7. Compute the effects for the data in Sec. 9.5, example 2 (Table 9.8).
**8. In example 2 in Sec. 9.5 (Table 9.8), eight more experiments were performed with

the following results:

** A more advanced topic.
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Experiment Response

a 78.7
b 56.9
c 46.7
ab 21.2
abc 67.0
abd 29.0
acd 34.9
bcd 1.2

Using the entire 16 experiments (the 8 given here plus the 8 in Table 9.8), analyze
the data as a full 24 factorial design. Pool the 3-factor and 4-factor interactions (5
d.f.) to obtain an estimate of error. Test the other effects for significance at the 5%
level. Explain and describe any significant interactions.
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TRANSFORMATIONS AND OUTLIERS

Critical examination of the data is an important step in statistical analyses. Often, we
observe either what seem to be unusual observations (outliers) or observations that appear
to violate the assumptions of the analysis. When such problems occur, several courses of
action are available depending on the nature of the problem and statistical judgement.
Most of the analyses described in previous chapters are appropriate for groups in which
data are normally distributed with equal variance. As a result of the Central Limit theorem,
these analyses perform well for data that are not normal provided the deviation from
normality is not large and/or the data sets are not very small. (If necessary and appropriate,
nonparametric analyses, Chap. 15, can be used in these instances.) However, lack of
equality of variance (heteroscedascity) in t tests, analysis of variance and regression, for
example, is more problematic. The Fisher-Behrens test is an example of a modified analysis
that is used in the comparison of means from two independent groups with unequal vari-
ances in the two groups (Chapter 5). Often, variance heterogeneity and/or lack of normality
can be corrected by a data transformation, such as the logarithmic or square root transfor-
mation. Bioequivalence parameters such as AUC and CMAX currently require a log transfor-
mation prior to statistical analysis. Transformations of data may also be appropriate to
help linearize data. For example, a plot of log potency vs. time is linear for stability data
showing first-order kinetics.

Variance heterogeneity may also be corrected using an analysis in which each observa-
tion is weighted appropriately, i.e., a weighted analysis. In regression analysis of kinetic
data, if the variances at each time point differ, depending on the magnitude of drug concen-
tration, for example, a weighted regression would be appropriate. For an example of
the analysis of a regression problem requiring a weighted analysis for its solution, see
Chap. 7.

Data resulting from gross errors in observations or overt mistakes such as recording
errors should clearly be omitted from the statistical treatment. However, upon examining
experimental data, we often find unusual values that are not easily explained. The prudent
experimenter will make every effort to find a cause for such aberrant data and modify the
data or analysis appropriately. If no cause is found, one should use scientific judgement

289
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with regard to the disposition of these results. In such cases, a statistical test may be used
to detect an outlying value. An outlier may be defined as an observation that is extreme
and appears not to belong to the bulk of data. Many tests to identify outliers have been
proposed and several of these are presented in this chapter.

10.1 TRANSFORMATIONS

A transformation applied to a variable changes each value of the variable as described by
the transformation. In a logarithmic (log) transformation, each data point is changed to
its logarithm prior to the statistical analysis. Thus the value 10 is transformed to 1 (i.e.,
log 10 � 1). The log transformation may be in terms of logs to the base 10 or logs to
the base e (e � 2.718 …), known as natural logs (ln). For example, using natural logs,
10 would be transformed to 2.303 (ln 10 � 2.303). The square-root transformation would
change the number 9 to 3.

Parametric analyses such as the t test and analysis of variance are the methods of
choice in most situations where experimental data are continuous. For these methods to
be valid, data is assumed to have a normal distribution with constant variance within
treatment groups. Under appropriate circumstances, a transformation can change a data
distribution which is not normal into a distribution that is approximately normal and/or
can transform data with heterogeneous variance into a distribution with approximately
homogeneous variance.

Thus, data transformations can be used in cases where (1) the variance in regression
and analysis of variance is not constant and/or (2) data are clearly not normally distributed
(highly skewed to the left or right).

Another application of transformations is to linearize relationships such as may occur
when fitting a least squares line (not all relationships can be linearized). Table 10.1 shows
some examples of such linearizing transformations. When making linearizing transforma-
tions, if statistical tests are to be made on the transformed data, one should take care that the
normality and variance homogeneity assumptions are not invalidated by the transformation.

10.1.1 The Logarithmic Transformation

Probably the most common transformation used in scientific research is the log transforma-
tion. Either logs to the base 10 (log10) or the base e, loge(ln) can be used. Data skewed
to the right as shown in Fig. 10.1 can often be shown to have an approximately lognormal

Table 10.1 Some Transformations Used to Linearize Relationships
Between Two Variables, X and Y

Function Transformation Linear form

Y � Ae�BX Logarithm of Y ln Y � A – BX
Y � 1/(A � BX) Reciprocal of Y 1/Y � A � BX
Y � X/(AX � B) Reciprocal of Y 1/Y � A � B(1/X)a

a A plot of 1/Y vs. 1/X is linear.
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Figure 10.1 Lognormal distribution.

distribution. A lognormal distribution is a distribution that would be normal following a
log transformation, as illustrated in Fig. 10.2. When statistically analyzing data with a
distribution similar to that shown in Fig. 10.1, a log transformation should be considered.
One should understand that a reasonably large data set or prior knowledge is needed in
order to know the form of the distribution. Table 10.2 shows examples of two data sets,
listed in ascending order of magnitude. Data set A would be too small to conclude that
the underlying distribution is not normal in the absence of prior information. Data set B,
an approximately lognormal distribution, is strongly suggestive of nonnormality. (See
Exercise Problem 1.)

Two problems may arise as a consequence of using the log transformation.
1. Many people have trouble interpreting data reported in logarithmic form. There-

fore, when reporting experimental results, such as means for example, a back transforma-
tion (the antilog) may be needed. For example, if the mean of the logarithms of a data
set is 1.00, the antilog, 10, might be more meaningful in a formal report of the experimental
results. The mean of a set of untransformed numbers is not, in general, equal to the antilog
of the mean of the logs of these numbers. If the data are relatively nonvariable, the means

Figure 10.2 Transformation of a lognormal distribution to a normal distribution via the
log transformation.
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Table 10.2 Two Data Sets that May Be Considered
Lognormal

Data set A: 2, 17, 23, 33, 43, 55, 125, 135
Data set B: 10, 13, 40, 44, 55, 63, 115, 145, 199, 218, 231,

370, 501, 790, 795, 980, 1260, 1312, 1500, 4520

calculated by these two methods will be close. The mean of the logs and the log of the
mean will be identical only if each observation is the same, a highly unlikely circumstance.
Table 10.3 illustrates this concept. Note that the antilog of the mean of a set of log
transformed variables is the geometric mean (see Chap. 1). This lack of ‘‘equivalence’’
can raise questions when someone reviewing the data is unaware of this divergence, ‘‘the
nature of the beast,’’ so to speak.

2. The second problem to be considered when making log transformations is that
the log transformation which ‘‘normalizes’’ log-normal data also changes the variance. If
the variance is not very large, the variance of the ln transformed values will have a
variance approximately equal to S2/X̄2. That is, the standard deviation of the data after the
transformation will be approximately equal to the coefficient of variation (C.V.), S/X̄. For
example, consider the following data:

X ln X

105 4.654
102 4.625
100 4.605
110 4.700
112 4.718

Mean 105.8 4.6606
s.d. 5.12 0.0483

The coefficient of variation of the original data is 5.12/105.8 � 0.0484. The standard
deviation of the In transformed values is 0.0483, very close to the C.V. of the untransformed

Table 10.3 Illustration of Why the Antilog of the Mean of the Logs is Not Equal to the
Mean of the Untrasformed Values

Case I Case II

Original data Log transform Original data Log transform

5 0.699 4 0.603
5 0.699 6 0.778
5 0.699 8 0.903
5 0.699 10 1.000

Mean 5 Mean 7
Antilog (0.699) � 5 Antilog (0.821) � 6.62
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Table 10.4 Results of an Assay at Three Different Levels of Drug

At 40 mg At 60 mg At 80 mg

Assay Log assay Assay Log assay Assay Log assay

37 1.568 63 1.799 82 1.914
43 1.633 77 1.886 68 1.833
42 1.623 56 1.748 75 1.875
40 1.602 64 1.806 97 1.987
30 1.477 66 1.820 71 1.851
35 1.544 58 1.763 86 1.934
38 1.580 67 1.826 71 1.851
40 1.602 52 1.716 81 1.908
39 1.591 55 1.740 91 1.959
36 1.556 58 1.763 72 1.857

Average 38 1.578 61.6 1.787 79.4 1.897
s.d. 3.77 0.045 7.35 0.050 9.67 0.052
C.V. 0.10 0.12 0.12

data. This property of the transformed variance can be advantageous when working with
data groups that are both lognormal and have a constant coefficient of variation. If the
standard deviation within treatment groups, for example, is not homogeneous but is propor-
tional to the magnitude of the measurement, the coefficient of variation (C.V.) will be
constant. In analytical procedures, one often observes that the s.d. is proportional to the
quantity of material being assayed. In these circumstances, the ln transformation will
result in data with homogeneous s.d. equal to C.V. (The s.d. of the transformed data is
approximately equal to C.V.*) This concept is illustrated in Example 1 which follows.
Fortunately, in many situations, data that are approximately lognormal also have a constant
C.V. In these cases, the log transformation results in normal data with approximately
homogeneous variance. The transformed data can be analyzed using techniques that depend
on normality and homogeneous variance for their validity (e.g., ANOVA).

Example 1: Experimental data were collected at three different levels of drug to show
that an assay procedure is linear over a range of drug concentrations. ‘‘Linear’’ means
that a plot of the assay results, or a suitable transformation of the results, versus the known
concentration of drug is a straight line. In particular, we wish to plot the results such that
a linear relationship is obtained, and calculate the least squares regression line to relate
the assay results to the known amount of drug. The results of the experiment are shown
in Table 10.4. In this example, the assay results are unusually variable. This large variability
is intentionally presented in this example to illustrate the properties of the log transforma-

* The log transformation of data with constant C.V. results in data with variance approximately
equal to C.V./2.303.
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tion. The skewed nature of the data in Table 10.4 suggests a lognormal distribution,
although there are not sufficient data to verify the exact nature of the distribution. Also
in this example, the standard deviation increases with drug concentration. The standard
deviation is approximately proportional to the mean assay, an approximately constant C.V.
(10–12%). Note that the log transformation results in variance homogeneity and a more
symmetric data distribution (Table 10.4). Thus, there is a strong indication for a log
transformation.

The properties of this relatively variable analytical method can be evaluated by plotting
the known amount of drug versus the amount recovered in the assay procedure. Ideally,
the relationship should be linear over the range of drug concentration being assayed. A
plot of known drug concentration versus assay results is close to linear (Fig. 10.3A). A
plot of log drug concentration versus log assay is also approximately linear, as shown in
Fig. 10.3B. From a statistical viewpoint, the log plot has better properties because the
data are more ‘‘normal’’ and the variance is approximately constant in the three drug
concentration groups as noted above. The line in Fig. 10.3B is the least squares line. The
details of the calculation are not shown here (see Exercise Problem 2 and Chap. 7 for
further details of the statistical line fitting).

When performing the usual statistical tests in regression problems, the assumptions
include:

1. The data at each X should be normal (i.e., the amount of drug recovered at a
given amount added should be normally distributed).

2. The assays should have the same variance at each concentration.

The log transformation of the assay results (Y) helps to satisfy these assumptions. In
addition, in this example, the linear fit is improved as a result of the log transformation.

Example 2: In the pharmaceutical sciences, the logarithmic transformation has applica-
tions in kinetic studies, when ascertaining stability and pharmacokinetic parameters. First-
order processes are usually expressed in logarithmic form (see also Sec. 2.5):

(10.1)ln lnC C kt= −0

Least squares procedures are typically used to fit concentration versus time data in order

Figure 10.3 Plots of raw data means and log transformed means for data of Table 10.4.
(A) means of untransformed data; (B) log transformation.
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Figure 10.4 First-order plots. (A) usual plot; (B) semilog plot.

to estimate the rate constant, k. A plot of concentration (C) versus time (t) is not linear
for first-order reactions (see Fig. 10.4A). A plot of the log-transformed concentrations
(the Y variable) versus time is linear for a first-order process [Eq. (10.1)]. The plot of log
C versus time is shown in Fig. 10.4B, a semilog plot.

Thus we may use linear regression procedures to fit a straight line to log C versus
time data for first-order reactions. One should recognize, as before, that if statistical tests
are performed to test the significance of the rate constant, for example, or when placing
confidence limits on the rate constant, the implicit assumption is that log concentration
is normal with constant variance at each value of X (time). These assumptions will hold,
when linearizing such concentration versus time relationships if the untransformed values
of ‘‘concentration’’ are lognormal with constant coefficient of variation. In cases in which
the assumptions necessary for statistical inference are invalidated by the transformation,
one may question the validity of predictions based on least squares line fitting for first-order
processes. For example, if the original, untransformed concentration values are normal with
constant variance, the log transformation will distort the distribution and upset the constant
variance condition. However, if the variance is small, and the concentrations measured
are in a narrow range (as might occur in a short-term stability study to 10% decomposition),
the log transformation will result in data that are close to normal with homogeneous
variance. Predictions for stability during the short-term based on the least squares fit will
be approximately correct under these conditions.

Analysis of Residuals

We have discussed the importance of carefully looking at and graphing data before per-
forming transformations or statistical tests. The approach to examining data in this context
is commonly known as Exploratory Data Analysis, EDA, introduced in Chapter 7. A
significant aspect of EDA is the examination of residuals. Residuals are deviations of the
observed data from the fit to the statistical model, the least squares line in this example.
Figure 10.5 shows the residuals for the least squares fit of the data in Table 10.4, using
the untransformed and transformed data analysis. Note that the residual plot vs. dose shows
the dependency of the variance on dose. The log response vs. log dose shows a more
uniform distribution of residuals.

Example 3: The log transformation may be used for data presented in the form of
ratios. Ratios are often used to express the comparative absorption of drug from two
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Figure 10.5 Residual plots from least squares line fitting of data from Table 10.4.

formulations based on the area under the plasma level versus time curve from a bioavail-
ability study. Another way of comparing the absorptions from the two formulations is to
test statistically the difference in absorption (AUC1 � AUC2), as illustrated in Sec. 5.2.3.
However, reporting results of relative absorption using a ratio, rather than a difference,
has great appeal. The ratio can be interpreted in a pragmatic sense. Stating that formulation
A is absorbed twice as much as formulation B has more meaning than stating that formula-
tion A has an AUC 525 �g.hr/ml more than formulation B. A statistical problem which
is evident when performing statistical tests on ratios is that the ratios of random variables
will probably not be normally distributed. In particular, if both A and B are normally
distributed, the ratio A/B does not have a normal distribution. On the other hand, the test
of the differences of AUC has statistical appeal because the difference of two normally
distributed variables is also normally distributed. The practical appeal of the ratio and the
statistical appeal of differences suggest the use of a log transformation, when ratios seem
most appropriate for data analysis.
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The differences of logs is analogous to ratios; the difference of the logs is the log of
the ratio: log A � log B � log(A/B). The antilog of the average difference of the logs
will be close to the average of the ratios if the variability is not too large. The differences
of the logs will also tend to be normally distributed. But the normality assumption should
not be a problem in these analyses because we are testing mean differences (again, the
central limit theorem). After application of the log transformation, the data may be analyzed
by the usual t-test (or ANOVA) techniques which assess treatment differences.

Table 10.5 shows AUC data for 10 subjects who participated in a bio-availability
study. The analysis (a paired t test in this example) is performed on both the difference
of the logarithms and the ratios. The t test for the ratios is a one-sample, two-sided test,
comparing the average ratio to 1 (H0: R � 1), as shown in Sec. 5.2.1.

t test for ratios:

H R

t

0 1

1 025 1

0 378 10
0 209

:

.

. /
.

=

=
−

=

95% confidence interval:

1 025
2 26 0 378

10
1 025 0 27.

. ( . )
. .± = ±

t test for difference of logs:
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=
−
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Table 10.5 Results of the Bioavailability Study: Areas Under the Plasma Level Versus
Time Curve

Product A Product B Ratio
AUCs: Log A �

Subject AUC Log AUC AUC Log AUC A/B Log B

1 533 2.727 651 2.814 0.819 �0.087
2 461 2.664 547 2.738 0.843 �0.074
3 470 2.672 535 2.728 0.879 �0.056
4 624 2.795 326 2.513 1.914 0.282
5 490 2.690 386 2.587 1.269 0.104
6 476 2.678 640 2.806 0.744 �0.129
7 465 2.667 582 2.765 0.799 �0.097
8 365 2.562 420 2.623 0.869 �0.061
9 412 2.615 545 2.736 0.756 �0.121

10 380 2.580 280 2.447 1.357 0.133
Average 1.025 �0.01077
s.d. 0.378 0.136
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95% confidence interval:

− ± = − ±0 01077
2 26 0 136

10
0 01077 0 0972.

. ( . )
. .

The confidence interval for the logs is �0.10797 to 0.08643. The antilogs of these values
are 0.78 to 1.22. The confidence interval for the ratio is 0.75 to 1.30. Thus the conclusions
using both methods (ratio and difference of logs) are similar. Had the variability been
smaller, the two methods would have been in better agreement.

t test Confidence interval

Ratio Difference of logs Ratio Difference of logs

0.209 0.250 0.75–1.30 0.78–1.22

Another interesting result that recommends the analysis of differences of logs rather
than the use of ratios is a consequence of the symmetry which is apparent with the former
analysis. With the log transformation, the conclusion regarding the equivalence of the
products will be the same whether we consider the difference as (log A � log B) or (log
B � log A). However, when analyzing ratios, the analysis of A/B will be different from
the analysis of B/A. The product in the numerator has the advantage (see Exercise Problem
3). In the example in Table 10.5 the average ratio of B/A is 1.066. B appears slightly better
than A. When the ratios are calculated as A/B, A appears somewhat better than B. The
log transformation for bioavailability parameters, as has been recommended by others (2),
is now routinely applied to analysis of bioequivalence data. This analysis is presented in
detail in Chapter 11.

For data containing zeros, very small numbers (close to zero) or negative numbers,
using ratios or logarithms is either not possible or not recommended. Clearly, if we have
a ratio with a zero in the denominator or a mixture of positive and negative ratios, the
analysis and interpretation is difficult or impossible. Logarithms of negative numbers and
zero are undefined. Therefore, unless special adjustments are made, such data are not
candidates for a log transformation.

10.1.2 The Arcsin Transformation for Proportions

Another commonly used transformation is the arcsin transformation for proportions. The
arcsin is the inverse sine function, also denoted as sin�1. Thus, if sin 45� � 0.7, arcsin
0.7 � 45�. Many calculators have a sine and inverse sine function available.

The problem that arises when analyzing proportions, where the data consist of propor-
tions of widely different magnitudes, is the lack of homogeneity of variance. The variance
homogeneity problem is a result of the definition of the variance for proportions, pq/N.
If the proportions under consideration vary from one observation to another, the variance
will also vary. If the proportions to be analyzed are approximately normally distributed
(Np and Nq � 5; see Chapter 5), the arcsin transformation will equalize the variances.
The arcsin values can then be analyzed using standard parametric techniques such as
ANOVA. When using the arcsin transformation, each proportion should be based on the
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Table 10.6 Incidence of an Adverse
Reaction in Untreated Mice from Six Studies

Proportion of mice
showing adverse reaction Arcsin P

5/50 � 0.10 18.43
12/50 � 0.24 29.33

8/50 � 0.16 23.58
15/50 � 0.30 33.21
13/50 � 0.26 30.66

7/50 � 0.14 21.97
Average 0.20 26.197°

same number of observations, N. If the number of observations is similar for each propor-
tion, the analysis using arcsines will be close to correct. However, if the numbers of
observations are very different for the different proportions, the use of the transformation
is not appropriate. Also, for very small or very large proportions (less than 0.03 or greater
than 0.97), a more accurate transformation is given by Mosteller and Youtz [3]. The
following example should clarify the concept and calculations when applying the arcsin
transformation.

Example 4: In preparation for a toxicological study for a new drug entity, an estimate
of the incidence of a particular adverse reaction in untreated mice was desired. Data were
available from previous studies, as shown in Table 10.6. The arcsin transformation is
applied to the proportions as follows:

(10.2)Arcsin transformation = arcsin p

For example, in Table 10.6, the arcsin transformation of 10% (0.10) is arcsin �0.10,

which is equal to 18.43�.
The objective of this exercise is to estimate the incidence of the adverse reaction in

normal, untreated animals. To this end, we will obtain the average proportion and construct
a confidence interval using the arcsin transformed data. The average arcsin is 26.197�.
The average proportions are not reported in terms of arcsines. As in the case of the log
transformation, one should back-transform the average transformed value to the original
terms. In this example, we obtain the back-transform as sin(arcsin)2, or sin(26.197)2 �
0.195. This is very close to the average of the untransformed proportions, 20%. The
variance of a transformed proportion can be shown to be equal to 820.7/N, where N is
the number of observations for each proportion [4]. Thus, in this example, the variance
is 820.7/50 � 16.414.

A confidence interval for the average proportion is obtained by finding the confidence
interval for the average arcsin and back-transforming to proportions. 95% confidence
interval: X̄ 	 1.96��2/N [Eq. (5.1)]:

26 197 1 96
16 414

6
26 197 3 242. .

.
. .± = ±
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Table 10.7 Summary of Some Common Transformations

Transformation When used

Logarithm (log X) s.d. � X̄
Arcsin (sin�1)��X Proportions
Square root (��X or ��X � ����X � 1) (s.d.)2 � X̄
Reciprocal (1/X) s.d. � X̄2

The 95% confidence interval for the average arcsin is 22.955� to 29.439�. This interval
corresponds to an interval for the proportion of 15.2 to 24.2% (0.152 to 0.242).*

10.1.3 Other Transformations

Two other transformations that are used to correct deviations from assumptions for statisti-
cal testing are the square-root and reciprocal transformations. As their names imply, these
transformations change the data as follows:

Square-root transformation:

Reciprocal transformation:

X X

X

→
→ 11/ X

The square-root transformation is useful in cases where the variance is proportional to the
mean. The situation occurs often where the data consist of counts, such as may occur in
blood and urine analyses or microbiological data. If some values are 0 or very small, the
transformation, �X � �X � 1, has been recommended [5]. Different Poisson variables,
whose variances equal their means, will have approximately equal variance after the
square-root transformation (see Exercise Problem 6).

The reciprocal transformation may be used when the standard deviation is proportional
to the square of the mean [6]. The transformation is also useful where time to a given
response is being measured. For some objects (persons) the time to the response may be
very long and a skewed distribution results. The reciprocal transformation helps make the
data more symmetrical.

Table 10.7 summarizes the common transformations discussed in this section.

10.2 OUTLIERS

Outliers, in statistics, refer to relatively small or large values which are considered to be
different from, and not belong to, the main body of data. The problem of what to do with
outliers is a constant dilemma facing research scientists. If the cause of an outlier is known,
resulting from an obvious error, for example, the value can be omitted from the analysis
and tabulation of the data. However, it is good practice to include the reason(s) for the
omission of the aberrant value in the text of the report of the experimental results. For
example, a container of urine, assayed for drug content in a pharmacokinetic study, results
in too low a drug content because part of the urine was lost due to accidental spillage.

* sin(22.955�)2 � 0.152 and sin(29.439�)2 � 0.242.



301Transformations and Outliers

This is just cause to discard the data from that sample. In most cases, extreme values are
observed without obvious causes, and we are confronted with the problem of how to
handle the apparent outliers. Do the outlying data really represent the experimental process
that is being investigated? Can we expect such extreme values to occur routinely in such
experiments? Or was the outlier due to an error of observation? Perhaps the observation
came from a population different from the one being studied. In general, aberrant observa-
tions should not be arbitrarily discarded only because they look too large or too small,
perhaps only for the reason of making the experimental data look ‘‘better.’’ In fact, the
presence of such observations have sometimes been a clue to an important process inherent
in the experimental system. Therefore, the question of what to do with outliers is not an
easy one to answer. The error of either incorrectly including or excluding outlying observa-
tions will distort the validity of interpretation and conclusions of the experiment.

Several statistical criteria for handling outlying observations will be presented here.
These methods may be used if no obvious cause for the outlier can be found. If, for any
reason, one or more outlying data are rejected, one has the option of (a) repeating the
appropriate portion of the experiment to obtain a replacement value(s), (b) estimating the
now ‘‘missing’’ value by statistical methods, or (c) analyzing the data without the discarded
value(s). From a statistical point of view, the practice of looking at a set of data or replicates,
and rejecting the value(s) that is most extreme (and possibly, rerunning the rejected point)
is to be discouraged. Biases in the results are almost sure to occur. Certainly, the variance
will be underestimated, since we are throwing out the extreme values, willy nilly. For
example, when performing assays, some persons recommend doing the assay in triplicate
and selecting the two best results (those two closest together). In other cases, two assays
are performed and if they ‘‘disagree,’’ a third assay is performed to make a decision as
to which of the original two assays should be discarded. Arbitrary rules such as these
often result in incorrect decisions about the validity of results [7]. Experimental scientists
usually have a very good intuitive ‘‘feel’’ for their data, and this should be taken into
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account before coming to a final decision regarding the disposition of outlying values.
Every effort should be made to identify a cause for the outlying observation. However,
in the absence of other information, the statistical criteria discussed below may be used
to help make an objective decision. When in doubt, a useful approach is to analyze the
data with and without the suspected value(s). If conclusions and decisions are the same
with and without the extreme value(s), including the possible outlying observations would
seem to be the most prudent action.

Statistical tests for the presence of outliers are usually based on an assumption that
the data have a normal distribution. Thus, applying these tests to data that are known to
be highly skewed, for example, would result too often in the rejection of legitimate data.
If the national average income were to be estimated by an interview of 100 randomly
selected persons, and 99 were found to have incomes of less than $100,000 while one
person had an income of $1,000,000, it would be clearly incorrect to omit the latter figure,
attributing it to a recording error or interviewer unreliability. The tests described below
are based on statistics calculated from the observed data, which are then referred to tables
to determine the level of significance. The significance level here has the same interpreta-
tion as that described for statistical tests of hypotheses (Chapter 5). At the 5% level, an
outlying observation may be incorrectly rejected 1 time in 20.

10.2.1 Dixon’s Test for Extreme Values

The data in Table 10.8 represent cholesterol values (ordered according to magnitude) for
a group of healthy, normal persons. This example is presented particularly, because the
problem that it represents has two facets. First, the possibility exists that the very low and
very high values (165, 297) are the result of a recording or analytical error. Second, one
may question the existence of such extreme values among normal healthy persons. Without
the presence of an obvious error, one would probably be remiss if these two values (165,
297) were omitted from a report of ‘‘normal’’ cholesterol values in these normal subjects.
However, with the knowledge that plasma cholesterol levels are approximately normally
distributed, a statistical test can be applied to determine if the extreme values should be
rejected.

Dixon has proposed a test for outlying values which can easily be calculated [1]. The
set of observations are first ordered according to magnitude. A calculation is then per-
formed of the ratio of the difference of the extreme value from one of its nearest neighbor-
ing values to the range of observations as defined below.

The formula for the ratio, r, depends on the sample size, as shown in Table IV.8.
The calculated ratio is compared to appropriate tabulated values in Table IV.8. If the ratio
is equal to or greater than the tabulated value, the observation is considered to be an outlier
at the 5% level of significance.

The ordered observations are denoted as X1, X2, X3, …, XN, for N observations, where
X1 is an extreme value and XN is the opposite extreme. When N � 3 to 7, for example,

Table 10.8 Ordered Values of Serum Cholesterol from 15 Normal Subjects

Subject 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Cholesterol 165 188 194 197 200 202 205 210 214 215 227 231 239 249 297
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the ratio r � (X2 � X1)/(XN � X1) is calculated. For the five (5) values 1.5, 2.1, 2.2,
2.3, and 3.1, where 3.1 is the suspected outlier,

r = −
−

=3 1 2 3

3 1 1 5
0 5

. .

. .
.

The ratio must be equal to or exceed 0.642 to be significant at the 5% level for N � 5
(Table IV.8). Therefore, 3.1 is not considered to be an outlier (0.5 � 0.642).

The cholesterol values in Table 10.8 contain two possible outliers, 165 and 297.
According to Table IV.8, for a sample size of 15 (N � 15), the test ratio is

(10.3)r
X X

X XN

=
−
−−

3 1

2 1

where X3 is the third ordered value, X1 is the smallest value, and XN�2 is the third largest
value (two removed from the largest value).

r = −
−

= =194 165

239 165

29

74
0 39.

The tabulated value for N � 15 (Table IV.8) is 0.525. Therefore, the value 165 cannot
be rejected as an outlier.

The test for the largest value is similar, reversing the order (highest to lowest) to
conform to Eq. (10.3). X1 is 297, X3 is 239, and XN�2 is 194.

r = −
−

= =239 297

194 297

–58

–103
0 56.

Since 0.56 is greater than the tabulated value of 0.525, 297 can be considered to be an
outlier, and rejected.

Consider an example of the results of an assay performed in triplicate,

94.5, 100.0, 100.4

Is the low value, 94.5, an outlier? As discussed earlier, triplicate assays have an intuitive
appeal. If one observation is far from the others, it is often discarded, considered to be
the result of some overt, but not obvious error. Applying Dixon’s criterion (N � 3),

r = −
−

=100 94 5

100 4 94 5
0 932

.

. .
.

Surprisingly, the test does not find the ‘‘outlying’’ value small enough to reject the value
at the 5% level. The ratio must be at least equal to 0.941 in order to reject the possible
outlier for a sample of size 3. In the absence of other information, 94.5 is not obviously
an outlier. The moral here is that what seems obvious is not always so. When one value
of three appears to be ‘‘different’’ from the others, think twice before throwing it away.

After omitting a value as an outlier, the remaining data may be tested again for outliers,
using the same procedure as described above with a sample size of N � 1.

10.2.2 The T Procedure

Another highly recommended test for outliers, the T method, is also calculated as a ratio,
designated Tn, as follows:
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(10.4)T
X X

Sn
n=

−

where Xn is either the smallest or largest value, X̄ is the mean, and S is the standard
deviation. If the extreme value is not anticipated to be high or low, prior to seeing the
data, a test for the outlying value is based on the tabulation in Table IV.9. If the calculated
value of Tn is equal to or exceeds the tabulated value, the outlier is rejected as an extreme
value (P � 0.05). A more detailed table is given in Ref. 8.

For the cholesterol data in Table 10.7, Tn is calculated as follows:

Tn = − =297 215 5

30 9
2 64

.

.
.

where 297 is the suspected outlier, 215.5 is the average of the 15 cholesterol values, and
30.9 is the standard deviation of the 15 values. According to Table IV.9, Tn is significant
at the 5% level, agreeing with the conclusions of the Dixon test. The Dixon test and the
Tn test may not exactly agree with regard to acceptance or rejection of the outlier, particu-
larly in cases where the extreme value results in tests that are close to the 5% level. To
maintain a degree of integrity in situations where more than one test is available, one
should decide which test to use prior to seeing the data. On the other hand, for any statistical
test, if alternative acceptable procedures are available, any difference in conclusions result-
ing from the use of the different procedures is usually of a small degree. If one test results
in significance (P � 0.05) and the other just misses significance (e.g., P � 0.06), one
can certainly consider the latter result close to being statistically significant at the very
least.

10.2.3 Winsorizing

An interesting approach to the analysis of data to protect against distortion caused by
extreme values is the process of Winsorization [1]. In this method, the extreme values,
both low and high, are changed to the values of their closest neighbors. This procedure
provides some protection against the presence of outlying values and, at the same time,
very little information is lost. For the cholesterol data (Table 10.7), the extreme values
are 165 and 297. These values are changed to that of their nearest neighbors, 188 and
249, respectively. This manipulation results in a data set with a mean of 213.9, compared
to a mean of 215.5 for the untransformed data.

Winsorized estimates can be useful when missing values are known to be extreme
values. For example, suppose that the two highest values of the cholesterol data from
Table 10.7 were lost. Also, suppose that we know that these two missing values would
have been the highest values in the data set, had we had the opportunity to observe them.
Perhaps, in this example, the subjects whose values were missing had extremely high
measurements in previous analyses; or perhaps, a very rough assay was available from
the spilled sample scraped off of the floor showing high levels of cholesterol. A reasonable
estimate of the mean would be obtained by substituting 239 (the largest value after omitting
249 and 297) for the two missing values. Similarly, we could replace 165 and 188 by the
third lowest value, 194. The new mean is now equal to 213.3, compared to a mean of
215.5 for the original data.

10.2.4 Overall View and Examples of Handling Outliers

The ultimate difficulty in dealing with outliers is expressed by Barnett and Lewis in the
preface of their book on outliers (9). ‘‘Even before the formal development of statistical
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methods, argument raged over whether, and on what basis, we should discard observations
from a set of data on the grounds that they are ‘unrepresentative,’ ‘spurious,’ or ‘mavericks’
or ‘rogues.’ The early emphasis stressed the contamination of the data by unanticipated
and unwelcome errors or mistakes affecting some of the observations. Attitudes varied
from one extreme to another: from the view that we should never sully the sanctity of the
data by daring to adjudge its propriety, to an ultimate pragmatism expressing ‘if in doubt,
throw it out.’ ’’ They also quote Ferguson, ‘‘The experimenter is tempted to throw away
the apparently erroneous values (the outliers) and not because he is certain that the values
are spurious. On the contrary, he will undoubtedly admit that even if the population has
a normal distribution, there is a positive although extremely small probability that such
values will occur in an experiment. It is rather because he feels that other explanations
are more plausible, and that the loss in accuracy of the experiment caused by throwing
away a couple of good values is small compared to the loss caused by keeping even one
bad value.’’ Finally, in perspective, Barnett and Lewis state, ‘‘But, when all is said and
done, the major problem in outlier study remains the one that faced the earliest workers
in the subject—what is an outlier and how should we deal with it? We have taken the
view that the stimulus lies in the subjective concept of surprise engendered by one, or a
few, observations in a set of data….’’

Although most treatises on the use of statistics caution readers on the indiscriminate
discarding of outlying results, and recommend that outlier tests be used with care, this
does not mean that outlier tests and elimination of outlying results should never be applied
to experimental data. The reason for omitting outliers from a data analysis is to improve
the validity of statistical procedures and inferences. Certainly, if applied correctly for these
reasons, outlier tests are to be commended. The dilemma is in the decision as to when
such tests are appropriate. Most recommended outlier tests are very sensitive to the data
distribution, and many tests assume an underlying normal distribution. Nonparametric
outlier tests make less assumptions about the data distribution, but may be less discrimi-
nating.

Notwithstanding cautions about indiscriminately throwing out outliers, including out-
liers that are indeed due to causes that do not represent the process being studied, including
outliers in the data analysis can severely bias the conclusions. When no obvious reason
is apparent to explain an outlying value that has been identified by an appropriate statistical
test, the question of whether or not to include the data is not easily answered. In the end,
judgement is a very important ingredient in such decisions, since knowledge of the data
distribution is usually limited. Part of ‘‘good judgement’’ is a thorough knowledge of the
process being studied, in addition to the statistical consequences. If conclusions about the
experimental outcome do not change with and without the outlier, both results can be
presented. However, if conclusions are changed, then omission of the outlier should be
justified based on the properties of the data.

Some examples should illustrate possible approaches to this situation.
Example 1. Analysis of a portion of a powdered mix comprised of 20 ground-up

tablets (a composite) was done in triplicate with results of 75.1, 96.9 and 96.3 percent.
The expected result was approximately 100 percent. The three assays represented 3 separate
portions of the grind. A statistical test (see Table IV.8) suggested that the value of 75.1%
is an outlier (p � 0.05), but there was no obvious reason for this low assay. Hypothetically,
this result could have been caused by an erroneous assay, or more remotely, by the presence
of one or more low potency tablets that were not well mixed with the other tablets in the
grind. Certainly, the former is a more probable cause, but there is no way of proving this
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because the outlying sample is no longer available. It would seem foolhardy to reject the
batch average of 3 results, 89.4%, without further investigation. There are two reasonable
approaches to determining if, in fact, the 75.1% value was a real result or an anomaly.
One approach is to throw out the value of 75.1 based on the knowledge that the tablets
were indeed ground thoroughly and uniformly and that the drug content should be close
to 100%. Such a decision could have more credence if other tests on the product (content
uniformity, e.g.) supported the fact that 75.1 was an outlier. A second, more conservative
approach would be to reassay the remaining portion of the mix to ensure that the 75.1
value could not be reproduced. How many more assays would be necessary to verify the
anomaly? This question does not seem to have a definitive answer. This is a situation
where scientific judgement is needed. For example, if three more assays were performed
on the mix, and all assays were within limits, the average assay would be best represented
by the 5 ‘‘good’’ assays (2 from the first analysis and 3 from the second analysis). Scientifi-
cally, in this scenerio, it would appear that including the outlier in the average would be
an unfair representation of the drug content of this material. Of course, if an outlying
result were found again during the reanalysis, the batch (or the 20 tablet grind) is suspect,
and the need for a thorough investigation of the problem would be indicated.

Example 2. Consider the example above as having occurred during a content uniform-
ity test, where one of ten tablets gave an outlying result. For example, suppose 9 of ten
tablets were between 95% and 105%, and a single tablet gave a result of 71%. This would
result in failure of the content uniformity test as defined in the USP. (No single tablet
should be outside 75–125% of label claim.) The problem here (if no obvious cause can
be identified) is that the tablet has been destroyed in the analytical process and we have
no way of knowing if the result is indeed due to the tablet or some unidentified gross
analytical error. This presents a more difficult problem than the previous one because we
cannot assay the same homogenate from which the outlying observation originated. Other
assays during the processing of this batch and the batch history would be useful in determin-
ing possible causes. If no similar problem had been observed in the history of the product,
one might assume an analytical misfortune. As suggested in the previous example, if
similar results had occurred in other batches of the product, a suggestion of the real
possibility of the presence of outlying tablets in the production of this product is indicated.
In any case, it would be prudent to perform extensive content uniformity testing, if no
cause can be identified. Again, one may ask what is ‘‘extensive’’ testing? We want to
feel ‘‘sure’’ that the outlier is an anomaly, not typical of tablets in the batch. Although it
is difficult to assign the size of retesting on a scientific basis, one might use statistical
procedures to justify the choice of a sample size. For example, using the concept of
tolerance limits (Chapter 5, Section 5.6), we may want to be 99% certain that 99% of the
tablets are between 85% and 115%, the usual limits for CU acceptance. In order to achieve
this level of ‘‘certainty,’’ we have to estimate the mean content (%) and the CV.

Example 3. The results of a content uniformity test show nine of ten results between
91% and 105% of label, with one assay at 71%. This fails the USP Content Uniformity
test, which allows a single assay between 75–125%, but none outside these limits. The
batch records of the product in question and past history showed no persistent results of
this kind. The ‘‘outlier’’ could not be attributed to an analytical error, but there was no
way of detecting an error in sample handling or some other transient error that may have
caused the anomaly. Thus, the 71% result could not be assigned a known cause with any
certainty. Based on this evidence, rejecting the batch outright would seem to be rather a
harsh decision. Rather, it would be prudent to perform further testing before coming to
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the ominous decision of rejection. One possible approach, as discussed in the previous
paragraph, is to perform sufficient additional assays to ensure (with a high degree of
probability) that the great majority of tablets are within 85–115% limits, a definition based
on the USP Content Uniformity monograph. Using the tolerance limit concept (Chapter
5, Section 5.6), we could assay N new samples and create a tolerance interval which should
lie within 85–115%. Suppose we estimate the CV as 3.5%, based on the nine good CU
assays, other data accumulated during the batch production, and historical data from previ-
ous assays. Also, the average result is estimated as 98% based on all production data
available. The value of t′ for the tolerance interval for 99% probability that includes 99%
of the tablets between 85–115% is 3.71. From Table IV.19, App. IV, Tolerance Intervals,
a sample of 35 tablets would give this confidence, provided that the mean and s.d. are as
estimated, 98% and 3.5%, respectively. To protect against more variability and deviation
from label, a larger sample would be more conservative. For example, suppose we decide
to test 50 tablets, and the average is 97.5% with a s.d. of 3.7%. No tablet was outside
85–115%. The 99% tolerance interval is:

97 5 3 385 3 7 85 0. . . .± × = to 110.0

The lower limit just makes 85%. We can be 99% certain, however, that 99% of the
tablets are between 85 and 110%. This analysis is evidence that the tablets are uniform.
Note, that had we tested fewer tablets, say 45, the interval would have included values
less than 85%. However, in this case, where the lower interval would be 84.8% (given
the same mean and s.d.), it would appear that the batch can be considered satisfactory.
For example, if we were interested in determining the probability of tablets having a drug
content between 80%–120%, application of the tolerance interval calculation results in a
t′ of (97.5–80)/3.7 � 4.73. Table IV.19 shows that this means that with a probability
greater than 99%, 99.9% of the tablets are between 80% and 120%.

One should understand that the extra testing gives us confidence about the acceptabil-
ity of the batch. We will never know if the original 71% result was real or caused by an
error in the analytical process. However, if the 71% result was real, the additional testing
gives us assurance that results as extreme as 71% are very unlikely to be detected in this
batch. A publication (11) discussing the nature and possible handling of outliers is in
Appendix V.

Lund’s Method

The FDA has suggested the use of tables prepared by Lund (10) (Table IV.20, App. IV)
to identify outliers. This table compares the extreme residual to the standard error of the
residuals (studentized residual), and gives critical values for the studentized residual at
the 5% level of significance as a function of the number of observations and parameter
d.f. in the model. For analysis of variance designs, these calculations may be complicated
and use of a computer program is almost necessary. SAS (12) code is shown below to
produce an output of the residuals and their standard errors, which should clarify the
procedure and interpretation.

SAS Program to Generate Residuals and Standard Errors From a Two-Period
Crossover Design for a Bioequivalence Study

Proc GLM;
Class subject product seq period;
model lcmax � seq subject (seq) product period;
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lsmeans product/stderr;
estimate ‘‘test-ref’’ product �1 1;
output out�new p�yhat r�resid stdr�eresid;
proc print;
run;
The SAS output for the data of Ryde et al. (13) (without interaction and carryover)

is shown in Table 10.9.

Table 10.9 SAS Output for Residuals for Data of Ryde et al. (13)

Obs Subject Seq Period Product CO AUC YHAT Resid ERESID

1 1 1 1 1 0 106.3 93.518 12.7819 15.1863
2 1 1 2 2 1 36.4 75.638 �39.2375 15.1863
3 1 1 3 2 2 94.7 63.137 31.5625 15.1863
4 1 1 4 1 2 58.9 64.007 �5.1069 15.1863
5 2 1 1 1 0 149.2 139.518 9.6819 15.1863
6 2 1 2 2 1 107.1 121.638 �14.5375 15.1863
7 2 1 3 2 2 104.6 109.137 �4.5375 15.1863
8 2 1 4 1 2 119.4 110.007 9.3931 15.1863
9 3 1 1 1 0 134.8 155.543 �20.7431 15.1863
10 3 1 2 2 1 155.1 137.663 17.4375 15.1863
11 3 1 3 2 2 132.5 125.162 7.3375 15.1863
12 3 1 4 1 2 122.0 126.032 �4.0319 15.1863
13 4 1 1 1 0 108.1 82.193 25.9069 15.1863
14 4 1 2 2 1 84.9 64.312 20.5875 15.1863
15 4 1 3 2 2 33.2 51.812 �18.6125 15.1863
16 4 1 4 1 2 24.8 52.682 �27.8819 15.1863
17 6 2 1 2 0 85.0 88.081 �3.0806 15.3358
18 6 2 2 1 2 92.8 92.5250 0.2750 15.3358
19 6 2 3 1 1 81.9 80.0250 1.8750 15.3358
20 6 2 4 2 1 59.5 58.5694 0.9306 15.3358
21 7 2 1 2 0 64.1 83.9056 �19.8056 15.3358
22 7 2 2 1 2 112.8 88.3500 24.4500 15.3358
23 7 2 3 1 1 70.4 75.8500 �5.4500 15.3358
24 7 2 4 2 1 55.2 54.3944 0.8056 15.3358
25 8 2 1 2 0 15.3 29.5806 �14.2806 15.3358
26 8 2 2 1 2 30.1 34.0250 �3.9250 15.3358
27 8 2 3 1 1 22.3 21.5250 0.7750 15.3358
28 8 2 4 2 1 17.5 0.0694 17.4306 15.3358
29 9 2 1 2 0 77.4 74.9806 2.4194 15.3358
30 9 2 2 1 2 67.6 79.4250 �11.8250 15.3358
31 9 2 3 1 1 72.9 66.9250 5.9750 15.3358
32 9 2 4 2 1 48.9 45.4694 3.4306 15.3358
33 10 2 1 2 0 102.0 94.8806 7.1194 15.3358
34 10 2 2 1 2 106.1 99.3250 6.7750 15.3358
35 10 2 3 1 1 67.9 86.8250 �18.9250 15.3358
36 10 2 4 2 1 70.4 65.3694 5.0306 15.3358
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The largest residual is �39.2375 for Subject 1 in Period 2. The ratio of the residual to
its standard error is �39.2375/15.1863 � �2.584. This model has 12 parameters and
36 observations. At the 5% level, from Table IV.20 (Appendix IV), the critical value is
estimated at approximately 2.95. Therefore there are no ‘‘outliers’’ evident in this data at
the 5% level.

KEY TERMS

Arcsin transformation Parametric analyses
Back-transformation Ratios
Coefficient of variation Reciprocal transformation
Dixon’s test for outliers Residuals
Exploratory data analysis Skewed data
Fisher-Behrens test Square-root transformation
Geometric mean Studentized residual
Log transformation T procedure
Nonparametric analyses Tolerance Interval
Ordered observations Winsorizing
Outliers

EXERCISES

1. Convert the data in Table 10.2, data set B, to logs and construct a histogram of the
transformed data.

2. Fit the least squares line for the averages of log assay versus log drug concentration
for the average data in Table 10.4.

Log X Log Y

1.602 1.578
1.778 1.787
1.903 1.897

If an unknown sample has a reading of 47, what is the estimate of the drug concentra-
tion?

3. Perform a t test for the data of Table 10.5 using the ratio B/A (Ho: R � 1), and log
B � log A (Ho: log B � log A � 0). Compare the values of t in these analyses to
the similar analyses shown in the text for A/B and log A � log B.

4. Ten tablets were assayed with the following results: 51, 54, 46, 49, 53, 50, 49, 62,
47, 53. Is the value 62 an outlier? When averaging the tablets to estimate the batch
average, would you exclude this value from the calculation? (Use both the Dixon
method and the T method to test the value of 62 as an outlier.)

5. Consider 62 to be an outlier in Problem 4 and calculate the Winzorized average.
Compare this to the average with 62 included.

6. A tablet product was manufactured using two different processes, and packaged in
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bottles of 1000 tablets. Five bottles were sampled from each batch (process) with
the following results:

Number of defective tablets per bottle

Process 1 Bottle Process 2 Bottle

1 2 3 4 5 1 2 3 4 5

No. of defects 0 6 1 3 4 0 1 1 0 1

Perform a t test to compare the average results for each process. Transform the data
and repeat the t test. What transformation did you use? Explain why you used the
transformation. [Hint: see transformations for Poisson variables.]
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EXPERIMENTAL DESIGN IN CLINICAL
TRIALS

The design and analysis of clinical trials is fertile soil for statistical applications. The use
of sound statistical principles in this area is particularly important because of close FDA
involvement, in addition to crucial public health issues which are consequences of actions
based on the outcomes of clinical experiments. Principles and procedures of experimental
design, particularly as applied to clinical studies, are presented. Relatively few different
experimental designs are predominantly used in controlled clinical studies. In this chapter
we discuss several of these important designs and their applications.

11.1 INTRODUCTION

Both pharmaceutical manufacturers and FDA personnel have had considerable input in
constructing guidelines and recommendations for good clinical protocol design and data
analysis. In particular, the FDA has published a series of guidelines for the clinical evalua-
tion of a variety of classes of drugs. Those persons involved in clinical studies have been
exposed to the constant reminder of the importance of design in these studies. Clinical
studies must be carefully devised and documented to meet the clinical objectives. Clinical
studies are very expensive indeed, and before embarking, an all-out effort should be made
to ensure that the study is on a sound footing. Clinical studies designed to ‘‘prove’’ or
demonstrate efficacy and/or safety for FDA approval should be controlled studies, as far
as is possible. A controlled study is one in which an adequate control group is present
(placebo or active control), and in which measures are taken to avoid bias. The following
excerpts from General Considerations for the Clinical Evaluation of Drugs show the
FDA’s concern for good experimental design and statistical procedures in clinical trials
[1]:

1. Statistical expertise is helpful in the planning, design, execution, and analysis of
clinical investigations and clinical pharmacology in order to ensure the validity
of estimates of safety and efficacy obtained from these studies.

2. It is the objective of clinical studies to draw inferences about drug responses in
well defined target populations. Therefore, study protocols should specify the

311
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target population, how patients or volunteers are to be selected, their assignment
to the treatment regimens, specific conditions under which the trial is to be con-
ducted, and the procedures used to obtain estimates of the important clinical
parameters.

3. Good planning usually results in questions being asked which permit direct infer-
ences. Since studies are frequently designed to answer more than one question,
it is useful in the planning phase to consider listing of the questions to be answered
in order of priority.

The following are general principals that should be considered in the conduct of
clinical trials.

1. Clearly state the objective(s).
2. Document the procedure used for randomization.
3. Include a suitable number of patients (subjects) according to statistical principals

(see Chapter 6).
4. Include concurrently studied comparison (control) groups.
5. Use appropriate blinding techniques to avoid patient and physician bias.
6. Use objective measurements when possible.
7. Define the response variable.
8. Describe and document the statistical methods used for data analysis.

11.2 SOME PRINCIPLES OF EXPERIMENTAL DESIGN AND
ANALYSIS

Although many kinds of ingenious and complex statistical designs have been used in
clinical studies, many experts feel that simplicity is the key in clinical study design. The
implementation of clinical studies is extremely difficult. No matter how well designed or
how well intentioned, clinical studies are particularly susceptible to Murphy’s law: ‘‘If
something can go wrong, it will!’’ Careful attention to protocol procedures and symmetry
in design (e.g., equal number of patients per treatment group) often is negated as the study
proceeds, due to patient dropouts, missed visits, carelessness, misunderstood directions,
and so on. If severe, these deviations can result in extremely difficult analyses and interpre-
tations. Although the experienced researcher anticipates the problems of human research,
such problems can be minimized by careful planning.

We will discuss a few examples of designs commonly used in clinical studies. The
basic principles of good design should always be kept in mind when considering the
experimental pathway to the study objectives. In Planning of Experiments, Cox discusses
the requirements for a good experiment [2]. When designing clinical studies, the following
factors are important:

1. Absence of bias
2. Absence of systematic error (use of controls)
3. Adequate precision
4. Choice of patients
5. Simplicity and symmetry

11.2.1 Absence of Bias

As far as possible, known sources of bias should be eliminated by blinding techniques.
If a double-blind procedure is not possible, careful thought should be given to alternatives
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that will suppress, or at least account for possible bias. For example, if the physician can
distinguish two comparative drugs, as in an open study, perhaps the evaluation of the
response and the administration of the drug can be done by other members of the investiga-
tive team (e.g., a nurse) who are not aware of the nature of the drug being administered.

In a double-blind study, both the observer and patient (or subject) are unaware of the
treatment being given during the course of the study. Human beings, the most complex
of machines, can respond to drugs (or any stimulus, for that matter) in amazing ways as
a result of their psychology. This is characterized in drug trials by the well-known ‘‘placebo
effect.’’ Also, a well-known fact is that the observer (nurse, doctor, etc.) can influence
the outcome of an experiment if the nature of the different treatments is known. The
subjects of the experiment can be influenced by words and/or actions, and unconscious bias
may be manifested in the recording and interpretation of the experimental observations. For
example, in analgesic studies, as much as 30–40% of patients may respond to a placebo
treatment.

The double-blind method is accomplished by manufacturing alternative treatment
dosage forms to be as alike as possible in terms of shape, size, color, odor, and taste.
Even in the case of dosage forms that are quite disparate, ingenuity can always provide
for double-blinding. For example, in a study where an injectable dosage form is to be
compared to an oral dosage form, the double-dummy technique may be used. Each subject
is administered both an oral dose and an injection. In one group, the subject receives an
active oral dose and a placebo injection, whereas in the other group, each subject receives
a placebo oral dose and an active injection. There are occasions where blinding is so
difficult to achieve or is so inconvenient to the patient that studies are best left ‘‘un-
blinded.’’ In these cases, every effort should be made to reduce possible biases. For
example, in some cases, it may be convenient for one person to administer the study drug,
and a second person, unaware of the treatment given, to make and record the observation.

Examples of problems that occur when trials are not blinded are given by Rodda et
al. [3]. In a study designed to compare an angiotensin converting enzyme (ACE) inhibitor
with a Beta-blocker, unblinded investigators tended to assign patients who had been previ-
ously unresponsive to Beta-blockers to the ACE group. This allocation results in a treat-
ment bias. The ACE group may contain the more seriously ill patients.

An important feature of clinical study design is randomization of patients to treatments.
This topic has been discussed in Chapter 4, but bears repetition. The randomization proce-
dure as applied to various designs will be presented in the following discussion. Random-
ization is an integral and essential part of the implementation and design of clinical studies.
Randomization will help to reduce potential bias in clinical experiments, and is the basis
for valid calculations of probabilities for statistical testing.

11.2.2 Absence of Systematic Errors

Cox gives some excellent examples in which the presence of a systematic error leads to
erroneous conclusions [2]. In the case of clinical trials, a systematic error would be present
if one drug was studied by one investigator and the second drug was studied by a second
investigator. Any observed differences between drugs could include ‘‘systematic’’ differ-
ences between the investigators. This ill-designed experiment can be likened to Cox’s
example of feeding two different rations to a group of animals, where each group of
animals is kept together in separate pens. Differences in pens could confuse the ration
differences. One or more pens may include animals with different characteristics that, by
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chance, may affect the experimental outcome. In the examples above, the experimental
units (patients, animals, etc.) are not independent. Although the problems of interpretation
resulting from the designs in the examples above may seem obvious, sometimes the short-
comings of experimental procedures are not obvious. We have discussed the deficiencies
of a design in which a baseline measurement is compared to a posttreatment measurement
in the absence of a control group. Any change in response from baseline to treatment
could be due to changes in conditions during the intervening time period. To a great extent,
systematic errors in clinical experiments can be avoided by the inclusion of an appropriate
control group and random assignment of patients to the treatment groups.

11.2.3 Adequate Precision

Increased precision in a comparative experiment means less variable treatment effects and
more efficient estimate of treatment differences. Precision can always be improved by
increasing the number of patients in the study. Because of the expense and ethical questions
raised by using large numbers of patients in drug trials, the sample size should be based
on medical and statistical considerations which will achieve the experimental objectives
described in Chapter 6.

Often, an appropriate choice of experimental design can increase the precision. Use
of baseline measurements or use of a crossover design rather than a parallel design, for
example, will usually increase the precision of treatment comparisons. However, in statis-
tics as in life, we do not get something for nothing. Experimental designs have their
shortcomings as well as advantages. Properties of a particular design should be carefully
considered before the final choice is made. For example, the presence of carryover effects
will negate the advantage of a crossover design as presented in Sec. 11.4.

Blocking is another way of increasing precision. This is the basis of the increased
precision accomplished by use of the two-way design discussed in Sec. 8.4. In these
designs, the patients in a block have similar (and relevant) characteristics. For example,
if age and sex are variables that affect the therapeutic response of two comparative drugs,
patients may be ‘‘blocked’’ on these variables. Thus if a male of age 55 years is assigned
to drug A, another male of age approximately 55 years will be assigned treatment B. In
practice, patients of similar characteristics are grouped together in a block and randomly
assigned to treatments.

11.2.4 Choice of Patients

In most clinical studies, the choice of patients covers a wide range of possibilities (e.g.,
age, sex, severity of disease, concomitant diseases, etc.). In general, inferences made
regarding drug effectiveness are directly related to the restrictions (or lack of restrictions)
placed on patient eligibility. This is an important consideration in experimental design,
and great care should be taken to describe which patients may be qualified or disqualified
from entering the study.

11.2.5 Simplicity and Symmetry

Again we emphasize the importance of simplicity. More complex designs have more
restrictions, and a resultant lack of flexibility. The gain resulting from a more complex
design should be weighed against the expense and problems of implementation often
associated with more sophisticated, complex designs.
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Symmetry is an important design consideration. Often, the symmetry is obvious: In
most (but not all) cases, experimental designs should be designed to have equal number
of patients per treatment group, equal number of visits per patient, balanced order of
administration, and an equal number of replicates per patient. Some designs, such as
balanced incomplete block and partially balanced incomplete block designs, have a less
obvious symmetry.

11.2.6 Randomization

Principles of randomization have been described in Chapter 4. Randomization is particu-
larly important when assigning patients to treatments in clinical trials, ensuring that the
requirements of good experimental design are fulfilled and the pitfalls avoided (15).
Among other qualities, proper randomization avoids unknown biases, tends to balance
patient characteristics, and is the basis for the theory that allows calculation of probabilities.

In Chapter 4 (Sec. 4.2), the advantages of randomization of patients in blocks is
discussed. Table 11.1 is a short table of random permutations which gives random schemes
for block sizes of 4, 5, 6, 8, and 10. This kind of randomization is also known as restricted
randomization and allows for an approximate balance of treatment groups throughout the
trial. As an example of the application of Table 11.1, consider a study comparing an active
drug with placebo using a parallel design, with 24 patients per group (a total of 48 patients).
In this case, a decision is made to group patients in blocks of 8, i.e., for each group of 8
consecutive patients, 4 will be on drug and 4 on placebo. In Table 11.1, we start in a
random column in the section labeled ‘‘Blocks of 8,’’ and select 6 sequential columns.
Because this is a short table, we would continue into the first column if we had to proceed
past the last column. (Note that this table is meant to illustrate the procedure and should
not be used repeatedly in real examples or for sample sizes exceeding the total number
of random assignments in the table. For example, there are 160 random assignments for
blocks of size 8; therefore for a study consisting of more than 160 patients, this table
would not be of sufficient size.) If the third column is selected to begin the random
assignment, and we assign treatment A to an odd number and Treatment B to an even
number, the first 8 patients will be assigned treatment as follows:

B B A B B A A A

11.2.7 Intent to Treat

In most clinical studies, there is a group of patients who have been administered drug
who may not be included in the efficacy data analysis because of various reasons, such
as protocol violations. This would include patients, for example, who (a) leave the study
early for non-drug related reasons, (b) take other medications which are excluded in the
protocol, or (c) are non-compliant with regard to the scheduled dosing regimen, and so
on. Certainly, these patients should be included in summaries of safety data, such as adverse
reactions and clinical laboratory determinations. Under FDA guidelines, an analysis of
efficacy data should be performed with these patients included as an ‘‘Intent to Treat’’
(ITT) analysis (16). Thus, both an efficacy analysis including only those patients who
followed the protocol, and an ITT analysis, which includes all patients randomized to
treatments (with the possible exception of inclusion of ineligible patients, mistakenly
included) are performed. In fact, the ITT analysis may take precedence over the analysis
that excludes protocol violators. The protocol violators, or those patients who are not to
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Table 11.1 Randomization in Blocks

BLOCKS OF 4
1 3 3 2 4 4 1 1 1 2 1 3 3 1 2 4 2 3 1 4
2 2 4 3 3 2 2 2 2 3 4 2 2 4 4 2 4 2 4 3
3 1 1 4 2 1 3 3 3 1 2 1 1 2 3 1 1 4 3 2
4 4 2 1 1 3 4 4 4 4 3 4 4 3 1 3 3 1 2 1

BLOCKS OF 5
4 4 1 3 5 5 4 2 5 5 3 5 4 3 2 2 3 2 5 4
2 5 3 5 2 3 5 5 1 1 2 2 2 4 3 5 4 3 1 2
3 3 5 4 1 2 1 3 4 3 5 4 1 5 4 3 2 4 4 3
1 2 4 2 3 1 3 4 2 4 4 3 5 2 5 1 1 1 2 1
5 1 2 1 4 4 2 1 3 2 1 1 3 1 1 4 5 5 3 5

BLOCKS OF 6
1 5 2 5 3 2 5 1 5 1 1 2 5 2 6 4 3 4 2 2
2 6 5 3 2 1 2 6 6 3 4 4 1 1 3 5 6 2 6 5
5 2 4 4 1 3 3 5 4 4 2 6 6 6 1 3 2 5 3 1
6 1 1 2 5 5 4 2 3 6 5 1 2 3 2 1 4 6 4 3
3 4 6 1 6 6 1 3 2 5 3 3 3 4 4 6 5 3 1 6
4 3 3 6 4 4 6 4 1 2 6 5 4 5 5 2 1 1 5 4

BLOCKS OF 8
7 4 2 4 1 2 1 5 3 4 4 8 5 3 5 2 2 5 1 6
8 2 4 5 8 5 5 2 4 5 6 6 4 5 4 7 8 3 7 7
4 3 1 6 3 6 3 4 5 2 7 5 1 1 3 6 6 6 8 5
1 5 6 3 2 7 8 8 2 1 3 1 3 8 6 3 3 8 5 1
2 8 8 1 7 8 4 3 8 7 5 7 7 6 1 4 4 2 3 3
3 1 5 8 6 1 2 7 7 6 2 3 2 2 2 5 5 1 6 2
6 7 3 7 5 4 7 1 6 8 8 2 8 4 7 8 7 4 2 4
5 6 7 2 4 3 6 6 1 3 1 4 6 7 8 1 1 7 4 8

BLOCKS OF 10
1 9 4 1 3 4 1 4 6 8 9 9 10 9 5 5 6 6 4 3
4 6 5 8 2 7 4 5 3 9 7 6 6 1 1 4 3 2 9 2
5 2 3 4 7 8 5 9 9 2 10 8 1 7 4 3 9 7 10 9
9 8 6 10 8 9 8 10 5 7 2 4 4 4 10 10 4 1 2 7
2 10 8 9 1 6 6 8 4 10 5 2 9 2 6 1 1 9 7 5

10 3 9 5 6 2 9 1 8 1 1 3 5 8 8 8 7 3 3 10
8 4 7 7 9 3 10 7 1 4 3 7 3 3 2 9 2 5 1 8
3 5 2 2 5 1 7 6 7 5 8 1 7 5 3 6 5 8 5 1
6 7 10 3 10 5 3 3 2 6 4 10 8 6 9 2 8 4 6 6
7 1 1 6 4 10 2 2 10 3 6 5 2 10 7 7 10 10 8 4

be included in the primary analysis, should be identified, with reasons for exclusion, prior
to breaking the treatment randomization code. The ITT analysis should probably not result
in different conclusions from the primary analysis, particularly if the protocol violators
and other ‘‘excluded’’ patients occur at random. In most circumstances, a different conclu-
sion may occur for the two analyses only when the significance level is close to 0.05. If
the conclusions differ for the two analyses, ITT results are sometimes considered to be
more definitive. Certainly, an explanation should be given when conclusions are different
for the two analyses. One should recognize that the issue of using an intent to treat analysis
vis-à-vis an analysis including only ‘‘compliant’’ patients remains controversial.
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11.3 PARALLEL DESIGN

In a parallel design, two or more drugs are studied, drugs being randomly assigned to
different patients. Each patient is assigned a single drug. In the example presented here,
a study was proposed to compare the response of patients to a new formulation of an
antianginal agent and a placebo with regard to exercise time on a stationary bicycle at
fixed impedance. An alternative approach would be to use an existing product rather than
placebo as the comparative product. However, the decision to use placebo was based on
the experimental objective: to demonstrate that the new formulation produces a measurable
and significant increase in exercise time. A difference in exercise time between the drug
and placebo is such a measure. A comparison of the new formulation with a positive
control (an active drug) would not achieve the objective directly.

In this study, a difference in exercise time between drug and placebo of 60 seconds
was considered to be of clinical significance. The standard deviation was estimated to be
65 based on change from baseline data observed in previous studies. The sample size for
this study, for an alpha level of 0.05 and power of 0.90 (beta � 0.10), was estimated as
20 patients per group (see Exercise Problem 7). Therefore forty patients were entered into
the study, 20 each randomly assigned to placebo and active treatment. A randomization
that obviates a long consecutive run of patients assigned to one of the treatments was used
as described in Section 11.2.6. Patients were randomly assigned to each treatment in groups
of 10, with 5 patients to be randomly assigned to each treatment. This randomization was
applied to each of the 4 subsets of 10 patients (40 patients total). From Table 11.1 starting
in the fourth column, patients are randomized into the two groups as follows, placebo if
an odd number appears and New Formulation if an even number appears:

Placebo New formulation

Subset 1 1, 5, 6, 7, 9 2, 3, 4, 8, 10
Subset 2 11, 13, 15, 17, 18 12, 14, 16, 19, 20
Subset 3 22, 24, 27, 28, 29 21, 23, 25, 26, 30
Subset 4 31, 33, 36, 38, 39 32, 34, 35, 37, 40

The first subset is assigned as follows. The first number is 1; patient 1 is assigned to
Placebo. The second number (reading down) is 8; patient 2 is assigned to the New Formula-
tion (NF). The next two numbers (4, 10) are even. Patients 3 and 4 are assigned to NF.
The next number is odd (9); patient 5 is assigned to Placebo. The next two numbers are
odd and Patients 6 and 7 are assigned to Placebo. Patients 8, 9 and 10 are assigned to
NF, Placebo, and NF, respectively, to complete the first group of ten patients. Entering
column 5, patient 11 is assigned to Placebo, and so on.

An alternative randomization is to number patients consecutively from 1 to 40 as they
enter the study. Using a table of random numbers, patients are assigned to placebo if an
odd number appears, and assigned to the test product (new formulation) if an even number
appears. Starting in the eleventh column of Table IV.1, the randomization scheme is as
follows:
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Placebo New formulation

1, 6, 7, 8 2, 3, 4, 5
12, 13, 14 9, 10, 11
15, 18, 20 16, 17, 19
21, 22, 26 23, 24, 25
27, 28 29, 30, 31
32, 34, 35 33, 38, 39
36, 37 40

For example, the first number in column 11 is 7; patient number 1 is assigned to placebo.
The next number in column 11 is 8; the second patient is assigned to the new formulation;
and so on.

Patients were first given a predrug exercise test to determine baseline values. The test
statistic is the time of exercise to fatigue or an anginal episode. Tablets were prepared so
that the placebo and active drug products were identical in appearance. Double-blind
conditions prevailed. One hour after administration of the drug, the exercise test was
repeated. The results of the experiment are shown in Table 11.2.

The key points in this design are:

1. There are two independent groups (placebo and active, in this example). An equal
number of patients are randomly assigned to each group.

2. A baseline measurement and a single posttreatment measurement are available.

This design corresponds to a one-way analysis of variance, or in the case of two treatments,
a two-independent-groups t test. Since, in general, more than two treatments may be
included in the experiment, the analysis will be illustrated using ANOVA.

When possible, pretreatment (baseline) measurements should be made in clinical stud-
ies. The baseline values can be used to help increase the precision of the measurements.
For example, if the treatment groups are compared using differences from baseline, rather
than the posttreatment exercise time, the variability of the measurements will usually be
reduced. Using differences, we will probably have a better chance of detecting treatment
differences, if they exist (increased power). ‘‘Subtracting out’’ the baseline helps to reduce
the between-patient variability which is responsible for the variance (the ‘‘within mean
square’’) in the statistical test. A more complex, but more efficient analysis is analysis of
covariance. Analysis of covariance (4) takes baseline readings into account, and for an
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Table 11.2 Results of the Exercise Test Comparing Placebo to Active Drug: Time
(Sec) to Fatigue or Angina

Placebo Active drug (new formulation)

Exercise time Exercise time

Patient Pre Post Post-Pre Patient Pre Post Post-Pre

1 377 345 �32 2 232 372 140
6 272 310 38 3 133 120 �13
7 348 347 �1 4 206 294 88
8 348 300 �48 5 140 258 118

12 133 150 17 9 240 340 100
13 102 129 27 10 246 393 147
14 156 110 �46 11 226 315 89
15 205 251 46 16 123 180 57
18 296 262 �34 17 166 334 168
20 328 297 �31 19 264 381 117
21 315 278 �37 23 241 376 135
22 133 124 �9 24 74 264 190
26 223 289 66 25 400 541 141
27 256 303 47 29 320 410 90
28 493 487 �6 30 216 301 85
32 336 309 �27 31 153 143 �10
34 299 281 �18 33 193 348 155
35 140 186 46 38 330 440 110
36 161 125 �36 39 258 365 107
37 259 236 �23 40 353 483 130

Mean 259 256 �3.05 Mean 226 333 107.2
s.d. 102 95 36.3 s.d. 83 106 51.5

unambiguous conclusion, assumes that the slope of the response vs. baseline is the same
for all treatment groups. See Analysis of Covariance (Section 8.6) For a more detailed
discussion. Also, the interpretation may be more difficult than the simple ‘‘difference from
baseline’’ approach. Analysis of covariance is described in Chapter 8, Sec. 8.6.

To illustrate the results of the analysis with and without baseline readings, the data
in Table 11.2 will be analyzed in two ways: (a) using only the posttreatment response,
posttreatment exercise time, and (b) comparing the difference from baseline for the two
treatments. The reader is reminded of the assumptions underlying the t test and analysis
of variance: the variables should be independent, normally distributed with homogeneous
variance. These assumptions are necessary for both posttreatment and difference analyses.
Possible problems with lack of normality will be less severe in the difference analysis.
The difference of independent nonnormal variables will tend to be closer to normal than
are the original individual data.

Before proceeding with the formal analysis, it is prudent to test the equivalence of
the baseline averages for the two treatment groups. This test, if not significant, gives some
assurance that the two groups are ‘‘comparable.’’ We will use a two-independent groups
t test to compare baseline values (see Sec. 5.2.2).
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Table 11.3 ANOVA Table for Posttreatment Readings for the Data of Table 11.2

Source d.f. SS MS F

Between groups 1 59,213 59,213 F1,38 � 5.86*
Within groups 38 383,787 10,099.7
Total 39 443,000

* P � 0.05.

t
X X

Sp N N

Sp

=
−

+

= −
+

= =

1 2

1 21 1

259 226

1 20 1 20

33

93 1 10
1 12

/ /

/ / /
.

Note that the pooled standard deviation (93) is the pooled value from the baseline readings,

�(1022 � 832)/2. From Table IV.4, a t value of approximately 2.03 is needed for signifi-
cance (38 d.f.) at the 5% level. Therefore, the baseline averages are not significantly
different for the two treatment groups. If the baseline values are significantly different,
one would want to investigate further the effects of baseline on response in order to decide
on the best procedure for analysis of the data (e.g., covariance analysis, ratio of response
to baseline, etc.).

11.3.1 Analysis of Variance Using Only Posttreatment Results

The average results for exercise time after treatment are 256 sec for placebo and 333 sec
for the new formulation of active drug, a difference of 77 sec (Table 11.2). Although the
averages can be compared using a t test as in the case of baseline readings (above), the
equivalent ANOVA is given in Table 11.3. The reader is directed to Exercise Problem 1
for the detailed calculations. According to Table IV.6, between groups (active and placebo)
is significant at the 5% level.

11.3.2 Analysis of Variance of Differences from the Baseline

When the baseline values are taken into consideration, the active drug shows an increase
in exercise time over placebo of 110.25 sec [107.2 � (�3.05)]. The ANOVA is shown
in Table 11.4. The data analyzed here are the (post – pre) values in Table 11.2. The F

Table 11.4 Analysis of Variance for Differences from Baseline (Table 11.1)

Source d.f. SS MS F

Between groups 1 121,551 120,551 F1,38 � 61.3*
Within groups 38 75,396 1,984
Total 39 196,947

* P � 0.01.
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test for treatment differences is 61.3! There is no doubt about the difference between the
active drug and placebo. The larger F value is due to the considerable reduction in variance
as a result of including the baseline values in the analysis. The within-groups error term
represents within-patient variation in this analysis. In the previous analysis for posttreat-
ment results only, the within-groups error term represents the between-patient variation,
which is considerably larger than the within-patient error. Although both tests are signifi-
cant (P � 0.05) in this example, one can easily see that situations may arise in which
treatments may not be statistically different based on a significance test if between-patient
variance is used as the error term, but would be significant based on the smaller within-
patient variance. Thus designs that use the smaller within-patient variance as the error
term for treatments are to be preferred, other things being equal.

11.4 CROSSOVER DESIGNS AND BIOAVAILABILITY/
BIOEQUIVALENCE STUDIES

In a typical crossover design, each subject takes each of the treatments under investigation
on different occasions. Comparative bioavailability* or bioequivalence studies, in which
two or more formulations of the same drug are compared, are usually designed as crossover
studies. Perhaps the greatest appeal of the crossover design is that each patient acts as his
or her own control. This feature allows for the direct comparison of treatments, and is
particularly efficient in the presence of large interindividual variation. However, caution
should be used when considering this design in studies where carryover effects or other
interactions are anticipated. Under these circumstances, a parallel design may be more
appropriate.

11.4.1 Description of Crossover Designs: Advantages and Disadvantages

The crossover (or changeover) design is a very popular, and often desirable, design in
clinical experiments. In these designs, typically, two treatments are compared, with each
patient or subject taking each treatment in turn. The treatments are typically taken on two
occasions, often called visits, periods, or legs. The order of treatment is randomized; that
is, either A is followed by B or B is followed by A, where A and B are the two treatments.
Certain situations exist where the treatments are not separated by time, e.g., in two visits
or periods. For example, comparing the effect of topical products, locations of applications
on the body may serve as the visits or periods. Product may be applied to each of two
arms, left and right. Individuals will be separated into two groups, (1) those with Product
A applied on the left arm and Product B on the right arm, and (2) those with Product B
applied on the left arm and Product A on the right arm.

A B
or

First week Second week First week Second week

B A

This design may also be used for the comparison of more than two treatments. The present
discussion will be limited to the comparison of two treatments, the most common situation
in clinical studies. (The design and analysis of three treatment crossovers follows from

* A bioavailability study, in our context, is defined as a comparative study of a drug formulation
compared to an optimally absorbed (intravenous or oral solution) formulation.
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the discussion that follows.) Crossover designs have great appeal when the experimental
objective is the comparison of the performance, or effects, of two drugs or product formula-
tions. Since each patient takes each product, the comparison of the products is based on
within-patient variation. The within- or intrasubject variability will be smaller than the
between- or intersubject variability used for the comparison of treatments in the one-way
or parallel-groups design. Thus crossover experiments usually result in greater precision
than the parallel-groups design, where different patients comprise the two groups. Given
an equal number of observations, the crossover design is more powerful than a parallel
design in detecting product differences.

The crossover design is a type of Latin square. In a Latin square the number of
treatments equals the number of patients. In addition, another factor, such as order of
treatment, is included in the experiment in a balanced way. The net result is an N � N
array (where N is the number of treatments or patients) of N letters such that a given letter
appears only once in a given row or column. This is most easily shown pictorially. A
Latin square for four subjects taking four drugs is shown in Table 11.5. For randomizations
of treatments in Latin squares, see Ref. 4.

For the comparison of two formulations, a 2 � 2 Latin square (N � 2) consists of
two patients each taking two formulations (A and B) on two different occasions in two
‘‘orders’’ as follows:

Occasion period

Patient First Second

1 A B
2 B A

The balancing of order (A�B or B�A) takes care of time trends or other ‘‘period’’
effects, if present. (A period effect is a difference in response due to the occasion on
which the treatment is given, independent of the effect due to the treatment.)

The 2 � 2 Latin square shown above is familiar to all who have been involved in
bioavailability/bioequivalence studies. In these studies, the 2 � 2 Latin square is repeated

Table 11.5 4 � 4 Latin Square: Four Subjects Take Four Drugs

Order in which drugsa are taken

Subject First Second Third Fourth

1 A B C D
2 B C D A
3 C D A B
4 D A B C

a Drugs are designated as A, B, C, D.
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several times to include a sufficient number of patients (see also Table 11.6). Thus the
crossover design can be thought of as a repetition of the 2 � 2 Latin square.

The crossover design has an advantage, previously noted, of increased precision rela-
tive to a parallel-groups design. Also, the crossover is usually more economical: one-half
the number of patients or subjects have to be recruited to obtain the same number of
observations as in a parallel design. (Note that each patient takes two drugs in the cross-
over.) Often, a significant part of the expense in terms of both time and money is spent
recruiting and processing patients or volunteers. The advantage of the crossover design
in terms of cost depends on the economics of patient recruiting, cost of experimental
observations, as well as the relative within-patient/between-patient variation. The smaller
the within-patient variation relative to the between-patient variation, the more efficient
will be the crossover design. Hence, if a repeat observation on the same patient is very
variable (nonreproducible), the crossover may not be very much better than a parallel
design, cost factors being equal. This problem is presented and quantitatively analyzed in
detail by Brown [6].

There are also some problems associated with crossover designs. A crossover study
may take longer to complete than a parallel study because of the extra testing period. It
should be noted, however, that if recruitment of patients is difficult, the crossover design
may actually save time, because fewer patients are needed to obtain equal power compared
to the parallel design. Another disadvantage of the crossover design is that missing data
pose a more serious problem than in the parallel design. If an observation is lost in one
of the legs of a two-period crossover, the data for that person carries very little information.
Since each subject must supply data on two occasions (compared to a single occasion in
the parallel design), the chances of observations being lost to the analysis are greater in
the crossover study. If an observation is lost in one of the legs of a two-period crossover,
the data for that person carries very little information. When data are missing in the
crossover design, the statistical analysis is more difficult and the design loses some effi-
ciency. Finally, the administration of crossover designs in terms of management and patient
compliance is somewhat more difficult than that of parallel studies.

Perhaps the most serious problem with the use of crossover designs is one common
to all Latin square designs, the possibility of interactions. The most common interaction
that may be present in crossover design is a differential carryover or residual effect. This
effect occurs when the response on the second period (leg) is dependent on the response
in the first period, and this dependency differs depending on which of the two treatments
is given during the first period. Carryover is illustrated in Fig. 11.1A, where the short
interval between administration of dosage forms X and Y is not sufficient to rid the body
of drug when formulation X is given first. This results in an apparent larger blood level for
formulation Y when it is given subsequent to formulation X. In the presence of differential
carryover, the data cannot be properly analyzed except by the use of more complex designs.
(see replicate crossover designs in Section 11.4.7.) These special designs are not easily
accommodated to clinical studies [5].

Figure 11.1B illustrates an example where a sufficiently long washout period ensures
that carryover of blood concentration of drug is absent. The results depicted in Fig. 11.1A
show a carryover effect which could easily have been avoided if the study had been
carefully planned. This example only illustrates the problem; often, carryover effects are
not as obvious. These effects can be caused by such uncontrolled factors as psychological
or physiological states of the patients, or by external factors such as the weather, clinical
setting, assay techniques, and so on.
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Figure 11.1 Carryover in a bioequivalence study.

Grizzle has published an analysis to detect carryover (residual) effects [7]. When
differential carryover effects are present, the usual interpretation and statistical analysis
of crossover studies are invalid. Only the first period results can be used, resulting in a
smaller, less sensitive experiment. An example of Grizzle’s analysis is shown in this
chapter in the discussion of bioavailability studies (Sec. 11.4.2). Brown concludes that
most of the time, in these cases, the parallel design is probably more efficient [6]. Therefore,
if differential carryover effects are suspected prior to implementation of the study, an
alternative to the crossover design should be considered (see below).

Because of the ‘‘built-in’’ individual-by-individual comparisons of products provided
by the crossover design, the use of such designs in comparative clinical studies often
seems very attractive. However, in many situations, where patients are being treated for
a disease state, the design is either inappropriate or difficult to implement. In acute diseases,
patients may be cured or so much improved after the first treatment that a ‘‘different’’
condition or state of illness is being treated during the second leg of the cross-over. Also,
psychological carryover has been observed, particularly in cases of testing psychotropic
drugs.

The longer study time necessary to test two drugs in the crossover design can be
critical if the testing period of each leg is of long duration. Including a possible washout
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period to avoid possible carryover effects, the crossover study will take at least twice as
long as a parallel study to complete. In a study of long duration, there will be more
difficulty in recruiting and maintaining patients in the study. One of the most frustrating
(albeit challenging) facets of data analysis is data with ‘‘holes,’’ missing data. Long-term
crossover studies will inevitably have such problems.

11.4.2 Bioavailability/Bioequivalence Studies

The assessment of ‘‘Bioequivalence’’ (BE) refers to a procedure that compares the bio-
availability of a drug from different formulations. Bioavailability is defined as the rate
and extent to which the active ingredient or active moiety is absorbed from a drug product
and becomes available at the site of action. For drug products that are not intended to be
absorbed into the bloodstream, bioavailability may be assessed by measurements intended
to reflect the rate and extent to which the active ingredient or active moiety becomes
available at the site of action. In this chapter, we will not present methods for drugs that
are not absorbed into the bloodstream (or absorbed so little as to be unmeasurable), but
may act locally. Products containing such drugs are usually assessed using a clinical
endpoint, using parallel designs discussed elsewhere in this chapter. Statistical methodol-
ogy, in general, will be approached in a manner consistent with methods presented for
drugs that are absorbed.

Thus, we are concerned with measures of the release of drug from a formulation
and its availability to the body. Bioequivalence can be simply defined by the relative
bioavailability of two or more formulations of the same drug entity. According to 21 CFR
320.1, bioequivalence is defined as ‘‘the absence of a significant difference in the rate
and extent to which the active ingredient or active moiety … becomes available at the
site of drug action when administered … in an appropriately designed study.’’

Bioequivalence is an important part of an NDA in which formulation changes have
been made during and after pivotal clinical trials. Bioequivalence studies, as part of ANDA
submissions, in which a generic product is compared to a marketed, reference product,
are critical parts of the submission. Bioequivalence studies may also be necessary when
formulations for approved marketed products are modified.

In general, most bioequivalence studies depend on accumulation of pharmacokinetic
(PK) data that provide concentrations of drug in the bloodstream at specified time points
following administration of the drug. These studies are typically performed, using oral
dosage forms, on volunteers who are incarcerated (housed) during the study to ensure
compliance with regard to dosing schedule as well as other protocol requirements. This
does not mean that BE studies are limited to oral dosage forms. Any drug formulation
that results in measurable blood concentrations after administration can be treated and
analyzed in a manner similar to drugs taken orally. For drugs that act locally and are
not appreciably absorbed, either a surrogate endpoint may be utilized in place of blood
concentrations of drug (e.g., a pharmacodynamic response) or a clinical study using a
therapeutic outcome may be necessary. Also, in some cases where assay methodology in
blood is limited, or for other relevant reasons, measurements of drug in the urine over
time may be used to assess equivalence.

To measure rate and extent of absorption for oral products, pharmacokinetic (PK)
measures are used. In particular, model independent measures used are (a) area under the
blood concentration versus time curve (AUC) and the maximum concentration (Cmax),
which are measures of the amount of drug absorbed and the rate of absorption, respectively.
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The time at which the maximum concentration occurs (Tmax) is a more direct measure as
an indicator of absorption rate, but is a very variable estimate.

Bioavailability/bioequivalence studies are particularly amenable to crossover designs.
Virtually all such studies make use of this design. Most bioequivalence studies involve
single doses of drugs given to normal volunteers, and are of short duration. Thus the
disadvantages of the crossover design in long term, chronic dosing studies are not apparent
in bioavailability studies. With an appropriate washout period between doses, the crossover
is ideally suited for comparative bioavailability studies.

Statistical applications are essential for the evaluation of bioequivalence studies. Study
designs are typically two-period, two-treatment (tttp) crossover studies with single or
multiple (steady state) dosing, fasting or fed. Designs with more than two periods are now
becoming more common, and are recommended in certain cases by the FDA. For long
half-life drugs, where time is crucial, parallel designs may be desirable, but these studies
use more subjects than would be used in the crossover design, and the implementation of
parallel studies may be difficult and expensive. The final evaluation is based on parameter
averages derived from the blood level curves, AUC, Cmax and tmax. Statistical analyses
that have been recommended are varied, and the analyses presented here are typical of
those recommended by regulatory agencies.

This section discusses some designs, their properties and statistical evaluations.
Although crossover designs have clear advantages over corresponding parallel de-

signs, their use is restricted, in general, because of potential differential carryover effects
and confounded interactions. However, for bioequivalence studies, the advantages of these
designs far outweigh the disadvantages. Because these studies are typically performed in
healthy volunteers and are of short duration, the potential for carryover and interactions
is minimal. In particular, the likelihood of differential carryover seems to be remote.
Carryover may be observed if administration of a drug affects the blood levels of subse-
quent doses. Although possible, a carryover effect would be very unusual, particularly in
single dose studies with an adequate wash-out period. A wash-out period of 7 half-lives
is recommended. Even more unlikely, would be a differential carryover, which suggests
that the carryover from one product is different from the carryover from the second product.
A differential carryover effect can invalidate the second period results in a two-period
crossover (see below). Because bioequivalence studies compare the same drug in different
formulations, if a carryover exists at all, the carryover of two different formulations would
not be expected to differ. This is not to say that differential carryover is impossible in
these studies, but to this author’s knowledge, differential carryover has not been verified
in results of published bioequivalence studies, single or multiple dose. In the typical tttp
design, differential carryover is confounded with other effects, and a test for carryover is
not definitive. Thus, if such an effect is suspected, proof would require a more restrictive
or higher order design, i.e., a design with more than two periods. This problem will be
discussed further as we describe the analysis and inferences resulting from these designs.

The features of the tttp design follow:

1. N subjects recruited for the study are separated into two groups, or two treatment
sequences. N1 subjects take the treatments in the order AB, and N2 in the order
BA, where N1 � N2 � N. For example, 24 (N) subjects are recruited and 12 (N1)
take the Generic followed by the Brand product, and 12 (N2) take the Brand
followed by the Generic. Note that the product may be taken as a single dose,
in multiple doses, fasted or fed.
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2. After administration of the product in the first period, blood levels of drug are
determined at suitable intervals.

3. A wash-out period follows, which is of sufficient duration to ensure the ‘‘total’’
elimination of the drug given during the first period. An interval of at least nine
drug half-lives should be sufficient to ensure virtually total elimination of the
drug. Often, a minimum of 7 half-lives is recommended.

4. The alternate product is administered in the second period and blood levels deter-
mined as during Period 1.

Crossover designs are planned so that each treatment is given an equal number of
times in each period. This is most efficient and yields unbiased estimates of treatment
differences if a period effect is present.

The blood is analyzed for each subject with both first and second periods analyzed
concurrently (the same day). To detect possible analytical errors, the samples are usually
analyzed chronologically (starting from the time 0 sample to the final sample), but with
the identity of the product assayed unknown (sample blinding).

After the blood assays are complete, the blood level vs. time curves are analyzed for
the derived parameters, AUCt (also noted as AUC0-t), AUC0-�, Cmax, and tmax (tp), for
each analyte. AUCt is the area to the last quantifiable concentration, and AUCinf is AUCt

augmented by an estimate of the area from time t to infinity (Ct/ke). This is shown and
explained in Fig. 11.2. A detailed analysis follows.

The analysis of the data consists of first determining the maximum blood drug concen-
tration (Cmax) and the area under the blood level vs. time curve (AUC) for each subject,
for each product. Often, more than one analyte is observed, e.g., metabolites or multiple
ingredients, all of which may need to be separately analyzed.

AUC is determined using the trapezoidal rule. The area between adjacent time points
may be estimated as a trapezoid (Fig. 11.3). The area of each trapezoid, up to and including
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Figure 11.2 Derived parameters from bioequivalence study.

Figure 11.3 Illustration of trapezoidal rule.
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the final time point, where a measurable concentration is observed, is computed, and the
sum of these areas is the AUC, designated as AUC (t). The area of a trapezoid is 1⁄2(base)
(sum of 2 sides). For example, in Fig. 11.3, the area of the trapezoid shown in the blood
level vs. time curve is 4. In this figure, Cmax is 5 ng/ml and Tmax, the time at which Cmax

occurs, is 2 h. Having performed this calculation for each subject and product, the AUC
and Cmax values are transformed to their respective logarithms. Either natural logs (ln) or
logs to the base 10 (log) may be used. Typically, one uses the natural log, or ln. The
details of the analysis are described later in this chapter. The analysis of AUC and Cmax

was not always performed on the logs of these values. Originally, the actual, observed
(nontransformed) values of these derived parameters were used in the analysis. (This
history will be discussed in more detail below.) However, examination of the theoretical
derivations and mathematical expression of AUC and Cmax, as well as the statistical proper-
ties, has led to the use of the logarithmic transformation. In particular, data appear to show
that these values follow a log-normal distribution more closely than they do a normal
distribution. The form of expression for AUC suggests a multiplicative model

AUC � FD/VKe
where

F � fraction of drug absorbed
D � dose
V � volume of Distribution

Ke � elimination rate constant

The distribution of AUC is complex because of the nonlinearity; it is a ratio. Ln(AUC)
is equal to ln(F) � ln(D) � ln(V) � ln(Ke). This is linear, and the statistical properties
are more manageable. A similar argument can be made for Cmax.

The present FDA requirement for equivalence is based on product ratios using a
symmetric 90% confidence interval for the difference of the average parameters, after a
log transformation. Until recently, according to FDA Guidelines, the AUC and Cmax were
analyzed using the untransformed values of these derived parameters. Note that when
using a clinical or pharmacodynamic endpoint (such as may be used in a parallel study
when drug is not absorbed), the nontransformed data may be more appropriate and the
‘‘old’’ way of forming the confidence interval may still be used. This analysis is described
below. (This analysis, along with a log-transformed analysis, is described in the example
following this discussion.)

Statistical Analysis

It is convenient to follow the statistical analysis and estimation of various effects by
looking at the two sequences in the context of the model for this design:

Let

� � overall mean
Gi � Effect of sequence group i (i � 1, 2)
Sik � Effect of subject k in sequence i (k � 1, 2.3 … N)
Pj � Effect of period j (j � 1, 2)

Tt(i,j) � treatment effect t (t � 1, 2) in sequence i and period j
Yijk � � � Gi � Sik � Pj � Tt(ij) � eijk
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Table 11.6 Design for Two-Way Crossover Study

Period I Period II

Sequence I A B
Sequence II B A

The Sequence x Period interaction is the Treatment effect (Sequence x Period is the
comparison Period I-Period II for the two sequences; see Table 11.6).

e.g., (A B) (B A) A Bseq I seq II− − −−  =/2

Suppose that carryover is present, but carryover is the same for both products. We
can show that this would not bias the treatment comparisons. For the sake of simplicity,
suppose that there is no period effect (P1 � P2). Also suppose that the direct treatment
effects are A � 3 and B � 2. Both products have a carryover that adds 2 to the treatment
(product) in the second period. (This would result in an additional value of 2 for the period
effect.) Finally, assume that the effects for the sequences are equal; Sequence I � Sequence
II. This means that the average results for subjects in Sequence I are the same as that for
Sequence II. Based on this model, product B in Period II would have a value of 2 � 2
for carryover � 4. Product A in Period II has a value of 3 � 2 � 5. Thus, the average
difference between A and B is 1, as expected (A � 3 and B � 2). Table 11.7 shows
these simulated data.

This same reasoning would show that equal carryover effects do not bias treatment
comparisons in the presence of a period effect. (See exercise problem 11 at the end of
this chapter.)

Differential carryover, where the two products have different carryover effects, is
confounded with a sequence effect. This means that if the sequence groups have signifi-
cantly different average results, one cannot distinguish this effect from a differential car-
ryover effect in the absence of more definitive information. For example, one can show
that if there is a sequence effect (e.g., Sequence I � Sequence II � 2) and no differential
carryover, a differential carryover in the absence of a sequence effect could give the same
result.

To help explain the confounding, assume that the difference between treatments is 0
(treatments are identical) and that Sequence I averages 2 units more than Sequence II.
Since subjects are assigned to the sequence groups at random, the differences should not

Table 11.7 Simulated Data Illustrating Equal
Carryover

Period I Period II

Sequence I A � 3 B � 4
Sequence II B � 2 A � 5
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Table 11.8 Example of Sequence Effect

Treatment A Treatment B Average

Sequence I 6 6 6
Sequence II 4 4 4

Average 5 5

be significant except by chance. With no carryover or period effects, the average results
could be something like that shown in Table 11.8.

If Sequence I is the order A followed by B (AB) and Sequence II is the order BA,
the treatment differences, A�B, would be 6�6 � 0 in Sequence I, and 4�4 � 0 in
Sequence II. Treatment A is the same as Treatment B in Sequence I, and in Sequence II.
However, this same result could occur as a result of differential carryover in the presence
of treatment differences.

Table 11.9 shows the same results as Table 11.8 in a different format.
The data from Table 11.9 can be explained by assuming that A is two units higher

than B (see Period I results), a carryover of �2 units when B follows A, and a carryover
of �2 units when A follows B. The two explanations, a sequence effect or a differential
carryover, cannot be separated in this two-way crossover design. The Sequence effect is
G1�G2. The differential carryover is �[TA(2) � TA(1)] � [TB(2) � TB(1)]�/2 � �[TA(2)
� TB(1) � [TB(2) � TA(1)]�/2, which is exactly the Sequence effect (average results in
Sequence II � average results in Sequence I). The subscript B(1) refers to average result
for Product B in Period I.

In practice, an analysis of variance is performed, which results in significance tests
for the sequence effect and an estimate of error for computing confidence intervals (See
later in Section 11.4.3).

The results of a typical single-dose bioequivalence study are shown in Table 11.10.
These data were obtained from drug plasma level versus time determinations similar to
those illustrated in Fig. 11.1B. Area under the plasma level versus time curve (AUC, a
measure of absorption), time to peak plasma concentration (tp), and the maximum concen-
tration (Cmax) are the parameters which are usually of most interest in the comparison of
the bioavailability of different formulations of the same drug moiety.

The typical ANOVA for crossover studies will be applied to the AUC data to illustrate
the procedure used to analyze the experimental results. In these analyses, the residual error
term is used in statistical computations, e.g., to construct confidence intervals. An analysis
of variance (ANOVA) is computed for each parameter based on the model. The ANOVA

Table 11.9 Example of Differential Carryover Effect

Period I Period II Average

Sequence I A � 6 B � 6 6
Sequence II B � 4 A � 4 4
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Table 11.10 Data for the Bioequivalence Study Comparing Drugs A and B

AUC Peak concentration Time to peak

Subject Order A B A B A B

1 AB 290 210 30 18 8 8
2 BA 201 163 22 19 10 4
3 AB 187 116 18 11 6 6
4 AB 168 77 20 14 10 3
5 BA 200 220 18 21 3 3
6 BA 151 133 25 16 4 6
7 AB 294 140 27 14 4 10
8 BA 97 190 16 23 6 6
9 BA 228 168 20 14 6 6

10 AB 250 161 28 19 6 4
11 AB 293 240 28 18 6 12
12 BA 154 188 16 20 8 8

Mean 209.4 167.2 22.3 17.3 6.4 6.3
Sum 2513 2006 268 207 77 76

table is not meant for the performance of statistical hypothesis tests, except perhaps to
test the Sequence effect, which uses the between subject within Sequences mean square
as the error term. Rather, the analysis removes some effects from the total variance to
obtain a more ‘‘efficient’’ or pure estimate of the error term. It is the error term, or estimate
of the within subject variability (assumed to be equal for both products in this analysis),
that is used to assess the equivalence of the parameter being analyzed. A critical assumption
for the correct interpretation of the analysis is the absence of differential carryover effects,
as discussed previously. Otherwise, the usual assumptions for ANOVA should hold. FDA
statisticians encourage a careful statistical analysis of crossover designs. In particular, the
use of a simple t test which ignores the possible presence of period and/or carryover effects
is not acceptable.* If period effects are present, and not accounted for in the statistical
analysis, the analysis will be less sensitive. The error mean square in the ANOVA will
be inflated due to inclusion of the period variance, and the width of the confidence interval
will be increased. If differential carryover effects are present, the estimate of treatment
differences will be biased (see Sec. 11.4.1 and 11.4.2).

The usual analysis of variance separates the total sum of squares into four components:
subjects, periods, treatments, and error (residual). In the absence of differential carryover
effects, the statistical test of interest is for treatment differences. The subject and period
sum of squares are separated from the error term which then represents ‘‘intrasubject’’
variation. The Subjects sum of squares (SS) can be separated into Sequence SS and Subject
within Sequence SS to test for the sequence effect. The sequence effect is confounded
with carryover, and this test is described following the analysis without sequence effect.

Some history may be of interest with regard to the analysis recommended in the most
recent FDA Guidance (33). In the early evolution of bioequivalence analysis, a hypothesis

* In bioavailability studies, carryover effects are usually due to an inadequate washout period.
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test was used at the 5% level of significance. The raw data was used in the analysis; i.e.,
a logarithmic transformation was not recommended. The null hypothesis was simply that
the products were equal, as opposed to the alternate hypothesis that the products were
different. This had the obvious problem with regard to the power of the test. Products that
showed nearly the same average results, but with very small variance, could show a
significant difference, which may not be of clinical significance, and be rejected. Alterna-
tively, products that showed large differences with large variance could show a nonsignifi-
cant difference, and be deemed equivalent. Similarly, products could be shown to be
equivalent if a small sample size was used resulting in an undetected difference which
could be clinically significant. Because of these problems, an additional caveat was added
to the requirements. If the products showed a difference of less than 20%, and the power
of the study to detect a difference of 20% exceeded 80%, the products would be considered
to be equivalent. This helped to avoid undersized studies and prevent products with ob-
served large differences from passing the bioequivalence study. The following examples
illustrate this problem.

Example 1. In a bioequivalence two period, crossover study, with eight subjects, the
Test Product showed an average AUC of 100, and the Reference Product showed an
average AUC of 85. The observed difference between the products is (100–85)/85, or
17.6%.

The error term from the ANOVA (See below for description of the analysis) is 900,
s.d. � 30. The test of significance (a t test with 6 d.f.) is

100 85 900 1 8 1 8 1 00
1 2− +[ ] =/ ( / / .

/

This is not statistically significant at the 5% level (a t value of 2.45 for 6 d.f. is needed
for significance). Therefore, the products may be deemed equivalent.

However, this test is underpowered based on the need for 80% power to show a 20%
difference. A 20% difference from the reference is 0.2 � 85 � 17. The approximate
power is (Eq. 6.11):

Z = [ ][ ] − = −17 42 43 6 1 96 0 98
1 2

/ . . .
/

Referring to a Table of the Cumulative Standard Normal Distribution, the approximate
power is 16%. Although the test of significance did not reject the null hypothesis, the
power of the test to detect a 20% difference is weak. Therefore, this product would not
pass the bioequivalence requirements.

Example 2. In a bioequivalence two-period, crossover study, with 36 subjects, the
Test Product showed an average AUC of 100, and the Reference Product showed an
average AUC of 95. The products differ by approximately only 5%. The error term from
the ANOVA is 100, s.d. � 10. The test of significance (a t test with 34 d.f.) is

100 95 100 1
36 2.12

1 2− +[ ] =/ ( /
/1

36/ )

This is statistically significant at the 5% level (a t value of 2.03 for 34 d.f. is needed
for significance). Therefore, the products may be deemed nonequivalent.

However, this test passes the criterion based on the need for 80% power to show a
20% difference. A 20% difference from the reference is 0.2 � 95 � 19. The approximate
power is (see Chap. 6):

Z = [ ][ ] − =19 14 14 34 1 96 5 88
1 2

/ . . .
/
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The approximate power is almost 100%. Although the test of significance rejected
the null hypothesis, the power of the test to detect a 20% difference is extremely high.
Therefore, this product would pass the bioequivalence requirements.

Other requirements at that time included the 75/75 rule (37). This rule stated that
75% of the subjects in the study should have ratios of test/reference between 75% and
125%. This was an attempt to include a variability criterion in the assessment of study
results. Unfortunately, this criterion has little statistical basis, and would almost always
fail with highly variable drugs. In fact, if a highly variable drug (C.V. greater than 30–40%)
is tested against itself, it would most likely fail this test. Eventually, this requirement was
correctly phased out.

Soon after this phase in the evolution of bioequivalence regulations, the hypothesis
test approach was replaced by the two-one-sided t test or, equivalently, the 90% confidence
interval-approach (11). This approach resolved the problems of hypothesis testing, and
assumed that products that are within 20% of each other with regard to the major param-
eters, AUC and Cmax, are therapeutically equivalent. For several years, this method was
used without a logarithmic transformation. However, if the study data conformed better
to a log-normal distribution than a normal distribution, a log transformation was allowed.
An appropriate statistical test was applied to test the conformity of the data to these
distributions.

The AUC data from Table 11.10 are analyzed below. To ease the explanation, the
computations for the untransformed data are detailed. The log-transformed data are ana-
lyzed identically, and these results follow the untransformed data analysis. The sums of
squares for treatments and subjects are computed exactly the same way as in the two-way
analysis of variance (see Sec. 8.4). The new calculations are for the ‘‘period’’ (1 d.f.) and
‘‘sequence’’ (1 d.f.) sums of squares. We first show the analysis for periods. The analysis
for sequence is shown when discussing the test for differential carryover. Two new columns
are prepared for the ‘‘period’’ calculation. One column contains the data from the first
period, and the second column contains data from the second period. For example, for
the AUC data in Table 11.10, the data for the first period are obtained by noting the order
of administration. Subject 1 took product A during the first period (290); subject 2 took
B during the first period (163); and so on. Therefore, the first period observations are

290 163 187 168 220 133 294 190 168 250 293 188

254

, , , , , , , , , , ,

(

and

sum = 44)

The second period observations are

210 201 116 77 200 151 140 97 228 161 240 154

1975

, , , , , , , , , , ,

( )sum =

The ‘‘period’’ sum of squares may be calculated as follows:

(11.2)
X X

N
1

2

2

2∑ ∑( ) + ( )
− C.T.

where � X1 and � X2 are the sums of observations in the first and second periods, respec-
tively, N is the number of subjects, and C.T. is the correction term. The following analysis
of variance and Table 11.10 will help clarify the calculations.
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Calculations for ANOVA:

∑ =
∑

X

X
t is the sum of all observations

is the sum of ob

4 519,

sservations for product A

is the sum of observatio

=
∑

2 513,

XB nns for product B

is the sum of observations for p

=
∑

2 006

1

,

P eeriod 1

is the sum of observations for period 2

=
∑ =

2 544

12

,

P ,,

,

975

929 3212∑ =XT is the sum of the squared observations

A

C.T. is the correction term
( ) ( )

, .
∑

= =
X

N
t

t

2 24519

24
850 890 04

� Si is the sum of the observations for subject i (e.g., 500 for first subject)
Total sum of squares � � X2

t � C.T. � 78,430.96
Subject sum of squares

=
( )

− = + + + −

=

∑∑ Si

2
2 2 2

2

500 364 342

2
43 560 46

C.T. C.T.

Period sum 

…

, .

oof squares C.T.

Treatment sum of sq

= + − =2544 1975

12
13 490 0

2 2

, .

uuares C.T.= + − =2513 2006

12
10 710 4

2 2

, .

Error sum of squares

= − − −
= −

total SS subject SS period SS treatment SS

78 430 96 43 5, . , 660 46 13 490 10 710 38

10 670 1

. , , .

, .

− −
=

Note that the degrees of freedom for error is equal to 10. The usual two-way ANOVA
would have 11 degrees of freedom for error (subjects �1) � (treatments �1). In this
design, the error sum of squares is diminished by the period sum of squares, which has
1 degree of freedom.

Test for Carryover Effects

Dr. James Grizzle published a classic paper on analysis of crossover designs and presented
a method for testing carryover effects (sequence effects in his notation) [7]. Some contro-
versy exists regarding the usual analysis of cross-over designs, particularly with regard
to the assumptions underlying this analysis. Before using the Grizzle analysis, the reader
should examine the original paper by Grizzle as well as the discussion by Brown, in which
some of the problems of crossover designs are summarized [6].

One of the key assumptions necessary for a valid analysis and interpretation of cross-
over designs is the absence of differential carryover effects as has been previously noted.
Data from Table 11.10 were previously analyzed using the typical crossover analysis,
assuming that differential carryover was absent. Table 11.10 is reproduced as Table 11.11
(AUC only) to illustrate the computations needed for the Grizzle analysis.
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Table 11.11 Data for AUC for the Bioequivalence Study Comparing Drugs A and B

Group I Group II
(Treatment A first, B second) (Treatment B first, A second)

Subject A B Total Subject A B Total

1 290 210 500 2 201 163 364
3 187 116 303 5 200 220 420
4 168 77 245 6 151 133 284
7 294 140 434 8 97 190 287

10 250 161 411 9 228 168 396
11 293 240 533 12 154 188 342
Total 1482 944 2426 Total 1031 1062 2093

The test for carryover, or sequence, effects is performed as follows:

1. Compute the sum of squares due to carryover (or sequence) effects by comparing
the results for group I to group II. (Note that these two groups, groups I and II,
which differ in the order of treatment are designated as treatment ‘‘sequence’’
by Grizzle.) It can be demonstrated that in the absence of sequence effects, the
average result for group I (A first, B second) is expected to be equal to the average
result for group II (B first, A second). The sum of squares is calculated as

 group I  group II
C.T.

∑ ∑( )
+

( )
−

2

1

2

2N N

In our example the sequence sum of squares is (1 d.f.)

( ) ( ) ( )
.

2426

12

2093

12

2426 2093

24
4620 375

2 2 2

+ − + =

2. The proper error term to test the sequence effect is the within-group (se-
quence) mean square, represented by the sum of squares between subjects within
groups (sequence). This sum of squares is calculated as follows:

1

2
2( ) ( ) ( )subject total C.T. C.T.I II− −∑

where C.T.I and C.T.II are the correction terms for groups I and II, respectively.
In our example, the within-group sum of squares is

1

2
5 303 245 364 420

342
2426

12

2093

12
3

2 2 2 2 2

2
2 2

(

)
( ) ( )

00 + + + + +

+ − − =

…

… 88 940 08, .

This within-group (or subject within-sequence) SS has 10 d.f., 5 from each group.
The mean square is 38,940/10 � 3894.
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Table 11.12 Analysis of Variance Table for the Crossover Bioequivalence Study
(AUC) without Sequence Effect

Source d.f. SS MS P

Subjects 11 43,560.5 3,960.0
Period 1 13,490.0 13,490.0 F1,10 � 12.6*
Treatment 1 10,710.4 10,710.4 F1,10 � 10.0*
Error 10 10,670.1 1,067.0
Total 23 78,430.96

* P � 0.05.

3. Test the sequence effect by comparing the sequence mean square square to the
within-group mean square (F test).

F1 10

4620 375

3894
1 19,

.
.= =

Referring to Table IV.6, the effect is not significant at the 5% level. (Note that
in practice, this test is performed at the 10% level.) If the sequence (carryover)
effect is not significant, one would proceed with the usual analysis and interpreta-
tion as shown in Table 11.12.

If the sequence (carryover) effect is significant, the usual analysis is not valid. The
recommended analysis uses only the first period results, deleting the data contaminated
by the carryover, the second period results. Grizzle recommends that the preliminary test
for carryover be done at the 10% level (see also the discussion by Brown [6]). For the
sake of this discussion, we will compute the analysis as if the data revealed a significant
sequence effect in order to show the calculations. Using only the first-period data, the
analysis is appropriate for a one-way analysis of variance design (Sec. 8.1). We have two
‘‘parallel’’ groups, one on product A and the other on product B. The data for the first
period are as follows:

Subject A Subject B

1 290 2 163
3 187 5 220
4 168 6 133
7 294 8 190

10 250 9 168
11 293 12 188
Mean 247 177
S2 3204.8 870.4

The analysis of variance table is as follows:*

* This analysis is identical to a two-sample independent-groups t test.



338 Chapter 11

d.f. SS MS F

Between treatments 1 14,700 14,700 7.21
Within treatments 10 20,376 2,037.6

Referring to Table IV.6, an F value of 4.96 is needed for significance at the 5% level (1
and 10 d.f.). Therefore, in this example, the analysis leads to the conclusion of significant
treatment differences.

The discussion and analysis above should make it clear that sequence or carryover
effects are undesirable in crossover experiments. Although an alternative analysis is avail-
able, one-half of the data are lost (second period) and the error term for the comparison
of treatments is usually larger than that which would have been available in the absence
of carryover (within-subject versus between-subject variation). One should thoroughly
understand the nature of treatments in a crossover experiment in order to avoid differential
carryover effects if at all possible.

Since the test for carryover was set at 5% a priori, we will proceed with the interpreta-
tion, assuming that carryover effects are absent. (Again, note that this test is usually set
at the 10% level in practice). Both period and treatment effects are significant (F1,10 �
12.6 and 10.0, respectively). The AUC values tend to be higher during the first period
(on the average). This period (or order) effect does not interfere with the conclusion that
product A has a higher average AUC than that of product B. The balanced order of
administration of the two products in this design compensates equally for both products
for systematic differences due to the period or order. Also, the ANOVA subtracts out the
sum of squares due to the period effect from the error term, which is used to test treatment
differences.

If the design is not symmetrical, because of missing data, dropouts, or poor planning, a
statistician should be consulted for the data analysis and interpretation. In an asymmetrical
design, the number of observations in the two periods is different for the two treatment
groups. This will always occur if there is an odd number of subjects. For example, the
following scheme shows an asymmetrical design for seven subjects taking two drug prod-
ucts, A and B. In such situations, computer software programs can be used, which adjusts
the analysis and mean results for the lack of symmetry [9].

Subject Period 1 Period 2

1 A B
2 B A
3 A B
4 B A
5 A B
6 B A
7 A B

The complete analysis of variance is shown in Table 11.13.
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Table 11.13 ANOVA for Untransformed Data from Table 11.10 for AUC

Variable (Source) DF Sum–Squares Mean–Square F-Ratio Prob � F

Sequence 1 4620.4 4620.4 1.19 0.3016
Subject (Sequence) 10 38940.1 3894.0 3.65 0.0265
Period 1 13490.0 13490.0 12.64 0.0052
Treat 1 10710.4 10710.4 10.04 0.0100
Residual 10 10670.1 1067.0

Total 23 78430.96

The statistical analysis in the example above was performed on AUC, which is a
measure of relative absorption. The FDA recommends that plasma or urine concentrations
be determined out to at least three half-lives, so that practically all the area under the
curve will be included when calculating this parameter (by the trapezoidal rule, for exam-
ple). Other measures of the rate and extent of absorption are time to peak and peak
concentration. Often, more than one analyte is observed, e.g., metabolites or multiple
ingredients.

Much has been written and discussed about the expression and interpretation of
bioequivalency/bioavailability data as a measure of rate and extent of absorption. When
are the parameters AUC, tp, and Cmax important, and what part do they play in bioequiva-
lency? The FDA has stated that products may be considered equivalent in the presence
of different rates of absorption, particularly if these differences are designed into the
product [10]. For example, for a drug that is used in chronic dosing, the extent of absorption
is probably a much more important parameter than the rate of absorption. It is not the
purpose of this presentation to discuss the merits of these parameters in evaluating equiva-
lence, but only to alert the reader to the fact that bioequivalence interpretation need not
be fixed and rigid.

The analysis of variance for log AUC (AUC values are transformed to their natural
logs) is shown in Table 11.14. Exercise problem 9 at the end of this chapter requests the
reader to construct this table. The procedure is identical to that shown for the untransformed
data. Analysis of the log-transformed parameters is currently required by the FDA.

11.4.3 Confidence Intervals in Bioequivalence Studies

The scientific community is virtually unanimous in its opposition to the use of hypothesis
testing for the evaluation of bioequivalence. Hypothesis tests are inappropriate in that

Table 11.14 ANOVA for Log-Transformed Data from Table 11.10 for AUC

Variable (Source) DF Sum–Squares Mean–Square F-Ratio Prob � F

Sequence 1 0.0613 0.0613 0.46 0.5128
Subject (Sequence) 10 1.332 0.1332 2.96 0.0507
Period 1 0.4502 0.4502 10.02 0.0101
Treat 1 0.2897 0.2897 6.44 0.0294
Residual 10 0.44955 0.04496
Total 23 2.58307
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products that are very close, but with small variance, may be deemed different, whereas
products that are widely different, but with large variance, may be considered equivalent
(not significantly different). (See previous discussion in Section 11.4.2). The use of a
confidence interval, the present criterion for equivalence, is more meaningful and has
better statistical properties. (See Chapter 5 for a discussion of confidence intervals). Given
the lower and upper limit of the ratio of the parameters, the user or prescriber of a drug
can make an educated decision regarding the equivalence of alternative products. The
confidence limits must lie between 0.8 and 1.25 based on the difference of the back-
transformed averages of the log transformed AUC and Cmax results. This computation for
AUC is shown below. For purposes of comparison, the confidence interval is computed
using the non-transformed data (the old method) and the log-transformed data (the current
method). Note that a ratio based on the untransformed data may be used in certain special
circumstances where a log transformation may be deemed inappropriate, such as data
derived from a clinical study, where the data consists of a pharmacodynamic response or
some similar outcome.

Non-Transformed Data

90% confidence interval for AUC difference

= ∆ ± +










± = ± =

t EMS
N N

1 1

42 25 1 81
1067

6
42 25 24 14 18 11 66

1 2

. . . . . .to 339

where 42.25 is the average difference of the AUCs, 1.81 the t value with 10 d.f., 1067
the variance estimate (Table 11.12), and 1/6 � 1/N1 � 1/N2. The confidence interval can
be expressed as an approximate percentage relative bioavailability by dividing the lower
and upper limits for the AUC difference by the average AUC for product B, the reference
product as follows:

Average AUC for drug product B � 167.2

Approximate 90% for confidence interval for A/B

� (167.2 � 18.11)/167.2 to (167.2 � 66.39)/167.2
� 1.108 to 1.397

Product A is between 11% and 40% more bioavailable than product B. The ratio formed
for the nontransformed data, as shown in the example above, has random variables in
both the numerator and denominator The denominator (the average value of the reference)
is considered fixed in this calculation, when, indeed, it is a variable measurement. Also,
the decision rule is not symmetrical with regard to the average results for the test and
reference. That is, if the reference is 20% greater than the test, the ratio test/reference is
not 0.8 but is 1/1.2 � 0.83. Conversely, if the test is 20% greater than the reference, the
ratio will be 1.2. Nevertheless, this approximate calculation was considered satisfactory
for the purposes of assessing bioequivalence. Note that the usual concept of power does
not play a part in the approval process. It behooves the sponsor of the bioequivalence
study to recruit sufficient number of subjects to help ensure approval based on this criterion.
If the products are truly equivalent (the ratio of test/reference is truly between 0.8 and
1.2), the more subjects recruited, the greater the probability of passing the test. Note again
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that in this scenario the more subjects, the better the chance of passing. In practice, one
chooses a sample size sufficiently large to make the probability of passing reasonably
high. This probability may be defined as power in the context of proving equivalence.
Sample size determination for various assumed differences between the test and reference
products for various values of power (probability of passing the confidence interval crite-
rion) has been published by Dilletti et al. (27); see Table 6.5 in Chapter 6.

The conclusions based on the confidence interval approach are identical to two one-
sided t tests each performed at the 5% level (11, 12). The null hypotheses are

H
A

B
and H

A

B0 00 8 1 25: . : .< >

Note that with the log transformation, the upper limit is set at 1.25 instead of 1.2. This
results from the properties of logarithms, where log (0.8) � �log (1/0.8).
If both tests are rejected, the products are considered to have a ratio of AUC and/or Cmax

between 0.8 and 1.25 and are taken to be equivalent. If either test (or both) is not rejected,
the products are not considered to be equivalent.

The test product would not pass the FDA equivalency test because the upper limit
exceeds 1.25. For the two one-sided t tests, we test the observed difference vs. the hypothet-
ical difference needed to reach 80% and 125% of the standard product.

If the test product had an average AUC of 175 and the error were 1067, the product
would pass the FDA criterion. The 90% confidence limits would be

175 167 2 1 81 1067 6 16 34 31 94− ± = −. . / . .to

The 90% confidence limits for the ratio of the AUC of test product/standard product is
calculated as:

( . . )

.
.

( . . )

.
.

167 2 16 34

167 2
0 902

167 2 31 94

167 2
1 191

− =

+ =

The limits are within 0.8 and 1.25.
The two one-sided t tests are:

H
A

B
t

H
A

B
t

0

0

0 8
175 167 2 33 4

1067 6
3 09

1 25
175 167

: .
. [ . ]

/
.

: .

< = − − − =

> = − .. [ . ]

/

2 41 8

1067 6
3.72

− − =

(where �33.4 represents 20% and 41.8 to 25% of the reference*). Since both t values
exceed 1.81, the table t for a one-sided test at the 5% level, the products are deemed to
be equivalent.

Westlake has discussed the application of a confidence interval that is symmetric
about the ratio 1.0, the value that defines equivalent products. The construction of such
an interval is described in Sec. 5.1.

* The former FDA criterion for the confidence interval was 0.8 to 1.20 based on non-transformed
data. Therefore this presentation is hypothetical.
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Log-Transformed Data (Current Procedure)

The log transform appears to be more natural when our interest is in the ratio of the
product outcomes. The antilog of the difference of the average results gives the ratio
directly (8).

Note that the difference of the logarithms is equivalent to the logarithm of the ratio
[i.e., log A � log B � log (A/B)]. The antilog of the average difference of the logarithms
is an estimate of the ratio of AUCs.

The ANOVA for the In transformed data is shown in Table 11.14.
The averages In values for the test and standard products are

A

B

A B

=
=
= − =

5 29751

5 07778

5 29751 5 0778 0 21973

.

.

. . .−

The anti-ln of this difference, corresponding to the geometric mean of the individual ratios,
is 1.246. This compares to the ratio of A/B for the untransformed values of 1.252.

0 21973 1 81 0 045 6 0 06298 0 37648. . . / . .± = to

The anti-ln of these limits are 1.065 to 1.457. The 90% confidence limits for the untrans-
formed data are 1.108 to 1.397.

It is not surprising that both analyses give similar results and conclusions. However,
in situations where the confidence interval is close to the lower and/or upper limits, the
two analyses may result in different conclusions. A nonparametric approach has been
recommended (but is not currently accepted by the FDA) if the data distribution is far
from normal (See Chapter 15). As discussed earlier, at one time, the FDA suggested an
alternative criterion for proof of bioequivalence: that 75% of the subjects should show at
least 75% of the availability for a test product compared to the reference or standard
formulation. This is called the 75/75 rule. If 75% of the population truly shows at least
75% relative absorption of the test formulation compared to the standard, a sample of
subjects in a clinical study will have a 50% chance of failing the test based on the FDA
criterion. This criterion has little statistical basis and has fallen into disrepute. The concept
of individual bioequivalence (Sec. 11.4.6) is concerned with assessing the equivalence of
products on an individual basis based on a more statistically-based criterion.

11.4.4 Sample Size and Highly Variable Drug Products

Phillips [17] published sample sizes as a function of power, product differences and vari-
ability. Diletti et al. [18] have published similar tables where the log transformation is
used for the statistical analysis. These tables are more relevant to current practices. Table
6.4 in Chapter 6 shows sample sizes for the multiplicative (log-transformed) analysis,
reproduced from the publication by Diletti. This table as well as more details on sample
size estimation are given in Chapter 6, Sec. 6.5.2.

When the variation is large because of inherent biologic variability in the absorption
and/or disposition of the drug (or due to the nature of the formulation), large sample sizes
may be needed to meet the confidence interval criterion. Generally, using results of previ-
ous studies, one can estimate the within-subject variability from the residual error term
in the analysis of variance. This can be assumed to be the average of the within-subject
variances of the two products. These variances cannot be separated in a two-period cross-
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over design, nor can the variability be separately attributed to the drug itself or to the
formulation effects. Thus the variability estimate is some combination of both the drug
and the formulation variances. A drug product is considered to be highly variable if the
error variance shows a coefficient of variation (CV) of 30% or greater. There are many
drug products that show such variability. CV’s of 100% or more have been observed on
occasion. To show equivalence for highly variable drug products, using the FDA criterion
of a 90% confidence interval of parameter ratios of 0.8 to 1.25 requires a very large sample
size.

For example, from Table 6.5, if the CV is 30% and the products differ by only 5%,
a sample size of 40 is needed to have 80% power to show the products equivalent. The
FDA has been considering the problems of designing studies and interpreting results for
variable drugs and/or drug products. This problem has been debated for some time, but
to this date, while no clear resolution is forthcoming, a few recommendations have been
proposed to deal with this problem. Although there is no single solution, possible alterna-
tives include widening of the confidence interval criterion from 0.8 to 1.25 to 0.75 to 1.33
(30) and use of replicated designs. The European Agency for the Evaluation of Medicinal
Products also makes provision for a wider interval provided it is prospectively defined
and can be justified accordingly (31). Another recommendation by Endrenyi (32) is to
scale the ratio using the reference CV as the scaling factor. The use of Individual Bioequiva-
lence in a replicate design to assess bioequivalence is supposed to result in smaller sample
sizes for highly variable drug products as compared to the corresponding two-period
design. This solution to the problem is yet to be fully confirmed. Currently, products with
large CVs require large studies, with an accompanying increased expense. Because these
highly variable drugs have been established as safe and effective and have a history of
efficacy and safety in the marketplace, increasing the confidence interval would be con-
gruent with the drug’s variability in practice. Recent investigations into individual bioequi-
valence may provide an economical way of evaluating these drug products.

Note that for the determination of bioequivalence based on the final study results,
power (computed a posteriori) plays no role in the determination of equivalence. However,
to estimate the sample size needed before initiating the study, power is an important
consideration. The greater the power one wishes to impose, where power is the probability
of passing the 0.8–1.25 confidence interval, the more subjects will be needed. Usually, a
power of 0.8 is used to estimate sample size. However, if cost is not important (or not
excessive), a greater power (0.9, for example) can be used to gain more assurance of
passing the study, assuming that the products are truly bioequivalent.

Equation (11.3) can be used to approximate the sample size needed for a specified
power.

(11.3)N t tN N= + −− −2 2 2 2 2
2 2( ) [ /( )], ,α β δCV V

where

N � total number of subjects required to be in the study.
t � the appropriate value from the t distribution (approximately 1.7).

� � the significance level (usually 0.1)
1-	 � the power, usually 0.8
CV � the coefficient of variation

V � the bioequivalence limit (ln 1.25 � 0.223)
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� � the difference between the products (for 5% difference, delta equals (ln(1.05)
� 0.0488).

If we assume a 5% difference between the products being compared), the number of
subjects needed for a CV of 30% and power of 0.8 is: N � 2 (1.7 � 0.86)2 [0.3/
(0.223�.0488)]2 � approximately 39 subjects, which is close to the 40 subjects from
Table 6.5.

If the CV is 50%, we need approximately 108 Subjects!

N = + − =2 1 7 0 86 0 5 0 223 04882 2( . . ) [ . /( . . )] approximately 108 subjeccts

It can be seen that with a large CV, studies become inordinately large.

11.4.5 Bioequivalence Studies Performed in Groups

Bioequivalence studies are usually performed at a single site, where all subjects are re-
cruited and studied as a single group. On occasion, more than one group is required to
complete a study. For example, if a large number of subjects are to be recruited, the study
site may not be large enough to accommodate the subjects. In these situations, the study
subjects are divided into two cohorts. Each cohort is used to assess the comparative prod-
ucts individually, as might be done in two separate studies. Typically, the two cohorts are
of approximately equal size. Another example of a study that is performed in groups is
the so called ‘‘Add-on’’ study. In Canada, if a study fails because it was not sized suffi-
ciently, an additional number of subjects may be studied so that the combined, total number
of subjects would be sufficient to pass the study based on results of the initial failing
study. This reduces the cost to the pharmaceutical company, which, otherwise, would have
to repeat the entire study with a larger number of subjects.

It is not a requirement that each group separately pass the confidence interval require-
ment. The final assessment is based on a combination of both groups. The totality of data
is analyzed with a new term in the analysis of variance (ANOVA), a Treatment x Group
interaction term.* This is a measure (on a log scale) of how the ratios of test to reference
differ in the groups. For example, if the ratios are very much the same in each group, the
interaction would be small or negligible. If interaction is large, as tested in the ANOVA,
then the groups cannot be combined. However, if both groups individually pass the confi-
dence interval criteria, then the test product would be acceptable. If interaction is not
statistically significant (p � 0.05), then the confidence interval based on the pooled analysis
will determine acceptability. It is an advantage to pool the data, as the larger number of
subjects results in increased power and a greater probability of passing the bioequivalence
confidence interval, if the products are truly bioequivalent.

In Canada, a second statistical test (in addition to the test for interaction) is required
when an Add-on group is studied. Each group is analyzed separately in the usual manner.
The residual variances from the two separate groups are compared using an F test. If the
variances are significantly different, the groups cannot be pooled and the product will
probably fail. Note that the second group is studied only if the original study failed

* Currently, FDA requires this only when groups are not from the same population or are dosed
widely separated in time.
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because of lack of size. It is possible that the Add-on study could pass on its own, and
in this case, the test product would be acceptable. This second test comparing variances
seems rather onerous, because an analysis is possible for the combined groups with unequal
variance. However, it may be the intention of the Canadian HPB to trade the benefit of
the add-on design for unecessarily more stringent regulatory requirements.

11.4.6 Outliers in Bioequivalence Studies

The problems of dealing with outlying observations is discussed in some detail in Chapter
10, Sec. 10.2. These same problems exist in the analysis and interpretation of bioequiva-
lence studies. Several kinds of outliers occur in bioequivalence studies. Analytical outliers
may occur because of analytical errors, and these can usually be rectified by reanalyzing
the retained blood samples. Another kind of outlier is a value that does not appear to fit
the pharmacokinetic profile. If repeat analyses verify these values, one has little choice
but to retain these values in the analysis. If such values appear rarely, they will usually
not affect the overall conclusions since the individual results are a small part of the overall
average results, such as in the calculation of AUC. An exception may occur if the aberrant
value occurs at the time of the estimated Cmax, where the outlier could be more influential.
The biggest problem with outliers is when the outlier arises from a derived parameter
(AUC or Cmax) for an individual subject. The current FDA position is to disallow the
exclusion of an outlier from the analysis solely on a statistical basis. However, if a clinical
reason can be determined as a potential cause for the outlier and when the outlier appears
to be due to the reference product, an outlier may be omitted from the analysis at the
discretion of the FDA. The FDA also suggests that the outlier be retested in a sample of
6–10 subjects from the original study to support the anomalous nature of the suspected
outlier. Part of the reasoning for not excluding outliers is that one or two individual outliers
suggests the possibility of a sub-population that shows a difference between the products.
Although theoretically possible, this author’s opinion is that this is a highly unlikely event
without definitive documentation. Also, using this reasoning, an outlying observation due
to the reference product would suggest that the reference did not act uniformly among
patients, suggesting a deficiency in the reference product. Another possible occasion for
discarding an individual subject’s result is the case where very little or no drug is absorbed.
Explanations for this effect could be product-related or subject-related, but the true cause
is unlikely to be known. Zero blood levels, in the absence of corroborating evidence for
product failure, is most likely due to a failure of the subject. These problems remain
controversial and should be dealt with on a case-by-case basis.

11.4.7 **Replicate Designs for Bioequivalence Studies

Replicate crossover designs may be defined as designs with more than two periods where
products are given on more than one occasion. We will concentrate on the comparison of
two products in three- or four-period designs. The FDA recommends using only two
sequence designs because the interaction variability estimate, subject � formulation, will

** A more advanced topic.
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be otherwise confounded (See Ref. 26 for a comparison of the 2 and 4 sequence designs.).
The subject � formulation interaction is crucial because if this effect is substantial, the
implication is that subjects do not differentiate formulations equally, i.e., some subjects
may give higher results for one formulation, and other subjects respond higher on the
other formulation. Two sequence designs for three and four period studies are shown
below. Although there are other designs available, these seem to have particularly good
properties [26,27].

Three-Period Design

Period
Sequence 1 2 3

1 A B B
2 B A A

Four-Period Design

Period
Sequence 1 2 3 4

1 A B B A
2 B A A B

With replicate designs, carry-over effects, within subject variances and subject �
formulation interactions can be estimated, unconfounded with other effects. Nevertheless,
an unambiguous acceptable analysis is still not clear. Do we include all the effects in the
model simultaneously or do we perform preliminary tests for inclusion in the model? What
is the proper error term to construct a confidence interval on the average bioequivalence
parameter (e.g., AUC)? Some estimates may not be available if all terms are included in
the model. Therefore, preliminary testing may be necessary. These questions are not easy
to answer and, despite their advantages, make the use of replicate designs problematic at
the time of this writing.

The following is one way of proceeding with the analysis: Test for differential car-
ryover. This term may be included in the model (along with the usual parameters) using
a dummy variable, i.e., 0 if treatment in period 1, if Treatment B follows Treatment A,
and 2 if Treatment A follows Treatment B. If differential carryover is not significant,
remove it from the model. Include a term for subject � formulation interaction and
if this effect is large, the products may be considered bio-inequivalent (see Individual
Bioequivalence). Another problem that arises here is concerned with what error term
should be used to construct the confidence interval for the average difference between
formulations. The choices are among the within subject variance (residual), the interaction
term, or the residual with no interaction term in the model (pooled residual and interaction).
The latter could be defended if the interaction term is small or not significant.
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The analysis of studies with replicate designs would be very difficult without access
to a computer program. Using SAS GLM, the following program can be used. (See below
for FDA recommended approach.)

proc glm;
class sequence subject product period co;
model auc � period subject (sequence) product co;
lsmeans product/stderr;
estimate ‘test-ref’product – 1 1;

*co is carryover*

Using the data from Chaio and Liu [27], a four-period design with nine subjects
completing the study, the SAS output is as follows:

Dependent Variable: AUC

Source DF Sum of Squares Mean Square F Value Pr � F

Model 13 40895.72505 3145.82500 8.25 0.0001
Error 22 8391.03801 381.41082
Corrected Total 35 49286.76306
Dependent Variable: AUC

Source DF Type I SS Mean Square F Value Pr � F
SEQ 1 9242.13356 9242.13356 24.23 0.0001
SUBJECT (SEQ) 7 25838.61700 3691.23100 9.68 0.0001
PRODUCT 1 1161.67361 1161.67361 3.05 0.0949
PERIOD 3 4650.60194 1550.20065 4.06 0.0193
CO 1 2.69894 2.69894 0.01 0.9337

Source DF Type III SS Mean Square F Value Pr � F
SEQ 1 8311.37782 8311.37782 21.79 0.0001
SUBJECT (SEQ) 7 25838.61700 3691.23100 9.68 0.0001
PRODUCT 1 975.69000 975.69000 2.56 0.1240
PERIOD 2 2304.85554 1152.42777 3.02 0.0693
CO 1 2.69894 2.69894 0.01 0.9337

Parameter Estimate T for HO: Pr � |T| Std Error of 
Parameter Estimate

test-ref �10.98825000 �1.60 0.1240 6.87019569

Because carryover is not significant (P 
 0.9), we can remove this term from the
model and analyze the data with a subject � formulation (within sequence) term included
in the model. The SAS output follows:
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General Linear Models Procedure
Dependent Variable: AUC
Source DF Sum of Squares Mean Squares F Value Pr � F
Model 19 42490.87861 2236.36203 5.27 0.0008
Error 16 6795.88444 424.74278
Corrected Total 35 49286.76306

Source DF Type I SS Mean Square F Value Pr � F
SEQ 1 9242.13356 9242.13356 21.76 0.0003
SUBJECT (SEQ) 7 25838.61700 3691.23100 8.69 0.0002
PRODUCT 1 1161.67361 1161.67361 2.74 0.1177
PERIOD 3 4650.60194 1550.20065 3.65 0.0354
SUBJECT * PRODUCT (SEQ) 7 1597.85250 228.26464 0.54 0.7940

Source DF Type III SS Mean Square F Value Pr � F
SEQ 1 9242.13356 9242.13356 21.76 0.0003
SUBJECT (SEQ) 7 25838.61700 3691.23100 8.69 0.0002
PRODUCT 1 1107.56806 1107.56806 2.61 0.1259
PERIOD 2 4622.20056 2311.10028 5.44 0.0157
SUBJECT * PRODUCT (SEQ) 7 1597.85250 228.26464 0.54 0.7940

The subject � product interaction is not significant (P 
 0.7). Again the question of
which error term to use for the confidence interval is unresolved. The choices are (a)
interaction � 228, within subject variance � 425, or pooled residual � 365. The degrees
of freedom will also differ depending on the choice. The simplest approach seems to be
to use the pooled variance if the interaction term is not significant (the level must be
defined). If interaction is significant, use the interaction term as the error. In the example
given above, the analysis without interaction and carryover may be appropriate. (Also see
Individual Bioequivalence). The following analysis has an error term equal to 365.

Dependent Variable: AUC
Source DF Sum of Squares Mean Square F Value Pr � F

Model 12 40893.02611 3407.75218 9.34 0.0001
Error 23 8393.73694 364.94508
Corrected Total 35 49286.76306

Source DF Type III SS Mean Square F Value Pr � F
SEQ 1 9242.13356 9242.13356 25.32 0.0001
SUBJECT (SEQ) 7 25838.61700 3691.23100 10.11 0.0001
PRODUCT 1 1107.56806 1107.56806 3.03 0.0949
PERIOD 3 4650.60194 1550.20065 4.25 0.0158

PRODUCT AUC Std Err Pr � |T| HO:
LSMEAN LSMEAN LSMEAN�0

1 87.7087500 4.5308014 0.0001
2 76.5462500 4.5308014 0.0001

T for HO: Pr � |T| Std Error of
Parameter Estimate Parameter�0 Estimate
test-ref �11.16250000 �1.74 0.0949 6.40752074
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The complete analysis of replicate designs can be very complex and ambiguous, and
is beyond the scope of this book. An example of the analysis as recommended by the
FDA is shown later in this section. For an in-depth discussion of the analysis of replicate
designs including estimation of sources of variability, see references 26–28.

The four-period design will be further discussed in the discussion of Individual Bioe-
quivalence (IB), for which it is recommended. In a recent Guidance, the FDA (33) gives
sponsors the option of using replicate design studies for all bioequivalence studies. How-
ever, at the time of this writing, the agency has ceased to recommend use of replicate
studies although they may be useful in some circumstances. The purpose of these studies
was to provide more information about the drug products than can be obtained from the
typical, nonreplicated, two-period design. The FDA was interested in obtaining information
from these studies to aid them in evaluation of the need for Individual Bioequivalence
(IB). In particular, replicate studies provide information on within-subject variance of each
product separately, as well as potential product � subject interactions. As noted previ-
ously, the use of these designs and assessment of individual bioequivalence has been
controversial, and its future in its present form is in doubt.

The FDA recommends that submissions of studies with replicate designs be analyzed
for average bioequivalence (33). Any analysis of Individual Bioequivalence will be the
responsibility of the FDA, but will be only for internal use, not for evaluating bioequiva-
lence for regulatory purposes.

The following is another example of the analysis of a two-treatment–four-period
replicate design to assess average bioequivalence, as recommended by the FDA. This
design has each of two products, balanced in two sequences, ABAB and BABA, over
four periods. Table 11.15 shows the results for Cmax for a replicate study. Eighteen subjects
were recruited for the study and 17 completed the study. An analysis using the usual
approach for the TTTP design, as discussed above, is not recommended. The FDA (33)
recommends use of a mixed model approach as in SAS PROC MIXED (9). The recom-
mended code is:

PROC MIXED;
CLASSES SEQ SUBJ PER TRT;
MODEL LNCMAX � SEQ PER TRT/DDFM � SATTERTH;
RANDOM TRT/TYPE � FAO (2) SUB � SUBj G;
REPEATED/GRP � TRT SUB � SUBJ;
LSMEANS TRT;
ESTIMATE ‘‘T VS. R’’ TRT 1 �1/CL ALPHA � 0.1;
RUN;

The abbreviated output is shown in Tables 11.16 and 11.17. Table 11.16 shows an analysis
of the first two periods for ln (Cmax) and untransformed Cmax. Table 11.17 shows the
output for the analysis of average bioequivalence using all four periods.
Note that the confidence interval using the complete design (0.0592–0.1360) is not much
different from that observed from the analysis of the first two periods (see Exercise at the
end of the chapter), 0.0438, 0.1564. This should be expected because of the small variability
exhibited by this product.

11.4.7.1Individual Bioequivalence

Another issue that has been introduced as a relevant measure of equivalence is ‘‘Individ-
ual’’ Bioequivalence (IB). This is in contrast to the present measure of ‘‘average’’ bioequi-
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Table 11.15 Results of a Four-Period, Two-Sequence, Two-Treatment, Replicate
Design (Cmax)

Subject Product Sequence Period Cmax Ln(Cmax)

1 Test 1 1 14 2.639
2 Test 1 1 16.7 2.815
3 Test 1 1 12.95 2.561
4 Test 2 2 13.9 2.632
5 Test 1 1 15.6 2.747
6 Test 2 2 12.65 2.538
7 Test 2 2 13.45 2.599
8 Test 2 2 13.85 2.628
9 Test 1 1 13.05 2.569

10 Test 2 2 17.55 2.865
11 Test 1 1 13.25 2.584
12 Test 2 2 19.8 2.986
13 Test 1 1 10.45 2.347
14 Test 2 2 19.55 2.973
15 Test 2 2 22.1 3.096
16 Test 1 1 22.1 3.096
17 Test 2 2 14.15 2.650
1 Test 1 3 14.35 2.664
2 Test 1 3 22.8 3.127
3 Test 1 3 13.25 2.584
4 Test 2 4 14.55 2.678
5 Test 1 3 13.7 2.617
6 Test 2 4 13.9 2.632
7 Test 2 4 13.75 2.621
8 Test 2 4 13.25 2.584
9 Test 1 3 13.95 2.635

10 Test 2 4 15.15 2.718
11 Test 1 3 13.15 2.576
12 Test 2 4 21 3.045
13 Test 1 3 8.75 2.169
14 Test 2 4 17.35 2.854
15 Test 2 4 18.25 2.904
16 Test 1 3 19.05 2.947
17 Test 2 4 15.1 2.715
1 Reference 1 2 13.5 2.603
2 Reference 1 2 15.45 2.738
3 Reference 1 2 11.85 2.472
4 Reference 2 1 13.3 2.588
5 Reference 1 2 13.55 2.606
6 Reference 2 1 14.15 2.650
7 Reference 2 1 10.45 2.347
8 Reference 2 1 11.5 2.442
9 Reference 1 2 13.5 2.603

10 Reference 2 1 15.25 2.725
11 Reference 1 2 11.75 2.464
12 Reference 2 1 23.2 3.144
13 Reference 1 2 7.95 2.073

(Continued)
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Table 11.15 continued

Subject Product Sequence Period Cmax Ln(Cmax)

14 Reference 2 1 17.45 2.859
15 Reference 2 1 15.5 2.741
16 Reference 1 2 20.2 3.006
17 Reference 2 1 12.95 2.561
1 Reference 1 4 13.5 2.603
2 Reference 1 4 15.45 2.738
3 Reference 1 4 11.85 2.472
4 Reference 2 3 13.3 2.588
5 Reference 1 4 13.55 2.606
6 Reference 2 3 14.15 2.650
7 Reference 2 3 10.45 2.347
8 Reference 2 3 11.5 2.442
9 Reference 1 4 13.5 2.603

10 Reference 2 3 15.25 2.725
11 Reference 1 4 11.75 2.464
12 Reference 2 3 23.2 3.144
13 Reference 1 4 7.95 2.073
14 Reference 2 3 17.45 2.859
15 Reference 2 3 15.5 2.741
16 Reference 1 4 20.2 3.006
17 Reference 2 3 12.95 2.561

valence. Note that the evaluation of data from the TTTP design results is a measure of
Average Bioequivalence. Average Bioequivalence addresses the comparison of average
results derived from the TTTP Bioequivalence study, and does not consider differences
of within-subject variance and interactions in the evaluation.

The ‘‘Individual’’ Bioequivalence approach is an attempt to evaluate the effect of
changing products (brand to generic, for example) for an individual patient, considering
the potential for a change of therapeutic effect or increased toxicity when switching prod-
ucts. This is a very difficult subject from both a conceptual and statistical point of view.
Statistical methods and meaningful differences must be established to show differences
in variability between products before this criterion can be implemented. Whether or not
a practical approach can be developed, and whether or not such approaches will have
meaning in the context of bioequivalence remains to be seen. Some of the statistical
problems to be contemplated when implementing this concept include recommendations
of specific replicated crossover designs to measure both within and between variance
components as well as subject � product interactions, and definitions of limits that have
clinical meaning. The issue is related to variability. Assuming that the average bioavailabil-
ity is the same for both products as measured in a typical bioequivalence study, the question
of individual bioequivalence appears to be an evaluation of formulation differences. Since
the therapeutic agents are the same in the products to be compared, it is formulation
differences that could result in excessive variability or differences in bioavailability which
are under scrutiny. Some of the dilemmas are related to the inherent biologic variability
of a drug substance. If a drug is very variable, we would expect large variability in



Table 11.16 ANOVA for Data from First Two Periods of Table 11.15

(A) LN TRANSFORMATION
Dependent Variable: LNCMAX

Source DF Sum of Squares Mean Square F Value Pr � F

Model 18 1.65791040 0.09210613 10.34 0.0001

Error 15 0.13359312 0.00890621

Corrected Total 33 1.79150352
R-Square C.V. Root MSE LNCMAX Mean
0.925430 3.528167 0.09437271 2.67483698

Source DF Type I SS Mean Square F Value Pr � F

SEQ 1 0.09042411 0.09042411 10.15 0.0061
SUBJ(SEQ) 15 1.48220203 0.09881347 11.09 0.000
PER 1 0.00039571 0.00039571 0.04 0.8359
TRT 1 0.08488855 0.08488855 9.53 0.0075

Least Squares Means

TRT LNCMAX
LSMEAN

Reference 2.62174427
Test 2.72185203

T for HO: Pr � |T| Std Error of
Parameter Estimate Parameter�0 Estimate
TVS.R 0.10010777 3.09 0.0075 0.03242572

(B) Dependent Variable: CMAX
Source DF Sum of Squares Mean Square F Value Pr � F

Model 18 381.26362847 21.18131269 9.07 0.0001

Error 15 35.01637153 2.33442477

Corrected Total 33 416.28000000
R-Square C.V. Root MSE CMAX Mean
0.915883 10.25424 1.52788245 14.90000000

Source DF Type | SS Mean Square F Value Pr � F

SEQ 1 18.59404514 18.59404514 7.97 0.0129
SUBJ(SEQ) 15 346.22095486 23.08139699 9.89 0.0001
PER 1 0.24735294 0.24735294 0.11 0.7493
TRT 1 16.20127553 16.20127553 6.94 0.0188

Least Squares Means

TRT CMAX
LSMEAN

Reference 14.1649306
Test 15.5479167

Dependent Variable: CMAX

T for HO: Pr � |T| Std Error of
Parameter Estimate Parameter�0 Estimate

T VS. R 1.38298611 2.63 0.0188 0.52496839

352
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Table 11.17 Analysis of Data from Table 11.15 for Average Bioequivalence

ANALYSIS FOR LN-TRANSFORMED CMAX
The MIXED Procedure
Class Level Information

Class Concentrations Values
SEQ 2 1 2
SUBJ 17 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17
PER 4 1 2 3 4
TRT 2 12
Covariance Parameter Estimates (REML)
Cov Parm Subject Group Estimate
FA(1,1) SUBJ 0.20078553
FA(2,1) SUBJ 0.22257742
FA(2,2) SUBJ �0.00000000
DIAG SUBJ TRT 1 0.00702204
DIAG SUBJ TRT 2 0.00982420
Tests of Fixed Effects

Source NDF DDF Type III F Pr � F
SEQ 1 13.9 1.02 0.3294
PER 3 48.2 0.30 0.8277
TRT 1 51.1 18.12 0.0001

ESTIMATE Statement Results
Parameter T VS. R
Alpha � 0.1 Estimate Std Error DF t Pr � |t|

0.09755781 0.02291789 51.1 4.26 0.0001

Lower 0.0592 Upper 0.1360
Least Squares Means

Effect TRT LSMEAN Std Error DF t Pr � |t|
TRT 1 2.71465972 0.05086200 15 53.37 0.0001
TRT 2 2.61710191 0.05669416 15.3 46.16 0.0001

studies of interchangeability of products. In particular, taking the same product on multiple
occasions would show a lack of ‘‘reproducibility.’’ The question that needs to be addressed
is whether the new (generic) product would cause efficacy failure or toxicity when ex-
changed with the reference or brand product due to excessive variability. The onus is on
the generic product. Product failure could be due to a change in the rate and extent of
drug absorption as well as an increase in inter- and intrapatient variability. The FDA has
spent some energy in addressing the problem of how to define and evaluate any changes
incurred by the generic product. This is a difficult problem, not only in identifying the
parameters to measure the variability, but to define the degree of variability that would
be considered excessive. For example, drugs that are very variable may be allowed more
leniency in the criteria for ‘‘interchangeability’’ than less variable, narrow-therapeutic-
range drugs.

The FDA has proposed an expression to define individual bioequivalence:

(11.4)θ δ σ σ σ σ= + + −[ ( )] /2 2 2 2 2
I T R R
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where

� � difference between means of test and reference
�I

2 � Subject � Treatment interaction variance
�I

2 � Within subject Test variance
�R

2 � Within subject Reference variance

Equation 11.4 makes sense in that the comparison between test and reference products is
scaled by the within-reference variance, thereby not penalizing very variable drug products
when testing for bioequivalence. In addition, the expression contains a term for testing the
mean difference, the interaction, and the difference between the within-subject variances. If
the test product has a smaller within-subject variance than the reference, this favors the
test product.

Before individual bioequivalence was to be considered a requirement from a regulatory
point of view, data were accumulated from replicate crossover studies (3 or more periods)
to compile a database to assess the magnitude and kinds of intrasubject and formulation
� subject variability that exist in various drug and product classes. The design and submis-
sion of such studies were more or less voluntary, and were analyzed for average bioequiva-
lence. However, this gave the regulatory agency the opportunity to evaluate the data
according to Individual Bioequivalence, and to evaluate the need for this new kind of
criterion for equivalence. At the time of this writing, the future of individual bioequivalence
as a regulatory requirement is in doubt. The details of the design and analysis of these
studies are presented below.

In summary, Individual Bioequivalence is an assessment that accounts for product
differences in the variability of the PK parameters, as well as differences in their averages.
IB evaluation is based on the statistical evaluation of the metric [Eq.(11.4)], which repre-
sents a ‘‘distance’’ between the products. In average BE, this distance can be considered
the square of the difference in average results. In IB, in addition to the difference in
averages, the difference between the within-subject variances for the two products, and
the formulation � subject interaction (FS) are evaluated. In this section, we will not
discuss the evaluation of Population BE. The interested reader may refer to the FDA
guidance (33).

The evaluation of IB is based on a 95% upper confidence limit on the metric, where
the upper limit for approval, theta (�), is defined as 2.4948. Note that we only look at the
upper limit because the test is one-sided; i.e., we are only interested in evaluating the
upper value of the confidence limit, upon which a decision of passing or failing depends.
A large value of the metric results in a decision of inequivalence. Referring to Eq. (11.4),
a decision of inequivalence results when the numerator is large and the denominator is
small in value. Large differences in the average results, combined with a large subject �
formulation interaction, a large within-subject variance for the test product and a small
within-subject variance for the reference product, will increase the value of theta (and
vice versa).

Using the within subject variance of the reference product in the denominator as a
scaling device allows for a less stringent decision for bioequivalence in cases of large
reference variances. That is, if the reference and test products appear to be very different
based on average results, they still may be deemed equivalent if the reference within
subject variance is large. This can be a problem in interpretation of bioequivalence, because
if the within-subject variance of the test product is sufficiently smaller than the reference,
an unreasonably large difference between their averages could still result in bioequivalence



355Experimental Design in Clinical Trials

[see Eq. (11.4)]. This could be described as a compensation feature or trade-off; i.e., a
small within-subject variance for the test product can compensate for a large difference
in averages. To ensure that such apparently unreasonable conclusions will not be decisive,
the FDA guidance has a proviso that the observed T/R ratio must be not more than 1.25
or less than 0.8.

Constant Scaling

The FDA Guidance (33) also allows for a constant scaling factor in the denominator of
Eq. (11.4). If the variance of the reference is very small, the IB metric may appear very
large, even though the products are reasonably close. If the within-subject variance for
the reference product is less than 0.04, a value of 0.04 may be used in the denominator,
rather than the observed variance. This prevents an artificial inflation of the metric for
cases of a small within-subject reference variance. This case will not be discussed further,
but is a simple extension of the following discussion. The reader may refer to the FDA
Guidance for further discussion of this topic (33).

Statistical Analysis for Individual Bioequivalence

For average bioequivalence, the distribution of the difference in average results (log trans-
formed) is known based on the assumption of a log-normal distribution of the parameters.
One of the problems with the definition of bioequivalence based on the metric, Eq. (11.4),
is that the distribution of the metric is complex, and cannot be easily evaluated. At an
earlier evolution in the analysis of the metric, a bootstrap technique, a kind of simulation,
was applied to the data to estimate its distribution. The nature of the distribution is needed
to construct a confidence interval so that a decision rule of acceptance or rejection can
be determined. This bootstrap approach was time consuming, and not exactly reproducible.
At the present time an approximate ‘‘parametric’’ approach is recommended (34), which
results in a hypothesis test that determines the acceptance rule. We refer to this approach
as the ‘‘Hyslop’’ evaluation. This will be presented in more detail below.

To illustrate the use of the Hyslop approach, the data of Table 11.18 will be used.
This data set has been studied by several authors during the development of methods to
evaluate IB (35).

The details of the derivation and assumptions can be found in the FDA guidance (36)
and the paper by Hyslop et al. (34).

The following describes the calculations involved and the definitions of some terms
that are used in the calculations. The various estimates are obtained from the data of Table
11.18, using SAS (9), with the following code:

proc mixed data � Drug;
class seq subj per trt;
model ln Cmax� seq per trt;
random int subject/subject�trt;

repeated/grp�trt sub�subj;
estimate ‘‘t vs.r’’ trt 1�1/cl alpha�0.1;

run;

Table 11.19 shows the estimates of the variance components and average results for
each product from the data of Table 11.18.

Basically, the Hyslop procedure obtains an approximate upper confidence interval on
the sum of independent terms (variables) in the IB metric equation [Eq. (11.4)]. However,
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Table 11.18 Data from a Two-Treatment, Two-Sequence, Four-Period Replicated
Design (29)

Subject Sequence Period Product Ln Cmax

1 1 1 1 5.105339
1 1 3 1 5.090062
2 1 1 1 5.594340
2 1 3 1 5.459160
3 2 2 1 4.991792
3 2 4 1 4.693181
4 1 1 1 4.553877
4 1 3 1 4.682131
5 2 2 1 5.168778
5 2 4 1 5.213304
6 2 2 1 5.081404
6 2 4 1 5.333202
7 2 2 1 5.128715
7 2 4 1 5.488524
8 1 1 1 4.131961
8 1 3 1 4.849684
1 1 2 2 4.922168
1 1 4 2 4.708629
2 1 2 2 5.116196
2 1 4 2 5.344246
3 2 1 2 5.216565
3 2 3 2 4.513055
4 1 2 2 4.680278
4 1 4 2 5.155601
5 2 1 2 5.156178
5 2 3 2 4.987025
6 2 1 2 5.271460
6 2 3 2 5.035003
7 2 1 2 5.019265
7 2 3 2 5.246498
8 1 2 2 5.249127
8 1 4 2 5.245971

Table 11.19 Parameter Estimates from Analysis of Data of Table 4 with
Some Definitions

�‘T � mean of test; estimate � 5.0353
�‘R � mean of reference; estimate � 5.0542
� � difference between observed mean of test and reference � �0.0189
�‘I

2 � interaction variance; estimate � MI � 0.1325
�‘T

2 � within subject variance for the test product; estimate � MT � 0.0568
�‘R

2 � within subject variance for the reference product; estimate � MR � 0.0584
n � degrees of freedom
s � number of sequences
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the statistical approach is expressed as a test of a hypothesis. If the upper limit of the CI
is less than 0, the products are deemed equivalent, and vice versa. The following discussion
relates to the scaled metric, where the observed reference within subject variance is used
in the denominator. An analogous approach is used for the case where the reference
variance is small and the denominator is fixed at 0.04 (see ref. 36).

The IB criterion is expressed as

(11.5)θ δ σ σ σ σ= + + −[ ( )] /2 2 2 2 2
d T R R

It can be shown that

(11.6)σ σ σ σI
2 2 2 20 5= + +d T R. ( )

where �d
2 is the pure estimate of the subject x formulation interaction component.

We can express this in the form of a hypothesis test, where the IB metric is linearized as
follows:

Substituting Eq. (11.6) into Eq. (11.5), and linearizing:

(11.7)Let I T Rη δ σ σ σ θ= + + − − −( ) . ( . )2 2 2 20 5 1 5

We then form a hypothesis test with the hypotheses:

H Ha0 0 0: :η η> >

Howe’s method (Hyslop) effectively forms a confidence interval for � by first finding an
upper or lower limit for each component in �. Then, a simple computation allows us to
accept or reject the null hypothesis at the 5% level (one-sided test). This is equivalent to
seeing if an upper confidence interval is less than the FDA-specified criterion, �. Using
Hyslop’s method, if the upper confidence limit is less than �, the test will show a value
less than 0, and the products are considered to be equivalent.

The computation for the method is detailed below.
We substitute the observed values for the theoretical values in Eq. (11.7). The Ob-

served Values are shown in Table 11.19.
The next step is to compute the upper 95% confidence limits for the components in

Eq. (11.7). Note that � is normal with mean, true delta, and variance 2� 2
d/N. The variances

are distributed as (�2)•� 2
(n)/n, (where n � d.f.) For example, MT � �T

2
(n) � 2

(n)/n
The equations for calculations are given in Table 11.20 (34).

H � �(Ei) � �(Ui)0.5 � �0.0720 � 0.3885 � 0.3165

Table 11.20 Computations for Evaluation of Individual Bioequivalence

Hq � (1-alpha) level upper
Confidence limit Eq � point estimate Uq�(Hq �Eq)2

HD � [|�| � t (1-�, n-s) (1/s2 �ni
�1 MI)1/2]2 ED � �2 UD

HI � ((n-s)•MI)/�2(�, n-s), EI � MI UI

HT � (0.5•(n-s)•MT)/�2 (�, n-s), ET � 0.5•MT UT

HR � (�(1.5 � �1)•(n-s)•MR)/�2(1-�, n-s),a ER � �(1.5 � �1)•MR UR

a Note that we use the 1-� percentile here because of the negative nature of this expression. n � �nj; s � number
of sequences; ni � the number of subjects in sequence i.
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Table 11.21 Results of Calculations for Data of Table 11.20

Hi � Confidence Limit Ei � Point Estimate Ui � ((H-E)2

Hd � 0.07213 Ed � 0.00357 0.0052
Hi � 0.4862 Ei � 0.1325 0.1251
Ht � 0.1042 Et � 0.0284 0.0057
Hr � �0.1112 Er � �0.2333 0.0149
SUM �0.0720 0.1509

Table 11.21 shows the results of these calculations.
Examples of Calculations:

H

H
D

I

= + =

=

[ . . (( / ) . / ) ))] .

(( ) .

/−00189 1 94 1 4 0 1325 2 0 07213

6 0 1

1 2 2• •

• 3325 1 635 0 4862

0 5 6 0 0568 1 635 0 1042

1 5

) / . .

( . ( ) . ) / . .

( ( .

=
= =
= − +

H

H
T

R

• •

22 4948 6 0 0584 12 59 0 1112. ) ( ) . ) / . .• • = −

If the upper CI exceeds zero, the hypothesis is rejected, and the products are bio-inequiva-
lent. This takes the form of a one-sided test of hypothesis at the 5% level.

Since this value (0.3165) exceeds 0, the products are considered to be inequivalent.
An alternative method to construct a decision criterion for Individual Bioequivalence

based on the metric is given in Appendix IX.

The Future

At the present time, the design and analysis of bioequivalence studies use TTTP designs
with a log transformation of the estimated parameters. The 90% confidence interval of
the back-transformed difference of the average results for the comparative products must
lie between 0.8 and 1.25 for the products to be deemed equivalent. Four-period replicate
designs have been recommended for controlled-release products and, in some cases, very
variable products. However, FDA recommends that these designs be analyzed for average
bioequivalence. The results of these studies were analyzed for IB by the FDA to assess
the need for IB; i.e., is there a problem with formulation � subject interactions and
differences between within subject variance for the two products? The result of this venture
showed that replicate designs were not needed, i.e., the data does not show significant
interaction or within-subject variance differences. IB may be reserved for occasions where
these designs will be advantageous in terms of cost and time. In fact, recent communication
with FDA suggests that IB requirements are not likely to continue in the present form.
Some form of IB analysis may be optimal for very variable drugs, requiring less subjects
than would be required using a TTTP design for average BE. On the other hand, in the
future if IB analysis shows the existence of problems with interaction and within subject
variances, it is possible that the four-period replicate design and IB analysis will be consid-
ered for at least some subset of drugs or drug products that exhibit problems.

11.4.8 Sample Size for Test for Equivalence for a Dichotomous (pass-fail)
Outcome

Tests for bioequivalence are usually based on an analysis of drug in body fluids (e.g.,
plasma). However, for drugs that are not absorbed, such as topicals and certain local acting
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gastrointestinal products (e.g., sucralfate), a clinical study is necessary. Often the outcome
is based on a binomial outcome such as cured/not cured. See section 5.2.6 for Confidence
Intervals for a Proportion. A continuity correction is recommended. Makuch and Simon
[20] have published a method for determining sample size for these studies, as well as other
kinds of clinical studies where the objective is to determine equivalence. This reference is
concerned particularly with cancer treatments where a less intensive treatment is consid-
ered to replace a more toxic treatment if the two treatments can be shown to be therapeuti-
cally equivalent. As for the case of bioequivalence studies with a continuous outcome,
one needs to specify both alpha and beta errors in addition to a difference between the
treatments that is considered important to estimate the required sample size.

In this approach, we assume a parallel groups design (two independent groups), typical
of these studies. To estimate the number of subjects required in the two groups, we will
assume an equal number to be assigned to each group. An estimate of (1) the value of
the proportion of subjects who will be ‘‘cured’’ or have a positive outcome for each
treatment (P1 and P2), and (2) the difference between the treatments which is not clinically
meaningful is needed. Makuch and Simon show that the number of subjects per group
can be calculated from Eq. (11.4):

(11.4)N Z Z= − + − × + ∆ − −[ ( ) ( )] {[ ]/[ [ ]}P P P P P P1 2 1 21 2
21 1 α β

where delta (�) is the maximum difference between treatments considered to be of no
clinical significance.

If we assume that the products are not different a priori, P1 � P2 � P, Eq. (11.4)
reduces to

(11.5)N Z Z= − + ∆2 1 2P P( ){[ ] / }α β

In a practical example, a clinical study is designed to compare the efficacy of a generic
Sucralfate to the brand product. The outcome is the healing of gastrointestinal ulcers. How
many subjects should be entered in a parallel study with a dichotomous endpoint (healed/
not healed) if the expected proportion healed is 0.80 and the confidence interval of the
difference of the proportions should not exceed 	0.2? We wish to construct a two-sided
90% confidence interval with a beta of 0.2 (power � 0.8). This means that with the
required number of patients, we will be able to determine, with 90% confidence, if the
healing rates of the products are within 	0.2. If indeed the products are equivalent, with
a beta of 0.2, there is 80% probability that the confidence interval for the difference
between the products will fall within 	20%.

The values of Z for beta can be obtained from Table 6.2 in Chapter 6.
Note that if the products are not considered to be different with regard to proportion

or probability of success, the values for beta will be based on a two-sided criterion. For
example, for 80% power, use 1.28 (not 0.84).
From Eq. (11.5),

N = − + =2 0 8 1 0 8 1 65 1 28 0 2 692( . ) ( . ) {[ . . ]/ . }

Sixty-nine subjects per group are required to satisfy the statistical requirements for the
study.

If the criterion is made more similar to the typical bioequivalence criterion, we might
consider the difference (delta) to be 20% of 0.8 or 16%, rather than the absolute 20%. If
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delta is 16%, the number of subjects per group will be approximately 108. (See Exercise
Problem 12 at the end of this chapter.)

11.5 REPEATED MEASURES (SPLIT-PLOT) DESIGNS

Many clinical studies take the form of a baseline measurement followed by observations
at more than one point in time. For example, a new antihypertensive drug is to be compared
to a standard, marketed drug with respect to diastolic blood pressure reduction. In this
case, after a baseline blood pressure is established, the patients are examined every other
week for 8 weeks, a total of four observations (visits) after treatment is initiated.

11.5.1 Experimental Design

Although this antihypertensive drug study was designed as a multiclinic study, the data
presented here represent a single clinic. Twenty patients were randomly assigned to the
two treatment groups, 10 to each group (see Sec. 11.2.6 for the randomization procedure).
Prior to drug treatment, each patient was treated with placebo, and blood pressure deter-
mined on three occasions. The average of these three measurements was the baseline
reading.

The baseline data were examined to ensure that the three baseline readings did not
show a time trend. For example, a placebo effect could have resulted in decreased blood
pressure with time during this preliminary phase.

Treatment was initiated after the baseline blood pressure was established. Diastolic
blood pressure was measured every 2 weeks for 8 weeks following initiation of treatment.
(The dose was one tablet each day for the standard and new drug.) Two patients dropped
out in the ‘‘standard drug’’ group, and one patient was lost to the ‘‘new drug’’ group,
resulting in eight and nine patients in each treatment group. The results of the study are
shown in Table 11.22 and Fig. 11.4.

The design described above is commonly known in the pharmaceutical industry as a
repeated measures or split-plot design. (This design is also denoted as an incomplete
three-way or a partially hierarchical design.) This design is common in clinical or preclini-
cal studies, where two or more products are to be compared with multiple observations
over time. The design can be considered as an extension of the one-way or parallel-groups
design. In the present design (repeated measures), data are obtained at more than one time
point. The result is two or more two-way designs, as can be seen in Table 11.22, where
we have two two-way designs. The two-way designs are related in that observations are
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Table 11.22 Results of a Comparison of Two Antihypertensive Drugs

Standard drug New drug

Week Week

Patient Baseline 2 4 6 8 Patient Baseline 2 4 6 8

1 102 106 97 86 93 3 98 96 97 82 91
2 105 103 102 99 101 4 106 100 98 96 93
5 99 95 96 88 88 6 102 99 95 93 93
9 105 102 102 98 98 8 102 94 97 98 85

13 108 108 101 91 102 10 98 93 84 87 83
15 104 101 97 99 97 11 108 110 95 92 88
17 106 103 100 97 101 12 103 96 99 88 86
18 100 97 96 99 93 14 101 96 96 93 89

16 107 107 96 93 97
Mean 103.6 101.9 98.9 94.6 96.6 Mean 102.8 99.0 95.2 91.3 89.4

made at the same time periods. The chief features of the repeated measures design as
presented here are:

1. Different patients are randomly assigned to the different treatment groups, i.e.,
a patient is assigned to only one treatment group.

2. The number of patients in each group need not be equal. Equal numbers of patients
per group, however, result in optimum precision when comparing treatment
means. Usually, these studies are designed to have the same number of patients
in each group, but dropouts usually occur during the course of the study.

Figure 11.4 Plot of mean results from antihypertensive drug study. •—standard drug;
�—new drug.
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3. Two or more treatment groups may be included in the study.
4. Each patient provides more than one measurement over time.
5. The observation times (visits) are the same for all patients.
6. Baseline measurements are usually available.
7. The usual precautions regarding blinding and randomization are followed.

Although the analysis tolerates lack of symmetry with regard to the number of patients
per group (see feature 2), the statistical analysis can be difficult if patients included in the
study have missing data for one or more visits. In these cases, a statistician should be
consulted regarding data analysis [13].

The usual assumptions of normality, independence, and homogeneity of variance for
each observation hold for the split-plot analysis. In addition, there is another important
assumption with regard to the analysis and interpretation of the data in these designs. The
assumption is that the data at the various time periods (visits) are not correlated, or that
the correlation is of a special form [14]. Although this is an important assumption, often
ignored in practice, moderate departures from the assumption can be tolerated. Correlation
of data during successive time periods often occurs such that data from periods close
together are highly correlated compared to the correlation of data far apart in time. For
example, if a person has a high blood pressure reading at the first visit of a clinical study,
we might expect a similar reading at the subsequent visit if the visits are close in time.
The reading at the end of the study is apt to be less related to the initial reading. The
present analysis assumes that the correlation of the data is the same for all pairs of time
periods, and that the pattern of the correlation is the same in the different groups (e.g.,
drug groups) [14]. If these assumptions are substantially violated, the conclusions based
on the usual statistical analysis will not be valid. The following discussion assumes that
this problem has been considered and is negligible [13].

11.5.2 Analysis of Variance

The data of Table 11.22 will be subjected to the typical repeated measures (split-plot)
ANOVA. As in the previous examples in this chapter, the data will be analyzed, corrected
for baseline, by subtracting the baseline measurement from each observation. The measure-
ments will then represent changes from baseline. The more complicated analysis of covari-
ance is an alternative method of treating such data [13,14]. More expert statistical help
will usually be needed when applying this technique, and the use of a computer is almost
mandatory. Subtracting out the baseline reading is easy to interpret and, generally, results
in conclusions very similar to that obtained by covariance analysis. Table 11.23 shows
the ‘‘changes from baseline’’ data derived from Table 11.22. For example, the first entry
in this table, 2 weeks for the standard drug, is 106 � 102 � 4.

When computing the ANOVA by hand (use a calculator), the simplest approach is
to first compute the two-way ANOVA for each treatment group, ‘‘standard drug’’ and
‘‘new drug.’’ The calculations are described in Sec. 8.4. The results of the analysis of
variance are shown in Table 11.24. Only the sums of squares need be calculated for this
preliminary computation.

The final analysis combines the separate two-way ANOVAs and has two new terms,
‘‘weeks � drugs’’ interaction and ‘‘drugs,’’ the variance represented by the difference
between the drugs. The calculations are described below, and the final ANOVA table is
shown in Table 11.25.
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Table 11.23 Changes from Baseline of Diastolic Pressure for the Comparison of Two
Antihypertensive Drugs

Standard drug New drug

Week Week

Patient 2 4 6 8 Patient 2 4 6 8

1 4 �5 �16 �9 3 �2 �1 �16 �7
2 �2 �3 �6 �4 4 �6 �8 �10 �13
5 �4 �3 �11 �11 6 �3 �7 �9 �9
9 �3 �3 �7 �7 8 �8 �5 �4 �17

13 0 �7 �17 �6 10 �5 �14 �11 �15
15 �3 �7 �5 �7 11 2 �13 �16 �20
17 �3 �6 �9 �5 12 �7 �4 �15 �17
18 �3 �4 �1 �7 14 �5 �5 �8 �12

16 0 �11 �14 �10
Mean �1.75 �4.75 �9 �7 Mean �3.8 �7.6 �11.4 �13.3
Sum �14 �38 �72 �56 Sum �34 �68 �103 �120

Patients’ sum of squares: Pool the sum of squares from the separate ANOVAs (57.5
� 114.22 � 171.72 with 7 � 8 � 15 d.f.).

Weeks’ sum of squares: This term is calculated by combining all of the data, resulting
in four columns (weeks), with 17 observations per column, 8 from the standard drug and
9 from the new drug. The calculation is

C

R R

2

1 2

2 2 2 2 248 106 175 176

17

505

68
4

∑
+

−

= − + − + − + − − −

=

C.T.

( ) ( ) ( ) ( ) ( )

4420 1 3750 4 669 7. . .− =

where C = column sums of combined data
R + R   = sum of the number of rows1 2

Drug sum of squares: Drug sum of squares � (C.T.SP) � (C.T.NP) � (C.T.T), where
C.T.SP is the correction term for the standard drug, C.T.NP is the correction term for the
new product, and C.T.T is the correction term for the combined data.

Table 11.24 ANOVA for Changes from Baseline for Standard Drug and New Drug

Standard drug New drug

Source d.f. Sum of squares d.f. Sum of squares

Patients 7 57.5 8 114.22
Weeks 3 232.5 3 486.97
Error 21 255.5 24 407.78
Total 31 545.5 35 1008.97
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Drug sum of squares = − + − − −

=

( ) ( ) ( )

.

180

32

325

36

505

68
196 2

2 2 2

Weeks � drugs sum of squares: This interaction term (see below for interpretation)
is calculated as the pooled sum of squares from the ‘‘week’’ terms in the separate two-
way ANOVAs above, minus the week term for the final combined analysis, 669.7.

Weeks � drug sum of squares � 232.5 � 486.97 � 669.7 � 49.8

Error sum of squares: The error sum of squares is the pooled error from the two-
way ANOVAs, 255.5 � 407.8 � 663.3.

Interpretation and Discussion

The terms of most interest are the ‘‘drugs’’ and ‘‘weeks � drugs’’ components of the
ANOVA. ‘‘Drugs’’ measures the difference between the overall averages of the two treat-
ment groups. The average change of blood pressure was (�180/32) � 5.625 mmHg for
standard drug, and (�325/36) � 9.027 mmHg for the new drug. The F test for ‘‘drug’’
differences is (drug MS)/(patients MS) equal to 17.1 (1 and 15 d.f.; see Table 11.25). This
difference is highly significant (P � 0.01). The significant result indicates that on the
average, the new drug is superior to the standard drug with regard to lowering diastolic
blood pressure.

The significant difference between the standard and new drugs is particularly meaning-
ful if the difference is constant over time. Otherwise, the difference is more difficult to
interpret. ‘‘Weeks � drugs’’ is a measure of interaction (see also Chapter 9). This test
compares the parallelism of the two ‘‘change from baseline’’ curves as shown in Fig.
11.5. The F test for ‘‘weeks � drugs’’ uses a different error term than the test for ‘‘drugs.’’
The F test with 3 and 45 d.f. is 16.6/14.74 � 1.1, as shown in Table 11.25. This non-
significant result suggests that the pattern of response is not very different for the two
drugs. A reasonable conclusion based on this analysis is that the new drug is effective

Table 11.25 Repeated Measures (Split-Plot) ANOVA for the Antihypertensive Drug
Study

Source d.f.a SS MS

Patients 15 171.7 11.45
Weeks 3 669.7 223.23
Drugs 1 196.2 196.2 F1.15 �

196.2
11.45

Weeks � drugs 3 49.8 16.6 � 17.1b

Error (within 45 663.3 14.74 F3.45 �
16.6

treatments) 67 1750.6 14.74
�1.1

a Degrees of freedom for “patients” and “error” are the d.f. pooled from the two-way ANOVAs. For “weeks” and
“drugs,” the d.f. are (weeks � 1) and (drugs � 1), respectively. For “weeks � drugs,” d.f. are (weeks � 1) �

(drugs � 1).
b P � 0.01.
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Figure 11.5 Plot from the data of Table 11.9 showing lack of significant interaction
of weeks and drugs in experiment comparing standard and new antihypertensive drugs.
•—standard drug; �—new drug.

(superior to the standard drug), and that its advantage beyond the standard drug is approxi-
mately maintained during the course of the experiment.

A significant nonparallelism of the two ‘‘curves’’ in Fig. 11.5 would be evidence for
a ‘‘weeks � drugs’’ interaction. For example, if the new drug showed a lower change in
blood pressure than the standard drug at 2 weeks, and a higher change in blood pressure
at 8 weeks (the curves cross one another), interaction of weeks and drugs would more
likely be significant. Interaction, in this example, would suggest that drug differences are
dependent on the time of observation.

If interaction is present or the assumptions underlying the analysis are violated (partic-
ularly concerning the form of the covariance matrix) [13], a follow-up or an alternative
is to perform p one-way ANOVAs at each of the p points in time. In the previous example,
analyses would be performed at each of the 4 posttreatment weeks. A conclusion is then
made on the results of these individual analyses (see Exercise Problem 8).

11.6 MULTICLINIC STUDIES

Most clinical studies carried out during late phase 2 or phase 3 periods of drug testing
involve multiclinic studies. In these investigations, a common protocol is implemented at
more than one study site. This procedure, recommended by the FDA, serves several pur-
poses. It may not be possible to recruit sufficient patients in a study carried out by a single
investigator. Thus multiclinic studies are used to ‘‘beef up’’ the sample size. Another very
important consideration is that multiclinic studies, if performed at various geographic
locations with patients representing a wide variety of attributes, such as age, race, socioeco-
nomic status, and so on, yield data that can be considered representative under a wide
variety of conditions. Multiclinic studies, in this way, guard against the possibility of a
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result peculiar to a particular single clinical site. For example, a study carried out at a
single Veterans’ Administration hospital would probably involve older males of a particu-
lar economic class. Also, a single investigator may implement the study in a unique way
which may not be typical, and the results would be peculiar to his or her methods. Thus,
if a drug is tested at many locations and the results show a similar measure of efficacy
at all locations, one has some assurance of the general applicability of the drug therapy.
In general, one should attempt to have more or less equal numbers of patients at each
site, and to avoid having too few patients at sites.

However, there are instances where a drug has been found to be efficacious in the
hands of some investigators and not for others. When this occurs, the drug effect is in
some doubt unless one can discover the cause of such results. This problem is statistically
apparent in the form of a treatment � site interaction. The comparative treatments (drug
and placebo, for example) are not differentiated equally at different sites. A treatment �
site interaction may be considered very serious when one treatment is favored at some
clinical sites and the other favored at different sites. Less serious is the case of interaction
where all clinics favor the same treatment, but some favor it more than others. These two
examples of interaction are illustrated in Fig. 11.6.

When interaction occurs, the design, patient population, clinical methods, protocol,
and other possible problems should be carefully investigated and dissected, to help find
the cause. The cause will not always be readily apparent, if at all. See Sec. 8.4.3 for a
further example and discussion of interactions in clinical studies. An important feature of
multiclinic studies, as noted above, is that the same protocol and design should be followed
at all sites.

Since one can anticipate missing values due to dropouts, missed visits, recording
errors, and so on, an important consideration is that the design should not be so complicated
that missing data will cause problems with the statistical interpretation or that the clinicians
will have difficulty following the protocol. A simple design that will achieve the objective

Figure 11.6 Two kinds of interaction: (A) one drug always better than another, but the
difference changes for different clinical sites; (B) one drug better than another at sites 1
and 2 and worse at site 3.
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is to be preferred. Since parallel-groups designs are the most simple in concept, these
should be preferred to some more esoteric design. Nevertheless, there are occasions where
a more complex design would be appropriate providing that the study is closely monitored
and the clinical investigators thoroughly educated.

11.7 INTERIM ANALYSES

Under certain conditions, it is convenient (and sometimes prudent) to look at data resulting
from a study prior to its completion in order to make a decision to change the protocol
procedure or requirements, or to abort the study early or to increase the sample size, for
example. This is particularly compelling for a clinical study involving a disease that is
life-threatening, is expensive, and/or is expected to take a long time to complete. A study
may be stopped, for example, if the test treatment can be shown to be superior early on
in the study. However, if the data are analyzed prior to study completion, a penalty is
imposed in the form of a lower significance level to compensate for the multiple looks
at the data (i.e., to maintain the overall significance level at alpha). The more occasions
that one looks at and analyzes the data for significance, the greater the penalty, i.e., the
more difficult it will be to obtain significance at each analysis. The penalty takes the form
of an adjustment of the alpha level to compensate for the multiple looks at the data. The
usual aim is to keep the alpha level at a nominal level, e.g. 5%, considering the multiple
analyses; this fixes the probability of declaring the treatments different when they are
truly the same at, at most, 5%, taking into account the fact that at each look we have a
chance of incorrectly declaring a significant difference. For example, if the significance
level is 0.05 for a single look, two looks will have an overall significance level of approxi-
mately 0.08.

In addition to the advantage (time and money) of stopping a study early when efficacy
is clearly demonstrated, there may be other reasons to shorten the duration of a study,
such as stopping because of a drug failure, modifying the number of patients to be included,
modifying the dose, etc. If interim analyses are made for these purposes in Phase 3 pivotal
studies, an adjusted p level will probably be needed for regulatory purposes. Davis and
Hwang discuss this in more detail [21]. In any event, the approach to interim analyses
should be clearly described in the study protocol, a priori; or, if planned after the study
has started, the plan of the interim analysis should be communicated to the regulatory
authorities (e.g., FDA). One of the popular approaches to interim analyses was devised
by O’Brien and Fleming [22], an analysis known as a group sequential method. The
statistical analyses are performed after a group of observations have been accumulated
rather than after each individual observation. The analyses should be performed by persons
who cannot influence the continuation and conduct of the study.

The procedure and performance of these analyses must be described in great detail
in the study protocol, including the penalties in the form of reduced ‘‘significance’’ levels.
A very important feature of interim analyses is the procedure of breaking the randomization
code. One should clearly specify who has access to the code and how the blinding of the
study is maintained. It is crucial that the persons involved in conducting the study, clinical
personnel and monitors alike, not be biased as a result of the analysis. This is of great
concern to the FDA. Interim analyses should not be done willy-nilly, but should be planned
and discussed with regulatory authorities. Associated penalties should be fixed in the
protocol. As noted previously, this does not mean that interim analyses cannot and should
not be performed as an afterthought if circumstances dictate their use during the course
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of the study. A PMA committee [23] suggested the following to minimize potential bias
resulting from an interim analysis. 1) ‘‘A Data Monitoring Committee (DMC) should be
established to review interim results.’’ The persons on this committee should not be in-
volved in decisions regarding the progress of the study. 2) If the interim analysis is meant
to terminate a study, the details should be presented in the protocol, a priori. 3) The results
of the interim analysis should be confidential, known only to the DMC.

Sankoh [28] discusses situations where interim analyses have been used incorrectly
from a regulatory point of view. In particular, he is concerned with unplanned interim
analyses. These include (a) the lack of reporting these analyses and the consequent lack
of adjustment of the significance level, (b) inappropriate adjustment of the level and
inappropriate stopping rules, (c) interim analyses inappropriately labeled ‘‘administrative
analyses,’’ where actual data analyses has been carried out and results disseminated, (d)
lack of documentation for the unplanned interim analysis, (e) and the importance of
blinding and other protocol requirements.

An interim analysis may also be planned to adjust sample size. In this case, a full
analysis should not be done. The analysis should be performed when the study is not more
than half done, and only the variability should be estimated (not the treatment differences).
Under these conditions, no penalty need be assessed. However, if the analysis is done
near the end of the trial or if the treatment differences are computed, a penalty is required
[28].

Table 11.26 shows the probability levels needed for significance for k looks (k analy-
ses) at the data according to O’Brien and Fleming [22], where the data are analyzed at
equal intervals during patient enrollment. For example, if the data are to be analyzed 3
times (k � 3, where k is the number of analyses or stages, including the final analysis),
the analysis should be done after 1/3, 2/3 and all of the patients have been completed

Table 11.26 Significance Levels for Two-Sided Group
Sequential Studies with an Overall Significance Level of
0.05 (According to O’Brien/Fleming)

Number of Significance
analysis (stages) Analysis level

2 First 0.005
Final 0.048

3 First 0.0005
Second 0.014
Final 0.045

4 First 0.0005
Second 0.004
Third 0.019
Final 0.043

5 First 0.00001
Second 0.001
Third 0.008
Fourth 0.023
Final 0.041
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[24]. There are other schemes for group sequential interim analyses, including those that
do not require analyses at equal intervals of patient completion [25].

For example, a study with 150 patients in each of two groups is considered for two
interim analyses. This corresponds to 3 stages, two interim and one final analysis. The
first analysis is performed after 100 patients are completed (50 per group) at the 0.0005
level. To show statistically significant differences, the product differences must be very
large or obvious at this low level. If not significant, analyze the data after 200 patients
are completed. A significance level of 0.014 must be reached to terminate the study. If
this analysis does not show significance, complete the study. The final analysis must meet
the 0.045 level for the products to be considered significantly different.

One can conjure up reasons as to why stopping a study early based on interim analysis
is undesirable (less information on adverse effects or less information for subgroup analy-
ses, for example). One possible solution to this particular problem in the case where the
principal objective is to establish efficacy, is to use the results of the interim analysis for
regulatory submission, if the study data meets the interim analysis p level, but to continue
the study after the interim analysis, and then analyze the results for purposes of obtaining
further information on adverse effects, etc. However, in this procedure, one may face a
dilemma if the study fails to show significance with regard to efficacy after including the
remaining patients.

KEY TERMS

Analysis of covariance Intent to Treat
AUC (area under curve) Interaction
Balance Interim analyses
Baseline measurements Latin square
Between-patient variation (error) Log transformation
Bias Multiclinic
Bioavailability Objective measurements
Bioequivalence Parallel design
Blinding Period (visit)
Carryover Placebo effect
Changeover design Positive control
Cmax Randomization
Controlled study Repeated measures
Crossover design Replicate designs
Differential carryover Sequences
Double-blind Split plot
Double dummy Symmetry
75–75 rule Systematic error
Experimental design Tp

Grizzle analysis Washout period
Incomplete three-way ANOVA Within-patient variation (error)
Individual bioequivalence 80% power to detect 20% difference

EXERCISES

1. (a) Perform the calculations for the ANOVA table (Table 11.3) from the data in
Table 11.2.
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(b) Perform a t test comparing the differences from baseline for the two groups
in Table 11.2. Compare the t value to the F value in Table 11.3.

2. Using the data in Table 11.10, test to see if the values of tp are different for formula-
tions A and B (5% level).

3. (a) Using the data in Table 11.10, compare the values of Cmax for the two formula-
tions (5% level). Calculate a confidence interval for the difference in Cmax.

**(b) Analyze the data for Cmax using the Grizzle method. Is a differential carryover
effect present?

4. Analyze the AUC data in Table 11.10 using ratios of AUC (A/B). Find the average
ratio and test the average for significance. (Note that H0 is AUCA/AUCB � 1.0.)
Assume no period effect.

5. Analyze the AUC data in Table 11.10 using logarithms of AUC. Compare the
antilog of the average difference of the logs to the average ratio determined in
Problem 4. Put a 95% confidence interval on the average difference of the logs.
Take the antilogs of the lower and upper limit and express the interval as a ratio
of the AUCs for the two formulations.

**6. In a pilot study, two acne preparations were compared by measuring subjective
improvement from baseline (10-point scale). Six patients were given a placebo
cream and six different patients were given a cream with an active ingredient.
Observations were made once a week for 4 weeks. Following are the results of this
experiment:

Placebo Active

Week Week

Patient 1 2 3 4 Patient 1 2 3 4

1 2 2 4 3 1 2 2 3 3
2 3 2 3 3 2 4 4 5 4
3 1 4 3 2 3 1 3 4 5
4 3 2 1 0 4 3 4 4 7
5 2 1 3 2 5 2 2 3 6
6 4 4 5 3 6 3 4 6 5

A score of 10 is complete improvement. A score of 0 is no improvement (negative
scores mean a worsening of the condition). Perform an analysis of variance (split
plot). Plot the data as in Fig. 11.4. Are the two treatments different? If so, how are
they different?

7. For the exercise study described in Sec. 11.3, the difference considered to be signifi-
cant is 60 minutes with an estimated standard deviation of 55 minutes. Compute
the sample size if the Type I (alpha) and Type II (beta) error rates are set at 0.05
and 0.10, respectively.

** This is an optional, more difficult problem.
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8. From the data in Table 11.16, test for a difference (� � 0.05) between the two
drugs at week 4.

9. Perform the ANOVA on the ln transformed bioavailability data (Sec. 11.4.2, Table
11.10).

10. A clinical study is designed to compare three treatments in a parallel design. Thirty
patients are entered into the study, 10 in each treatment group. The randomization
is to be performed in groups of six. Show how you would randomize the 30 patients.

11. In the example in Table 11.7, suppose that a period effect of 3 existed in this study.
This means that the observations in Period 2 are augmented by 3 units. Show that
the difference between treatments is not biased, i.e., the difference between A and
B is 1.

12. Exercise: Compute the sample size for the example in Sec. 11.4.8, assuming that
a difference of 0.16 (16%) is a meaningful difference.
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QUALITY CONTROL

The science of quality control is largely statistical in nature, and entire books have been
devoted to the application of statistical techniques to quality control. Statistical quality
control is a key factor in process validation and the manufacture of pharmaceutical prod-
ucts. In this chapter we discuss some common applications of statistics to quality control.
These applications include Shewhart control charts, sampling plans for attributes, operating
characteristic curves, and some applications to assay development, including components
of variance analysis. The applications to quality control make use of standard statistical
techniques, many of which have been discussed in previous portions of this book.

12.1 INTRODUCTION

Starting from raw materials to the final packaged container, quality control departments
have the responsibility of assuring the integrity of a drug product with regard to safety,
potency, and biological availability. If each and every item produced could be tested (100%
testing), there would be little need for statistical input in quality control. Those individual
dosage units that are found to be unsatisfactory could be discarded, and only the good
items would be released for distribution. Unfortunately, conditions exist which make 100%
sampling difficult, if not impossible. For example, if every dosage unit could be tested,
the expense would probably be prohibitive both to manufacturer and consumer. Also, it
is well known that attempts to test individually every item from a large batch (several
million tablets, for example), result in tester fatigue, which can cause misclassifications
of items and other errors. If testing is destructive, such as would be the case for assay of
individual tablets, 100% testing is, obviously, not a practical procedure. However, 100%
testing is not necessary to determine product quality precisely. Quality can be accurately
and precisely estimated by testing only part of the total material (a sample). In general,
quality control procedures require relatively small samples for inspection or analysis.
Data obtained from this sampling can then be treated statistically to estimate population
parameters such as potency, tablet hardness, dissolution, weight, impurities, content uni-
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formity (variability), as well as to ensure the quality of attributes such as color, appearance,
and so on.

In various parts of this book, we discuss data from testing finished products of solid
dosage forms. The details of some of these tests are explained at the end of this chapter,
Section 12.7.

Statistical techniques are also used to monitor processes. In particular, control charts
are commonly used to ensure that the average potency and variability resulting from a
pharmaceutical process are stable. Control charts can be applied during in-process manu-
facturing operations, for finished product characteristics, and in research and development
for repetitive procedures. Control charts are one of the most important statistical applica-
tions to quality control.

12.2 CONTROL CHARTS

Probably the best known application of statistics to quality control which has withstood
the test of time is the Shewhart control chart. Important attributes of the control chart are
its simplicity and the visual impression which it imparts. The control chart allows for
judgments based on an easily comprehended graph. The basic principles underlying the
use of the control chart are described below.

12.2.1 Statistical Control

A process under statistical control is one in which the process is susceptible to variability
due only to inherent, but unknown and uncontrolled chance causes. According to Grant
[1]: ‘‘Measured quality of manufactured product is always subject to a certain amount of
variation as a result of chance. Some stable system of chance causes is inherent in any
particular scheme of production and inspection. Variation within this stable pattern is
inevitable. The reasons for variation outside this stable pattern may be discovered and
corrected.’’

Using tablet manufacture as an example, where tablet weights are being monitored,
it is not reasonable to expect that each tablet should have an identical weight, precisely
equal to some target value. A tablet machine is simply not capable of producing identical
tablets. The variability is due, in part, to (a) the variation of compression force, (b) variation
in filling the die, and (c) variation in granulation characteristics. In addition, the balance
used to weigh the tablets cannot be expected to give exactly reproducible weighings, even
if the tablets could be identically manufactured. Thus the weight of any single tablet will
be subject to the vagaries of chance from the foregoing uncontrollable sources of error,
in addition to other identifiable sources which we have not mentioned.

12.2.2 Constructing Control Charts

The process of constructing a control chart depends, to a great extent, on the process
characteristics and the objectives that one wishes to achieve. A control chart for tablet
weights can serve as a typical example. In this example, we are interested in ensuring that
tablet weights remain close to a target value, under ‘‘statistical control.’’ To achieve this
objective, we will periodically sample a group of tablets, measuring the mean weight
and variability. The mean weight and variability of each sample (subgroup) are plotted
sequentially as a function of time. The control chart is a graph that has time or order of
submission of sequential lots on the X axis and the average test result on the Y axis. The
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Figure 12.1 Quality control̄ X and range charts.

process average together with upper and lower limits are specified as shown in Fig. 12.1.
The preservation of order with respect to the observations is an important feature of the
control chart. Among other things, we are interested in attaining a state of statistical control
and detecting trends or changes in the process average and variability. One can visualize
such trends (mean and range) easily with the use of the control chart. The ‘‘consistency’’
of the data as reflected by the deviations from the average value is not only easily seen,
but the chart provides a record of batch performance. This record is useful for regulatory
purposes as well as for an in-house source of data.

As will be described subsequently, variability can be calculated on the basis of the
standard deviation or the range. The range is easier to calculate than the standard deviation.
Remember: The range is the difference between the lowest and highest value. If the sample
size is not large (�10), the range is an efficient estimator of the standard deviation. Figure
12.1 shows an example of an ‘‘X̄’’ (X bar or average) and ‘‘range’’ chart for tablet weights
determined from consecutive tablet production batches.

Rational Subgroups

The question of how many tablets to choose at each sampling time (rational subgroups)
and how often to sample is largely dependent on the nature of the process and the level
of precision required. The larger the sample and the more frequent the sampling, the
greater the precision, but also the greater will be the cost. If tablet samples are taken and
weights averaged over relatively long periods of time, significant fluctuations which may
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have been observed with samples taken at shorter time intervals could be obscured. The
subgroups should be as homogeneous as possible relative to the overall process. Subgroups
are usually (but not always) taken as units manufactured close in time. For example, in
the case of tablet production, consecutively manufactured tablets may be chosen for a
subgroup. If possible, the subgroup sample size should be constant. Otherwise, the con-
struction and interpretation of the control chart is more difficult. Four to five items per
subgroup is usually an adequate sample size. Procedures for selecting samples should be
specified under SOPs (standard operating procedures) in the quality control manual. In
our example, 10 consecutive tablets are individually weighted at approximately 1 hour
intervals. Here the subgroup sample size is larger than the ‘‘usual’’ four or five, principally
because of the simple and inexpensive measurement (weighing tablets). The average
weight and range are calculated for each of the subgroup samples. One should understand
that under ordinary circumstances the variation between individual items (tablets in this
example) within a subgroup is due only to chance causes, as noted above. In the example,
the 10 consecutive tablets are made almost at the same time. The granulation characteristics
and tablet press effects are similar for these 10 tablets. Therefore, the variability observed
can be attributed to causes that are not under our control (i.e., the inherent variability of
the process).

Establishing Control Chart Limits

The principal use of the control chart is as a means of monitoring the manufacturing
process. As long as the mean and range of the 10 tablet samples do not vary ‘‘too much’’
from subgroup to subgroup, the product is considered to be in control. To be ‘‘in control’’
means that the observed variation is due only to the random, uncontrolled variation inherent
in the process, as discussed previously. We will define upper and lower limits for the
mean and range of the subgroups. Values falling outside these limits are cause for alarm.
The construction of these limits is based on normal distribution theory. We know, from
Chapter 3, that individual values from a normal distribution will be within 1.96 standard
deviations of the mean 95% of the time, and within 3.0 (or 3.09) standard deviations of
the mean 99.73% (or 99.8%) of the time (see Table IV.2). Therefore, the probability of
observing a value outside these limits is small; only 1 in 20 in the former case and 2.7
in 1000 in the latter case. Two limits are often used in the construction of X̄ (mean) charts
as ‘‘warning’’ and ‘‘action’’ limits, respectively (see Fig. 12.1). The warning limits are
narrower than the action limits and do not require immediate action. If a process is subject
only to random, chance variation, a value far from the mean is unlikely. In particular, a
value more than 3.0 standard deviations from the mean is highly unlikely (2.7/1000),
and can be considered to be probably due to some systematic, assignable cause. Such a
‘‘divergent’’ observation should signal the quality control unit to modify the process and/
or initiate an investigation into its cause. Of course, the ‘‘aberrant’’ value may be due
only to chance. If so, subsequent means should fall close to the process average as expected.
In some circumstances, one may wisely make an observation on a new subgroup before
the scheduled time, in order to verify the initial result. If two successive averages are
outside the acceptable limits, chances are extremely high that a problem exists. An investi-
gation to detect the cause and make a correction may then be initiated.

The procedure for constructing control charts will be illustrated using data on tablet
weights as shown in Table 12.1 and Fig. 12.2. Note that the X̄ chart consists of an ‘‘aver-
age’’ or ‘‘standard’’ line along with upper and lower lines which represent the action
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Table 12.1 Tablet Weights and Ranges from a Tablet
Manufacturing Processa

Date Time Mean, X̄ Range

3/1 11 a.m. 302.4 16
12 p.m. 298.4 13

1 p.m. 300.2 10
2 p.m. 299.0 9

3/5 11 a.m. 300.4 13
12 p.m. 302.4 5

1 p.m. 300.3 12
2 p.m. 299.0 17

3/9 11 a.m. 300.8 18
12 p.m. 301.5 6

1 p.m. 301.6 7
2 p.m. 301.3 8

3/11 11 a.m. 301.7 12
12 p.m. 303.0 9

1 p.m. 300.5 9
2 p.m. 299.3 11

3/16 11 a.m. 300.0 13
12 p.m. 299.1 8

1 p.m. 300.1 8
2 p.m. 303.5 10

3/22 11 a.m. 297.2 14
12 p.m. 296.2 9

1 p.m. 297.4 11
2 p.m. 296.0 12

a Data are the average and range of 10 tablets.

lines. The average line may be determined from the history of the product, with regular
updating, or may be determined from the product specifications. In this example, the
average line is defined by the quality control specifications (standards) for this product,
a target value of 300 mg. The action lines are constructed to represent 	3 standard
deviations from the target value. This is also known as ‘‘3� limits.’’ Observations that
lie outside these limits are a cause for action. Adjustments or other corrective action should
not be implemented if the averages are within the action limits. Tampering with equipment
and/or changing other established procedures while the process remains within limits
should be avoided. Such interference will often result in increased variation.

In order to establish the upper and lower limits for the mean (X̄), we need an estimate
of the standard deviation, if it is not previously known. The standard deviation can be
obtained from the replicates (10 tablets) of the subgroup samples which generate the means
for the control chart. By pooling the variability from many subgroups (N � 10), a very
good estimate of the true standard deviation, �, can be obtained (see App. I). Note that
an estimate of the standard deviation or range is needed before limits for the X̄ chart can
be established. If a ‘‘range’’ chart is used in conjunction with the X̄ chart, the upper and
lower limits for the X̄ chart can be obtained from the range according to Table IV.10
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Figure 12.2 Control chart for tablet averages and range data from Table 12.1.

(column A). These factors are derived from theoretical calculations relating the range and
standard deviation. For example, in the long run, the range can be shown to be equal to
3.078 times the standard deviation for samples of size 10. If we wish to establish 3� limits
about the mean of samples of size 10 (3�/�10) using the range, the following relationship

leads to the value 0.31 in Table IV.10 (see column A):

X X
R

X R± = ± = ±3

10

3

3 078 10
0 31

σ ( )

( . )
.

R̄/3.078 is the average range divided by 3.078 which on the average is equal to �. Thus,
if the average range is 12 for samples of size 10, the upper and lower control chart limits
for X̄ are
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(12.1)X R X X± = ± = ±0 31 0 31 12 3 72. . ( ) .

Note that the average range is simply the usual average of the range values, obtained in
a manner similar to that for calculating the process average. Ranges obtained during the
control charting process are averaged and updated as appropriate.

Table IV.10 also has factors for upper and lower limits for a range chart. The values
in columns DL and DU are multiplied times the average range to obtain the lower and
upper limits for the range. Usually, a range that exceeds the upper limit is a cause for
action. A small value of the range shows good precision and may be disregarded in many
situations. In the present example, the average range is set equal to 12 based on previous
experience. For samples of size 10, DL and DU are 0.22 and 1.78, respectively. Therefore,
the lower and upper limits for the range are

(12.2)
Lower limit

Upper limit

: . .

: . .

0 22 12 2 6

1 78 12 21 3

× =
× =

These limits are shown in the control chart for the range in Fig. 12.2. See Fig. 12.1 for
another example of a Range chart. Ordinarily, the sample size should be kept constant.
If sample size varies from time to time, the limits for the control chart will change according
to the sample size. If the sample sizes do not vary greatly, one solution to this problem
is use an average sample size [9].

Having established the mean and the average range, the process is considered to be
under control as long as the average and range of the subgroup samples fall within the
lower and upper limits. If either the mean or range of a sample falls outside the limits, a
possible ‘‘assignable’’ cause is suspected. The reason for the deviation should be investi-
gated and identified, if possible. One should appreciate that a process can change in such
a way that (a) only the average is affected, (b) only the variability is affected, or (c) both
the average and variability are affected. These possibilities are illustrated in Fig. 12.3.

Figure 12.3 Representation of possible process changes as may be detected in a control
chart procedure.
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In the example of tablet weights, one might consider the following as possible causes
for the results shown in Fig. 12.3. A change in average weight may be caused by a
misadjustment of the tablet press. Increased variability may be due to some malfunction
of one or more punches. Since 10 consecutive tablets are taken for measurement, if one
punch gives very low weight tablets, for example, a large variability would result. A
combination of lower weight and increased variability probably would be quickly detected
if half of the punches were sticking in a random manner. Under these circumstances, the
average (X̄) would be substantially reduced and the range would be substantially increased
relative to the values expected under statistical control.

The control charts shown in Fig. 12.2 are typical. For the X̄ chart, the mean was taken
as 300 mg based on the target value as set out in the quality control standards. The upper
and lower action limits were calculated on the basis of an average range of 12 and factor
A in Table IV.10. The lower and upper action limits are 300 	 3.72 mg or approximately
296.3 to 303.7 mg, respectively. The process is out of control during the production of
the batch produced on 3/22. This will be discussed further below. The range control chart
shows that the process is in control with respect to this variable.

When the standard deviation rather than the range is computed for purposes of con-
structing control charts, the factors for calculating the limits for the X̄ chart are different.
The variability is monitored via a chart of the standard deviation of the subgroup rather
than the range. Factors for setting limits for both X̄ charts and ‘‘sigma’’ (standard deviation)
charts may be found in Ref. 1.

If an outlying observation (X̄, R) is eliminated because an assignable cause has been
found, that observation should be eliminated from future updating of the X̄ and R charts.

12.2.3 Between-Batch Variation as a Measure of Variability (Moving
Averages)

The discussion of control charts above dealt with a system that is represented by a regular
schedule of production batches. The action limits for X̄ were computed using the ‘‘within’’-
batch variation as measured by the variability between items in a ‘‘rational subgroup.’’
The subgroup consists of a group of tablets manufactured under very similar conditions.
For the manufacture of unit dosage forms with inherent heterogeneity, such as tablets,
attempts to construct control charts which include different batches, based on within
subgroup variation, may lead to apparently excessive product failure and frustration. Some-
times, this unfortunate situation may result in the discontinuation of the use of control
charts as an impractical statistical device. However, the nature of the manufacture of a
heterogeneous mixture, such as the bulk granulations used for manufacturing tablets, lends
itself to new sources of uncontrolled error. This error resides in the variability due to the
different (uncontrolled) conditions under which different tablet batches are manufactured.
One would be hard put to describe exactly why batch-to-batch differences should exist,
or to identify the sources of these differences. Perhaps the dies and punches of the tablet
press are subject to wear and erosion. Perhaps a new employee involved in the manufactur-
ing process performs the job in a slightly different manner from his or her predecessor.
Whatever the reason, such interbatch variation may exist.* In these cases, the within-

* Process validation investigates and identifies such variation.
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subgroup variation underestimates the variation, and many readings will appear out of
control. This is exemplified by the last batch in Table 12.1 and Fig. 12.2.

Thus, when significant interbatch variation exists, the usual control chart will lead to
many batches being out of control. If the cause of this variation cannot be identified or
controlled, and the product consistently passes the official quality control specifications,
other methods than the usual control chart may be used to monitor the process.

Use of the ‘‘Control Chart for Individuals’’ [1,9] seems to be one reasonable approach
to monitoring such processes. The limits for the X̄ chart are based on a moving range
using two consecutive samples (see Table 12.2). For example, the first value for the two-
batch moving range is the range of batches 1 and 2 � 1.1 (399.5–398.4). The second
moving range is 399.5–398.8 � 0.7, etc. The average moving range is 1.507. The average
tablet weight of the 30 batches is 400.01. The average range is based on samples of 2.
To estimate the standard deviation from the average range of samples of size 2, it can be
shown that we should divide the average range by 1.128 (Table IV.10). The 3 sigma limits
are X̄ 	 3(R̄/1.128) � 400.01 	 3(1.507/1.128) � 400.01 	 4.01. The range chart has
an upper limit of 3.27(1.507) � 4.93. These charts are shown in Fig. 12.4. Batch 13 is
out of limits based on both the average and range charts.

Figure 12.4 Control charts for individuals from Table 12.2.
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The moving average method is another approach to construct control charts that can
be useful in the presence of inter-batch variation. In this method, we use only a single
mean value for each batch, ignoring the individual values within the subgroup, if they are
available. Thus the data consist of a series of means over many batches as shown in Table
12.2. A three-batch moving average consists of averaging the present batch with the two
immediately preceding batches. For example, starting with batch 3, the first value for the
moving average chart is

398 4 399 5 398 8

3
398 9

. . .
.

+ + =

The second value is (399.5 � 398.8 � 397.4)/3 � 398.6. The calculation is similar to
that used for the two-batch moving range in the example of the Control Chart for Individu-
als. The moving average values are plotted as in the ordinary control chart. Limits for the
control chart are established from the moving range, which is calculated in a similar
manner. The range of the present and the two immediately preceding batches is calculated
for each batch. The average of these ranges is R̄, the limits for the control chart are
computed from Table IV.10. The computations of the moving average and range for
samples of size 3 are shown in Table 12.2, and the data charted in Fig. 12.5. The average
weight was set at the targeted weight of 400 mg. The average moving range (from Table
12.2) is 2.35. The limits for the moving average chart are determined using the average
range and the factor from Table IV.10 for samples of size 3.

400 1 02 2 35 400 2 4± = ±. ( . ) .

All of the moving average values fall within the limits based on the average moving
range. In this analysis, the suspect batch number 13 is ‘‘smoothed’’ out when averaged
with its neighboring batches. The upper limit for the range chart is 2.57(2.35) � 6.04,
which would be cause to investigate the conditions under which batch number 13 was
produced (see Table 12.2). For further details of the construction and interpretation of
moving average charts, see Refs. 1 and 3.

Another approach to the problem of between batch variation is the difference chart.
A good standard lot is set aside as the control. Each production lot is compared to the

Figure 12.5 Moving average plot for tablet weight means from Table 12.2.
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Table 12.2 Average Weight of 50 Tablets from 30 Batches of a Tablet Product:
Example of the Moving Average

Batch Batch Two-batch Three-batch Three-batch
average (mg) moving range moving average moving range

1 398.4 — — —
2 399.5 1.1 — —
3 398.8 0.7 398.9 1.1
4 397.4 1.4 398.6 2.1
5 402.7 5.3 399.6 5.3
6 400.5 2.2 400.2 5.3
7 401.0 0.5 401.4 2.2
8 398.5 2.5 400.0 2.5
9 399.5 1.0 399.7 2.5

10 400.1 0.6 399.4 1.6
11 399.0 1.1 399.5 1.1
12 401.7 2.7 400.3 2.7
13 395.4 6.3 398.7 6.3
14 400.7 5.3 399.3 6.3
15 401.6 0.9 399.2 6.2
16 401.4 0.2 401.2 0.9
17 401.5 0.1 401.5 0.2
18 400.4 1.1 401.1 1.1
19 401.0 0.6 401.0 1.1
20 402.1 1.1 401.2 1.7
21 400.9 1.2 401.3 1.2
22 400.8 0.1 401.3 1.3
23 401.5 0.7 401.1 0.7
24 398.6 2.9 400.3 2.9
25 398.4 0.2 399.5 3.1
26 398.8 0.4 398.6 0.4
27 399.9 1.1 399.0 1.5
28 400.9 1.0 399.9 2.1
29 399.9 1.0 400.2 1.0
30 399.5 0.4 400.1 1.4

standard lot by taking samples of each. Both the control and production lots are measured
and the difference of the means is plotted. The limits are computed as

0
3 2 2± +
n

S Sc p

where S 2
e and S 2

e are the estimates of the variances of the control and production lots,
respectively.

12.2.4 Quality Control Charts in Research and Development

Control charts may be advantageously conceived and used during assay development and
validation, in preliminary research or formulation studies, and in routine pharmacological
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screening procedures. During the development of assay methodology and validation, for
example, by keeping records of assay results, an initial estimate of the assay standard
deviation is available. The initial estimate can then be updated as data accumulate.

The following example shows the usefulness of control charts for control measure-
ments in a drug screening procedure. This test for screening potential anti-inflammatory
drugs measures improvement of inflammation (guinea pig paw volume) by test compounds
compared to a control treatment. A control chart was established to monitor the perfor-
mance of the control drug (a) to establish the mean and variability of the control, and (b)
to ensure that the results of the control for a given experiment are within reasonable limits
(a validation of the assay procedure). The average paw volume difference (paw volume
before treatment – paw volume after treatment) and the average range for a series of
experiments are shown in Table 12.3. The control chart is shown in Fig. 12.6.

As in the control charts for quality control, the mean and average range of the ‘‘pro-
cess’’ were calculated from previous experiments. In this example, the screen had been
run 20 times previous to the data of Table 12.3. These initial data showed a mean paw
volume difference of 40 and a mean range (R̄) of 9, which were used to construct the
control charts shown in Fig. 12.6. The subgroups consist of 4 animals each. Using Table
IV.10, the action limits for the X̄ and range charts were calculated as follows:

X R X

R

± = ± =
= =

0 73 40 0 73 9 33 4

2 28 9 2 28 20

. . ( ) . )

( . ) ( . ) .

to 46.6 ( chart

55 the upper limit for the range

Table 12.3 Average Paw Volume Difference
and Range for a Screening Procedure (Four
Guinea Pigs per Test Group)

Test number Mean Range

1 38 4
2 43 3
3 34 3
4 48 6
5 38 24
6 45 4
7 49 5
8 32 9
9 48 5

10 34 8
11 28 12
12 41 10
13 40 22
14 34 5
15 37 4
16 43 14
17 37 6
18 45 8
19 32 7
20 42 13
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Figure 12.6 Control chart for means and range for control group in a pharmacological
screening procedure.

Note that the lower limit for the range of subgroups consisting of four units is zero. Six
of the twenty means are out of limits. Efforts to find a cause for the larger inter-test
variation failed. The procedures were standardized and followed carefully, and the animals
appeared to be homogeneous. Because different shipments of animals were needed to
proceed with these tests over time, the researchers felt that there was no way to ‘‘tighten
up’’ the procedure. Therefore, as in the tablet weight example discussed in the preceding
section, a new control chart was prepared based on the variability between test means. A
moving average was recommended using four successive averages. Based on historical
data, X̄ was calculated as 39.7 with an average moving range of 12.5. The limits for the
moving average graph are

39 7 0 73 12 5 30 6. . ( . ) .± = to 48.8

The factor 0.73 is obtained from Table IV.10 for subgroup samples of size 4.

12.2.5 Control Charts for Proportions

Table 12.4 shows quality control data for the inspection of tablets where the measurement
is an attribute, a binomial variable. Three hundred tablets are inspected each hour to detect
various problems, such as specks, chips, color uniformity, logo, and so on. For this exam-
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Table 12.4 Proportion of  Chipped Tablets of 300 Inspected During Tablet
Manufacture

Time

Batch 10 a.m. 11 a.m. 12 p.m. 1 p.m.

1 0.060 0.053 0.087 0.055
2 0.073 0.047 0.060 0.047
3 0.040 0.067 0.033 0.053
4 0.033 0.040 0.030 0.027
5 0.040 0.013 0.023 0.040
6 0.025 0.000 0.027 0.013

ple, the defect under consideration is a chipped tablet. According to quality control specifi-
cations, this type of defect is considered of minor importance and an average of 5%
chipped tablets is tolerable. This problem of chipped tablets was of recent origin, and the
control chart was implemented as an aid to the manufacturing and research and develop-
ment departments, who were looking into the cause of this defect. In fact, the 5% average
had been written into the specifications as a result of the persistent appearance of the
chipped tablets in recent batches. The data in Table 12.4 represent the first six batches
where this attribute was monitored.

For the control chart, 5% defects was set as the average value. The action limits can
be calculated from the standard deviation of a binomial. In this example, where 300 tablets
were inspected, N � 300, p � 0.05, and q � 0.95 [ � � �pq/N, Eq. (3.11)].

σ = =( . )( . )
.

0 05 0 95

300
0 0126

The limits are 0.05 	 3� � 0.05 	 3(0.0126) � 0.012 to 0.088. Proportions below the
lower limit indicate an improvement in the process in this example. Note that we can use
the normal approximation to the binomial when calculating the 3� limits, because both
Np and Nq are greater than 5 (see Sec. 3.4.3). The control chart is shown in Fig. 12.7..

Figure 12.7 Control chart for proportion of tablets chipped.
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The chart clearly shows a trend with time toward less chipping. The problem seems to
be lessening. Although no specific cause was found for this problem, increased awareness
of the problem among manufacturing personnel may have resulted in more care during
the tableting process.

12.2.6 Runs in Control Charts

The most important feature of the control chart is the monitoring of a process based on
the average and control limits. In addition, control charts are useful as an aid in detecting
trends that could be indicative of a lack of control. This is most easily seen as a long
consecutive series of values that are within the control limits but (a) stay above (or below)
the average or (b) show a steady increase (or decline). Statistically, such occurrences are
described as ‘‘runs.’’ For example, a run of 7 successive values that lie above the average
constitutes a run of size 7. Such an event is probably not random because if the observed
values are from a symmetric distribution and represent random variation about a common
mean, the probability of 7 successive values being above the mean is (1/2)7 � 1/128. In
fact, the occurrence of such an event is considered to be suggestive of a trend and the
process should be carefully watched or investigated.

In general, when looking for runs in a long series of data, the problem is that significant
runs will be observed by chance when the process is under control. Nevertheless, with
this understanding, it is useful to examine data to be forewarned of the possibility of trends
and potential problems. The test for the number of runs above and below the median of
a consecutive series of data is described in Chapter 15, Sec. 15.7. For the consecutive
values 9.54, 9.63, 9.42, 9.86, 9.40, 9.31, 9.79, 9.56, 9.2, 9.8, and 10.1, the median is 9.56.
The number of runs above and below the median is 8. According to Table IV.14, this is
not an improbable event at the 5% level. If the consecutive values observed were 9.63,
9.86, 9.79, 9.8, 10.1, 9.56, 9.54, 9.42, 9.40, 9.31, and 9.2, the median is till 9.56, but the
number of runs is 2. This shows a significant lack of randomness (p � 0.05). Also see
Exercise Problem 12.

Duncan [9] describes a runs test that looks at the longest run occurring above or below
the median. The longest run is compared to the values in Table IV.15. If the longest run
is equal to or greater than the table value, the data is considered to be non-random. For
the data of Table 12.1, starting with the data on the date 3/5 (ignore the data on 3/1 for
this example), the median is 300.35. The longest run is 7. There are 7 consecutive values
above the median starting at 11 a.m. on 3/9. For N � 20, the table value in Table IV.15
is 7, and the data is considered to be significantly non-random (p � 0.05). Note that this
test allows a decision of lack of control at the 5% level if a run of 7 is observed in a
sequence of 20 observations.

For other examples of the application of the runs test, see Reference 9. Also see Sec.
15.7 and Exercise Problem 11 in Chapter 15.

In addition to the aforementioned criteria, i.e., a point outside the control limits, a
significant number of runs, or a single run of sufficient length, other rules of thumb have
been suggested to detect lack of control. For example, a run of 2 or 3 outside the 2� limits
but within the 3� limits, and runs of 4 or 5 between 1� and 2� limits can be considered
cause for concern.

Cumulative sum control charts (cusum charts) are more sensitive to process changes.
However, the implementation, construction, and theory of cusum charts are more complex
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than the usual Shewhart control chart. Reference 10 gives a detailed explanation of the
use of these control charts.

For more examples of the use of control charts, see Chapter 13, Validation.

12.3 ACCEPTANCE SAMPLING AND OPERATING
CHARACTERISTIC CURVES

Finished products or raw materials (including packaging components) which appear as
separate units are inspected or analyzed before release for manufacturing purposes or
commercial sale. The sampling and analytical procedures are specified in official standards
or compendia (e.g., the USP), or in in-house quality control standards. The quality control
procedure known as acceptance sampling specifies that a number of items be selected
according to a scheduled sampling plan, and be inspected for attributes or quantitatively
analyzed. The chief purpose of acceptance sampling is to make a decision regarding the
acceptability of the material. Therefore, based on the inspection, a decision is made, such
as ‘‘the material or lot is either accepted or rejected.’’ Sampling plans for variables (quanti-
tative measurements such as chemical analyses for potency) and attributes (qualitative
inspection) are presented in detail in the U.S. government documents MIL-STD-414 and
MIL-STD-105E, respectively [2,3].

A single sampling plan for attributes is one in which N items are selected at random
from the population of such items. Each item is classified as defective or not defective
with respect to the presence or absence of the attribute(s). If the sample size is small
relative to the population size, this is a binomial process, and the properties of sampling
plans for attributes can be derived using the binomial distribution. For example, consider
the inspection of finished bottles of tablets for the presence of an intact seal. This is a
binomial event; the seal is either intact or it is not intact. The sampling plan states the
number of units to be inspected and the number of defects which, if found in the sample,
leads to rejection of the lot. A typical plan may call for inspection of 100 items; if two
or more are defective, reject the lot (batch). If one or less are defective, accept the lot.
(The acceptance number is equal to one.) Theoretically, ‘‘100% inspection’’ will separate
the good and defective items (seals in our example). In the absence of 100% inspection,
there is no guarantee that the lot will have 0% (or any specified percentage) defects. Thus
underlying any sampling plan are two kinds of risks:

1. The producer’s or manufacturer’s risk. This is the risk or probability of rejecting
(not releasing) the product, although it is really good. By ‘‘good’’ we mean that
had we inspected every item, the batch would meet the criteria for release or
acceptance. This risk reflects an unusually high number of defects appearing in
the sample taken for inspection, by chance. The producer’s risk can be likened
to the � error, that is, rejecting the batch, even though it is good.

2. The consumer’s risk. This is the probability that the product is considered accept-
able (released), although, in truth, it would not be acceptable were it 100% in-
spected. The consumer’s risk can be likened to the 	 error, that is, the batch is
accepted even though it has a more than acceptable number of defects.

There are any number of possible plans which, in addition to economic considerations,
depend on:
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1. The number of items sampled
2. The producer’s risk
3. The consumer’s risk

MIL-STD-105E is an excellent compilation of such plans [3]. Each plan gives the number
of items to be inspected, and the number of defects in the sample needed to cause rejection
of the lot. Each plan is accompanied by an operating characteristic (OC) curve. The OC
curve shows the probability of accepting a lot based on the sampling plan specifications,
given the true proportion of defects in the lot. A typical OC curve is shown in Fig. 12.8.

The OC curve is a form of power curve (see Sec. 6.5). The OC curve in Fig. 12.8 is
derived from a sampling plan (plan N from MIL-STD-105E) in which 500 items (bottles)
are inspected from a lot that contains 30,000 items. If 11 or more items inspected are
found to be defective, the lot is rejected. Inspection of Fig. 12.8 shows that if the batch
truly has 1% defects, the probability of accepting the lot is close to 99% when plan N is
implemented. This plan is said to have an acceptable quality level (AQL) of 1%. An AQL
of 1% means that the consumer will accept most of the product manufactured by the
supplier if the level of defects is not greater than 1%, the specified AQL (i.e., 1%). In
this example, with the AQL equal to approximately 1%, about 99% of the batches will
pass this plan if the percent defects is 1% or less.

The plan actually chosen for a particular product and a particular attribute depends
on the lot size and the nature of the attribute. If the presence (or absence) of an attribute
(such as the integrity of a seal) is critical, then a stringent plan (a low AQL) should be
adopted. If a defect is considered of minor importance, inspection for the presence of a
defect can make use of a less stringent plan. MIL-STD-105E describes various plans for
different lot (population) sizes, which range from less stringent for minor defects to more
stringent for critical defects. These are known as levels of inspection, level I, II, or III.
This document also includes criteria for contingencies for switching to more or less tight
plans depending on results of prior inspection. A history of poor quality will result in a
more stringent sampling plan and vice versa. If 2 of 2, 3, 4 or 5 consecutive lots are

Figure 12.8 Operating characteristic curve for sampling plan N: sample 500 items—ac-
cept if 10 or less defective.
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Figure 12.9 Operating characteristic curve for plan N: AQL � 0.025%.

rejected, the normal plan is switched to the tightened plan. If 5 consecutive lots are accepted
under the tightened plan, the normal plan is reinstated. If quality remains very good,
reduced plans may be administered as described in MIL-STD-105E. The characteristics
of the plan are defined by the AQL and the OC curve. For example, for lot sizes of 10,001
to 35,000, the following are two of the possible plans recommended by MIL-STD-105E:

Reject numbera if AQL �

Plan Sample size 0.4% 1%

K 125 2 4
N 500 6 11

a Reject the lot if the number of defects (or more) are observed.

Plan N is a more ‘‘discriminating’’ plan than plan K. The larger sample size results in a
greater probability of rejecting lots with more than AQL percentage of defects. For plan
N, if there are 2% defects in the lot, the lot will be accepted approximately 57% of the
time. For plan K, with 2% defects in the lot, the lot will be accepted 75% of the time.
(See MIL-STD-105E [3] for OC curves. The OC curve for an AQL of 1% for plan N is
shown in Fig. 12.8.)

In the present example, a defective seal is considered a critical defect and plan N will
be implemented with an AQL of 0.025%. This means that lots with 0.025% (25 defects
per 100,000 bottles) are considered acceptable. According to MIL-STD-105E, if one or
more defects are found in a sample of 500 bottles, the lot is rejected.* This means that
the lot is passed only if all 500 bottles are good. The OC curve for this plan is shown in
Fig. 12.9.

* If the result of inspection calls for rejection, 100% inspection is a feasible alternative to rejection.
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The calculations of the probabilities needed to construct the OC curve are not very
difficult. These calculations have been presented in the discussion of the binomial distribu-
tion in Chapter 3. As an illustration we will calculate the probability of rejecting a lot
using plan N with an AQL of 0.025%. As noted above, the lot will be rejected if one or
more defects are observed in a sample of 500 items. Thus the probability of accepting a
lot with 0.025% defects is the probability of observing zero defects in a sample of 500.
This probability can be calculated from Eq. (3.9).

N

X
p q p qX N X







 = 







 = =− 500

0
0 00025 0 99975 0 80 500 0 500( . ) ( . ) . 88

where 500 is the sample size, p the probability of a defect (0.00025), and q the probability
of observing a bottle with an intact seal (0.99975). Thus, using this plan, lots with 0.025%
defects will be passed 88% of the time. A lot with 0.4% (4 defects per 1000 items) will
be accepted with a probability of

500

0
0 004 0 996 0 13 130 500







 =( . ) ( . ) . ( %)i.e.,

Copies of Sampling Plans K and N from MIL-STD-105E are shown in Tables 12.5
and 12.6.

In addition to the sampling plans discussed above, MIL-STD-105E also presents
multiple sampling plans. These plans use less inspection than single sampling plans, on
the average. After the first sampling, one of three decisions may be made:

1. Reject the lot
2. Accept the lot
3. Take another sample

In a double-sampling plan, if a second sample is necessary, the final decision of acceptance
or rejection is based on the outcome of the second sample inspection.

The theory underlying acceptance sampling for variables is considerably more com-
plex than that for sampling for attributes. In these schemes, actual measurements are taken,
such as assay results, dimensions of tablets, weights of tablets, measurement of containers,
and so on. Measurements are usually more time consuming and more expensive than
the observation of a binomial attribute. However, quantitative measurements are usually
considerably less variable. Thus there is a trade-off between expense and inconvenience,
and precision. Many times, there is no choice. Official procedures may specify the type
of measurement. Readers interested in plans for variable measurements are referred to
MIL-STD-414 [2] and the book, ‘‘Quality Control and Industrial Statistics’’ [9] for details.

12.4 STATISTICAL PROCEDURES IN ASSAY DEVELOPMENT

Statistics can play an important role in assisting the analytical chemist in the development
of assay procedures. A subcommittee of PMA (Pharmaceutical Manufacturers Association)
statisticians developed a comprehensive scheme for documenting and verifying the equiva-
lence of alternative assay procedures to a standard [4]. The procedure is called the
Greenbriar procedure (named after the location where the scheme was developed). This
approach includes a statistical design which identifies sources of variation such as that due
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to different days and different analysts. The design also includes a range of concentration of
drug. The Greenbriar document emphasizes the importance of a thoughtful experimental
design in assay development, a design that will yield data to answer questions raised in
the study objectives. The procedure is too detailed to present here. However, for those
who are interested, it would be a good exercise to review this document, a good learning
experience in statistical application.

For those readers interested in pursuing statistical applications in assay and analytical
development, two books, Statistical Methods for Chemists by Youden [5] and The Statisti-
cal Analysis of Experimental Data, by Mandel [6], are recommended. Both of these statisti-
cians had long tenures with the National Bureau of Standards.

In this book we have presented some applications of regression analysis in analytical
methodology (see Chapters 7 and 13). Here we will discuss the application of sample
designs to identify and quantify factors that contribute to assay variability (components
of variance).

**12.4.1 Components of Variance

During the discussion of the one-way ANOVA design (Sec. 8.1), we noted that the ‘‘be-
tween-treatment mean square’’ is a variance estimate which is composed of two different
(and independent) variances: (a) that due to variability among units within a treatment
group, and (b) that due to variability due to differences between treatment groups. If
treatments are, indeed, identical, the ANOVA calculations are such that observed differ-
ences between treatment means will probably be accounted for by the within-treatment
variation. In the ANOVA table, the ratio of the between-treatment mean square to the
within-treatment mean square (F � BMS/WMS) will be approximately equal to 1 on the
average when treatments are identical.

In certain situations (particularly when treatments are a random effect), one may be
less interested in a statistical test of treatment differences, but more interested in separately
estimating the variability due to different treatment groups and the variability within
treatment groups. We will consider an example of a quality control procedure for the assay
of finished tablets. Here we wish to characterize the assay procedure by estimating the
sources of variation that make up the variability of the analytical results performed on
different, distinct tablets. This variability is composed of two parts: (a) that due to analytical
error, and (b) that due to tablet heterogeneity. A oneway ANOVA design such as that

** A more advanced topic.
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Table 12.7 Design to Analyze Components of Variance for the Tablet Assay

Tablets (treatment groups)

1 2 3 4 5 6 7 8 9 10

Assay 48 49 49 55 48 54 45 47 53 50
Results 51 50 52 55 47 52 49 49 50 51

Mean 49.5 49.5 50.5 55 47.5 53 47 48 51.5 50.5
Grand average � 50.2

shown in Table 12.7 will yield data to answer this objective. In the example shown in the
table, 10 tablets are each analyzed in duplicate. Duplicate determinations were obtained
by grinding each tablet separately, and then weighing two portions of the ground mixture
for assay. The manner in which replicates (duplicates, in this example) are obtained is
important, not only in the present situation, but in most examples of statistical designs.
Here we can readily appreciate that analytical error, the variability due to the analytical
procedure only, is represented by differences in the analytical results of the two ‘‘identical’’
portions of a homogeneously ground tablet. This variability is represented by the ‘‘within’’
error in the ANOVA table shown in Table 12.8. The ‘‘within’’ mean square is the pooled
variance within treatment groups, where a group, in this example, is a single tablet.

The between-tablet mean square is an estimate of both assay (analytical error) and
the variability of drug content in different tablets (tablet heterogeneity) as noted above.
If tablets were identical, individual tablet assays would not be the same because of analyti-
cal error. In reality, in addition to analytical error, the drug assay is variable due to the
inherent heterogeneity of such dosage forms. Variability between tablet assays is larger
than that which can be accounted for by analytical error alone. This is the basis for the
F test in the ANOVA [(between mean square)/(within mean square)]. Large differences
in the drug content of different tablets result in a large value of the between-tablet mean
square. This concept is illustrated in Fig. 12.10, which shows an example of the distribution
of actual drug content in a theoretical batch of tablets. The distribution of tablet assays
is more spread out than the drug content distribution, because the variation based on the
assay results of the different tablets include components due to actual drug content varia-
tion plus assay error.

Based on the theoretical model for the one-way ANOVA, Sec. 8.1 (random model),
it can be shown that the between mean square is a combination of the assay error and
tablet variability as follows:

Table 12.8 Analysis of Variance for the Tablet Assay Data
from Table 12.7

Source d.f. SS MS

Between tablets 9 112.2 12.47
Within tablets 10 27.0 2.70
Total 19 139.2
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Figure 12.10 Distribution of actual drug content compared to distribution of analytical
results of tablets (these are theoretical, hypothetical distributions).

(12.3)BMS : n T Wσ σ2 2+

where n is the number of replicates in the design (based on equal replication in each group,
two assays per tablet in our example), � 2

T the variance due to tablet drug content heterogene-
ity, and � 2

W is the within-treatment (assay) variance. In our example, n � 2, and the
between mean square is an estimate of � 2

T � � 2
W. The within-tablet mean square is an

estimate of � 2
W, equal to 2.70 (Table 12.8). The estimate of � 2

T from Eq. (12.3) is
(BMS � � 2

W)/n:

Estimate of 
betweeen MSσT

2 2 70

2

12 47 2 70

2
4 9= − = − =. . .
.

In this manner we have estimated the two components of the between-treatment mean
square term: � 2

W � 2.7 and � 2
T � 4.9.

The purpose of the experiment above, in addition to estimating the components of
variance, would often include an estimation of the overall average of drug content based
on the 20 assays (Table 12.7). The average assay result is 50.2 mg. The estimates of the
variance components can be used to estimate the variance of an average assay result,
consisting of m tablets with n assay replicates per tablet. We use the fact that the variance
of an average is equal to the variance divided by N, where N is equal to mn, the total
number of observations. According to Eq. (12.3), the variance of the average result can
be shown to be equal to

(12.4)
n

m n
T Wσ σ2 2+

The variance estimate of the average assay result (50.2) for the data in Table 12.7, where
m � 10 and n � 2, is

2 4 9 2 7

10 2
0 62

( . ) .

( )
.

+ =
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Note that this result is exactly equal to the between mean square divided by 20.
According to Eq. (12.4), the variance of single assays performed on two separate

tablets, for example, is equal to (m � 2, n � 1)

4 9 2 7

2
3 8

. .
.

+ =

Note that the variance of a single assay of a single tablet is � 2
T � � 2

W. Similarly, the
variance of the average of two assays performed on a single tablet (m � 1, n � 2) is
(2� 2

T � � 2
W)/2 (see Exercise Problem 11). The former method, where two tablets were

each assayed once, has greater precision than duplicate assays on a single tablet. Given
the same number of assays, the procedure that uses more tablets will always have better
precision. The ‘‘best’’ combination of the number of tablets and replicate assays will
depend on the particular circumstances, and includes time and cost factors. In some situa-
tions, it may be expensive or difficult to obtain the experimental material (e.g., obtaining
patients in a clinical trial). Sometimes, the actual observation may be easily obtained, but
the procedure to prepare the material for observation may be costly or time consuming.
In the case of tablet assays, it is conceivable that the grinding of the tablets, dissolving,
filtration, and other preliminary treatment of the sample for assay might be more expensive
than the assay itself (perhaps automated). In such a case, replicate assays on ground
material may be less costly than assaying separate tablets, where each tablet must be
crushed and ground, dissolved, and filtered prior to assay. However, such situations are
exceptions. Usually, in terms of precision, it is cost effective to average results obtained
from different tablets.

The final choice of how many tablets to use and the total number of assays will
probably be a compromise depending on the precision desired and cost constraints. The
same precision can be obtained by assaying different combinations of numbers of tablets
(m) with different numbers of replicate determinations (n) on each tablet. Time-cost consid-
erations can help make the choice. Suppose that we have decided that a sufficient number
of assays should be performed so that the variance of the average result is equal to approxi-
mately 1.5. In our example, where the variance estimates are S 2

T � 4.9 and S 2
W � 2.7,

the average of five single-tablet assays would satisfy this requirement:

SX
2 4 9 2 7

5
1 52

. .
.

+ ==

As noted above, the variance of a single-tablet assay is S 2
T � S 2

W. An alternative scheme
resulting in a similar variance of the mean result is to assay four tablets, each in duplicate
(m � 4, n � 2).

SX
2 2 4 9 2 7

8
1 56

( . ) .
.

+ ==

The latter alternative requires eight assays compared to five assays in the former scheme.
However, the latter method uses only four tablets compared to the five tablets in the former
procedure. The cost of a tablet would probably not be a major factor with regard to the
choice of the alternative procedures. In some cases, the cost of the item being analyzed
could be of major importance. In general, for tablet assays, in the presence of a large
assay variation, if the analytical procedure is automated and the preparation of the tablet
for assay is complex and costly, the procedure that uses less tablets with more replicate
assays per tablet could be the best choice.
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Table 12.9 Nested Design for Determination of Variance Components

Batch: A B C D

Tablet: 1 2 3 1 2 3 1 2 3 1 2 3

50.6 49.1 51.1 50.1 51.0 50.2 51.4 52.1 51.1 49.0 47.2 48.9
50.5 48.9 51.1 49.0 50.9 50.0 51.7 52.0 51.9 49.0 47.6 48.5
50.8 48.5 51.4 49.4 51.6 49.8 51.8 51.4 51.6 48.5 47.6 49.2

ANOVA
Source d.f. SS MS Expected MSa

Between batches 3 48.6875 16.229 �2
w � 3�2

T � 9�2
B

Between tablets 8 17.52 2.190 �2
w � 3�2

T

(within batches)
Between assays 24 2.50 0.104 �2

w

(within tablets)

a Coefficient for �2
T � replicate assays; coefficient for �2

B � replicate assays times the number of tablets per batch.

Nested Designs

Designs for the estimation of variance components often fall into a class called nested or
completely hierarchical designs. The example presented above can be extended if we were
also interested in ascertaining the variance due to differences in average drug content
between different batches of tablets. We are now concerned with estimating (a) between-
batch variability, (b) between-tablet (within batches) variability, and (c) assay variability.
Between-batch variability exists because, despite the fact that the target potency is the
same for all batches, the actual mean potency varies due to changing conditions during
the manufacture of different batches. This concept has been discussed under the topic of
control charts.

A design used to estimate the variance components, including batch variation, is
shown in Table 12.9 and Fig. 12.11. In this example, four batches are included in the
experiment, with three tablets selected from each batch (tablets nested in batches), and

Figure 12.11 A nested or completely hierarchical design to estimate variance compo-
nents (3 of 4 batches are shown).
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three replicate assays of each tablet (replicate assays nested in tablets). This design allows
the estimate of variability due to batch differences, tablet differences, and analytical error.
The calculations for the ANOVA will not be detailed (see Ref. 8) but the arithmetic is
straight forward and is analogous to the analysis in the previous example.

The mean squares (MS) calculated from the ANOVA estimate the true variances
indicated in the column ‘‘expected MS.’’ The coefficients of the variances from the ex-
pected mean squares and the estimates of the three ‘‘sources’’ of variation can be used
to estimate the components of variance. The variance components, � 2

B, � 2
T, and � 2

W may
be estimated as follows from the mean square and expected mean square columns in Table
12.9:

S

S S S

S S S S

W

W T T

W T B B

2

2 2 2

2 2 2 2

0 104

3 2 190 0 695

3 9 16 229 1

=

+ = =

+ + = =

.

. .

. .556

An estimate of the variance of single-tablet assays randomly performed within a single
batch is S 2

W � S 2
T � 0.799. If tablets are randomly selected from different batches, the

variance estimate of single-tablet assays is S 2
W � S 2

T � S 2
B � 2.36.

Nested designs should be symmetrical to be easily analyzed and interpreted. The
symmetry is reflected by the equal number of tablets from each batch, and the equal
number of replicates per tablet. Missing or lost data results in difficulties in estimating
the variance components.

12.5 ESTABLISHING IN-HOUSE LIMITS

An important consideration in establishing standards is to evaluate limits for release of
products. The two important kinds of release limits are ‘‘official’’ limits, such as stated
in the USP or in regulatory submissions, and ‘‘in-house’’ limits which are narrower than
the ‘‘official’’ limits. The purpose of in-house limits is to obtain a greater degree of
assurance that the true attributes of the product are within official limits when the product is
released. Thus, in-house limits decrease the consumer risk. If a product shows measurable
decomposition during its shelf life, the in-house release specifications must be more narrow
than the official limits to compensate for the product instability.

In the absence of instability, in-house limits should be sufficiently within the official
limits to ensure the integrity of the product considering the variability of the measurement
(assay). For the case of a homogeneous sample (e.g., solutions or a composite sample of
a solid dosage form), the variability of the assay may be accounted for by analytical error.
An important consideration is to use a proper estimate of the analytical variability. A
distinction should be made between within-day variability and between-day variability. For
this application, the variability of the analytical method should be estimated as between-day
variability. The reason for this is that the variability of an assay on any given day will be
dependent on assay conditions on that day, and is apt to be larger than the within-day
variability (differences among replicate assays on the same day). For solid dosage forms,
the variability of the final assay is a combination of analytical error and tablet heterogeneity
(that is, in the absence of analytical error, two separate samples will differ in drug content
due to the fact that perfect mixing is not possible in a powder mix). In this case, the estimate
of assay variability should not ignore these components of variance. (See discussion of
components of variance.)
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The examples below show the calculation for a lower limit for in-house release specifi-
cations, but the same reasoning will apply for an upper in-house release specification.

(12.5)
LRL Lower Official Limit

LRL Lower Release Specificatio

= + ×
=

t S

nn

For a 95% one-sided confidence interval, t is determined from a t table with d.f. based
on the estimate of the assay standard deviation, S. The standard deviation is obtained from
between-day replicates during assay development or from a standard product assayed on
different days. For tablets, the proper standard deviation should include tablet heterogene-
ity, i.e., replicate assays on different composites. A standard deviation estimated from
replicates done on the same day (sometimes estimated from control charts) is not the
correct standard deviation.

If, according to SOPs, the assay for release is done in duplicate, one might be tempted
to divide the last term in Eq. 12.5 by �2. This is not strictly correct because the duplicates

refer to within-day variability. If the duplicates were done on two separate days (an unlikely
procedure) and on separate composites, then the division by �2 would be more correct.

If replicates are used for the final assay, one could estimate the correct error if an estimate
of the within- and between-day components of variance (based on assay of different
composites) are available.

S S S ntotal between within
2 2 2= + /

where n � number of replicates (separate sets of composites). In this case, the number
of d.f. can be estimated using Saterthwaite’s (see below) approximation. An alternative
way of estimating the SD, if product heterogeneity is not a factor, is to perform replicate
determinations on a standard product over time and compute the standard deviation of the
average results. Some examples should clarify the procedure.

Example 1. Single assays on a portion of a cough syrup are performed as one of the
tests for the release of the product. The assay has a standard deviation of 2.1 based on
the results of the assay performed on a single stable batch on 15 different occasions (days).
From Table IV.4, the value of t with 14 d.f. for a one-sided 95% confidence interval is
1.76. If the official limits are 90%–110%, in-house limits of

90 1 76 2 1 93 7

110 1 76 2 1 106 3

% . . .

% . . .

+ × =
− × =

mean that if the assay falls within 93.7% and 106.3%, the probability that the true batch
mean is out of official specifications (90%–110%) is less than 5%.

Example 2. Single assays on a composite of 20 tablets are performed as one of the
tests for the release of a product. During development of the product and the assay, an
experimental batch of tablets was assayed on 20 different days (a different composite each
day). This assay was identical to the composite assay, a 20 tablet composite. The drug in
the dosage form is very stable. The standard deviation (19 d.f.) is 2.1. From Table IV.4,
the value of t with 19 d.f. for a one-sided 95% confidence interval is 1.73. If the official
limits are 90%–110%, the in-house limits are:

90 1 73 2 1 110 1 73 2 1

93 63 106 37

% . . % . .

. % . %

+ × − ×and

to 
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Example 3. Consider the situation in Example 2 where the assay is performed in
duplicate and the average result is reported as a basis for releasing the batch. The duplicate
determination is performed on two portions of the same 20 tablet composite on the same
day. The variability of the result is a combination of tablet content heterogeneity, and
within- and between-day assay variability. Since the same composite is assayed twice, the
variance is

(12.6)[ ] / [S S Stablet heterogeneity (assay) between (assay) wi
2 220 + + tthin

2 2] /

If one considers the first term to be small relative to the last 2 terms, the s.d. can be
computed with estimates of the within- and between-day variance components. These
estimates could be obtained from historical data, including data garnered during the assay
development. The important point to remember is that the computation is not straightfor-
ward because of the need to estimate variance components and the degrees of freedom
based on these estimates. Assuming that the between-day variance component of the assay
is 0, we could calculate the limits as follows:

Assume that the first two terms in Eq. 12.6 are small and that the assay variability
has been estimated based on 15 assays with s.d. � 2.1. The average of duplicate assays
on the same composite would have in-house limits of:

90 1 76 2 1 2 110 1 76 2 1 2

92 6

% . . / % . . /

.

+ × − × and 

to 107.4%

If the tablet variability, [S 2
tablet heterogeneity]/20, is large compared to assay variability

(probably a rare occurrence), performing duplicate assays on the same composite will not
yield much useful information. In this case, to get more precision, one can assay separate
20 tablet composites (See Exercise Problem 13 at the end of this chapter).

Allen et al., [10] discuss the setting of in-house limits when a product is susceptible
to degradation. This situation is complicated by the fact that the in-house limits must now
take into consideration an estimate of the rate of degradation with its variability, as well
as the variability due to the assay. Obviously, the in-house release limits should be within
the official limits. In particular, for the typical case where the slope of the degradation
plot is negative, we are concerned with the lower limit. If the official lower limit is 90%,
the in-house release limit should be greater than 90% by an amount equal to the estimated
amount of drug degraded during the shelf life plus another increment due to assay variabil-
ity. The following notation is somewhat different from Allen et al., but the equations are
otherwise identical. The lower release limit (LRL) can be calculated as shown in Eq.
(12.7).

(12.7)LRL OL DEGRAD= − + × +t S S nd a( / ) /2 2 1 2

OL � official lower limit
DEGRAD � predicted amount of degradation during shelf life � average slope of

stability regression lines � shelf life
S 2

d � variance of total degradation � shelf-life2 � S 2
slope

Note: Variance of slope � S 2
y
x/� (X � X̄)2

Var (k � variable) � k2 � S2 (variable) where k is a constant
S 2

a � variance of assay
Note: S 2

a is added because the assay performed at release is variable.
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Another problem in computing the LRL is computation of d.f. for the one-sided 95%
t distribution. The problem results from the fact that degrees of freedom are associated with
two variance estimates. When combining independent variance estimates, Satterthwaite
approximation can be used to estimate the d.f. associated with the combined variance
estimate (Eq. 12.8).

For the linear combination, L, where

L = + +a S a S1 1
2

2 2
2 …

the degrees of freedom for L are approximately

(12.8)Df
a S a S

a S v a S v1
1 1

2
2 2

2 2

1 1
2 2

1 2 2
2 2

2

= + +
+ +

( )

( ) / ( ) /

…

…

where vi is d.f. for variance i.
The following example (from Allen) illustrates the calculation for the release limits.

OL � 90%
Average slope � �0.20%/month
shelf life � 24 months
DEGRAD � �0.20 � 24 � �4.8%
Sa � 1.1%
Standard error of the slope � 0.03%
Sd � 0.03 � 24 � 0.72%
d.f. � 58
t � 1.67
n � 2 (duplicate assays)

If more than one lot is used for the computation, the lots should not be pooled without
a preliminary test. Otherwise, an average slope may be used. In the case of multiple lots,
the computations are not as straightforward as illustrated, and statistical assistance may
be necessary.

Note the precautions on the variance of duplicate assays as discussed above.

LRL = + + × +
=

90 4 8 1 67 0 72 1 1 2

96 6

2 2 1 2. . ( . . / )

. %

/

The lower release specification is set at 96.6%.

12.6 SOME STATISTICAL ASPECTS OF QUALITY AND THE ‘‘BARR
DECISION’’

The science of quality control is largely based on statistical principles, in part because we
take small samples and make inferences about the large population (e.g., a batch). Follow-
ing is a discussion of a few topics that illustrate some statistical ways of looking at data.

What is a good sample size? The FDA often seeks information on the rationale for
sample sizes in Standard Operating Procedures (SOPs). Are we taking enough samples?
How many samples should we use for analysis? Actually, this is not an easy question to
answer in many cases and that is why the question is asked so often. To answer this
question from a statistical point of view, one has to answer a few questions, not all of
them easy (Chapter 6). For example, we need an estimate of the standard deviation and
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definitions of alpha and beta levels for a given meaningful difference, if the data suggests
some comparison.

Often the sample size is fixed based on other considerations such as official specifica-
tions. Cost is a major consideration. As an example, consider the composite assay for
tablets as one of the QC release criteria. Twenty tablets are assayed to represent a million
or more tablets in many cases.

Is this sample large enough? The sample size needed to make such an estimate depends
on the precision (SD) of the data and the desired precision of the estimate in which we
are interested, the mean of the 20 tablets in this case. For the composite assay test, we
are required to assay at least 20 tablets. Suppose that tablet variability (RSD) as determined
from CU tests is about 3% and the analytical error (RSD) is 1%. Based on this information,
we can estimate the variability of the composite assay. The content uniformity variation
is due to tablet heterogeneity, which includes weight variation and potency variation, in
addition to analytical error.

S S S SContent  Uniformity weight potency analytical
2 2 2 2= + +

The tablet heterogeneity variance is the content uniformity variance less the analytical
variance.

S S S Spotency weight Content  Uniformity analytical
2 2 2 2 23+ = − = ( ) −− =( )1 82

We could even estimate the potency variation separately from weight variation if an
estimate of weight variation is available (from QC tests for example).

The variability of the average of 20 tablets (without analytical error) is:

Scomposite
2 8 20 0 4= =/ .

If we assay a mixture of 20 tablets, the variance including analytical error is:

S

S

2 0 4 1 1 4

1 18

= + =
=

. .

.

Do you think that the average of a randomly selected sample of twenty tablets gives
an accurate representation of the batch? We might answer this question by looking at a
confidence interval for the average content based on these data. Assume that the analytical
error is well established and, for this calculation, 9 d.f. (based on CU data) is reasonable
for the t value needed for the calculation of the confidence interval. If the observed compos-
ite assay is 99.3%, a 95% confidence interval for the true average is

99 3 2 262 1 18 96 6 102 0. % . . . .± × = to 

If this is not satisfactory (too wide), we could reduce the interval width by performing
replicate assays of the composite or, perhaps, by using more tablets in the composite. For
example, duplicate assays from a single composite may be calculated as follows:

S

S

2 0 4 1 2 0 9

0 95

= + =
=

. / .

.

Note that the assay variance is reduced by half, but the variance due to tablet heteroge-
neity is not changed because we are using the same composite. The confidence interval
for the duplicates is
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99 3 2 262 0 95 97 2 101 4. . . . % . %± × = to 

Using more than 20 tablets would decrease the CI slightly. If we used 40 tablets with
a single assay, the variance would be:

S2 8 40 1 1 2= + =/ .

and the CI would be 96.8 to 101.8.
When combining independent variance estimates, Satterthwaite Approximation can

be used to estimate the d.f. associated with the combined variance estimate. The formula
(Eq. 12.8) is presented in Sec. 12.5:

(12.8)Df
a S a S

a S v a S v1
1 1

2
2 2

2 2

1 1
2 2

1 2 2
2 2

2

= + +
+ +

( )

( ) / ( ) /

…

…

where vi is d.f. for variance i.
For example, suppose the estimates of variance have the degrees of freedom as follows:

S

S

S

analytical

weight

potency

with d.f.

with d.f.

wi

2

2

2

2 15

9 9

1

=

=

= tth d.f.6

The degrees of freedom for an estimate of content uniformity is based on the following
linear combination:

1 1 12 2 2× + × + ×S S Sanalytical weight potency

From Eq. 12.8,

DF = + + + + =( ) /( / / / ) .9 2 1 4 15 81 9 1 6 15 32

Estimating the d.f. using this approximation is less good for the differences of vari-
ances as compared to the sum of variances.

Example. Limits based on analytical variation are to be set for release of a product.
The lower limit is 90%. In-house limits are to be sufficiently above 90% so the probability
of an assay being below 90% is less than 0.05. Calculate the release limits where a single
assay is done on a composite of 20 tablets. The assay RSD is 3% based on 25 d.f. Tablet
heterogeneity (RSD) is estimated as 1% based on 9 d.f.

The estimated variance of the composite assay is

1 20 3 9 05

3 1 81 25 1 9 29 8

2

2 2

/ . %

( ) /[( / / )] .

+ =

≈ + + =d.f.

Assuming 30 d.f., t � 1.70

The lower limit is 90 1 70 9 05 95 1+ × =. . .

Therefore, the lower in-house limit is 95.1%.
Blend Samples. What are some properties of three dose weight samples for blend

testing? This has been interpreted in different ways, such as: (a) Take three sample weights
and assay the whole sample. (b) Take three sample weights and assay a single dose weight
without mixing the sample. (Tread lightly when transferring the sample to the laboratory.)
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(c) Take three sample weights, mix thoroughly and assay a single sample. Based on the
Barr decision [11], the latter (c) appears to be preferable. Some firms have been requested
to sample the blend (3 dose weights) and to impose limits of 90% to 110% for each
sample. One might ask if this standard is too restrictive, too liberal, or just right? To help
evaluate this procedure, consider the case of a firm that assays 3 samples, each of single
dosage weights. How might the above criterion for acceptance compare to that for 10
dosage units in which all must be between 85% and 115%?

Some approximate calculations to see if the 90% to 110% limits are fair for the blend
samples can shed some light on the nature of the specifications. Suppose that the assay
is right on, at 100%. Suppose, also, that 99.9% of the tablets in the batch are between the
85% to 115% CU limits. The probability of 10 of 10 tablets passing if each has a probability
of 0.999 of passing is (binomial theorem):

0 999 0 9910. .=

If the tablets are distributed normally, the s.d. is about 4.6. This is based on the fact
that a normal distribution with a mean of 100 and a standard deviation of 4.6 will have
99.9% of the values between 85 and 115. This same distribution will have 97% of the
tablets between 90 and 110. The probability of 3 of 3 units being between 90 and 110 is:

0 97 0 913. .=

which is less than the probability of passing for the final tablet content uniformity test.
The FDA has recommended that the limits for the blend samples be 90% to 110%.

Since the probability of passing the final tablet CU test is 0.99 under these circumstances,
the chances of failing the blend uniformity test may not seem fair, unless you believe that
the blend should be considerably more uniform than the final tablets.

What limits would be fair to make this acceptance criterion (3/3 must pass) equivalent
to the USP test given the above estimates. Let the probability of passing the blend test
� 0.99 to make the test equivalent to that for the finished tablets.

p3 0 99= .

where p is the probability of a single blend sample passing.

p = 0 9967.

That is, to make the probability of passing (3/3) the same as the final CU test, we
would assume that 99.67% of the samples should be within limits. Assuming a normal
distribution with a RSD of 4.6%, this corresponds to acceptance limits of about 87.5 to
112.5. This would seem fair. However, what are the consequences if the 3 dosage unit
weight is composited? In this case, we are assaying the average of 3 tablet weights. These
assays should be less variable with a s.d. less than 4.6, the SD of single unit weights.
Although the variability of the average of 3 dosage weights will be smaller than a single
dosage weight, the exact s.d. cannot be defined because the nature of tablet heterogeneity
cannot be defined. For the sake of this example, let us assume that the SD is 2.66 (4.6/

�3). Would 90% to 110% be fair limits for each of 3 blend samples each consisting of
3 dosage weights? We can compute the probability of a single sample (3 tablet weights)
passing using normal distribution theory.

Z = =10 2 66 3 76/ . .

probability (90 � assay � 110) � 0.99983
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The probability of 3 samples passing is

0 99983 0 9993. .=

Although this test would be easier to pass than the final tablet content uniformity test,
it is based on an assumption of the value of the s.d. for the 3 unit weight samples, an
unknown!

12.7 IMPORTANT QC TESTS FOR FINISHED SOLID DOSAGE
FORMS (TABLETS AND CAPSULES)

Important finished solid dosage form tests include:

1. Content uniformity
2. Assay
3. Dissolution

In this section, a description of these tests is presented. Included also is the f2 test for
comparing dissolution profiles of two different products with the same active ingredient
(as is often done when comparing the dissolution of generic and brand products).

12.7.1 Content Uniformity

The content uniformity is a test to assess and control the variability of solid dosage forms.
Although the sampling of the batch for these tests is not specified, good statistical practice
recommends some kind of random or representative sampling (14). This test consists of
two stages. For tablets, 30 units are set aside to be tested. In the first stage, individually
assay 10 tablets. If all tablets assay between 85% and 115% of label claim and the RSD
is less than or equal to 6, the test passes. If the test does not pass, and no tablet is outside
75% or 125%, assay the remaining individual 20 tablets (Stage 2). The test passes if, of
the 30 tablets, not more than one tablet is outside 85% to 115% of label claim, no tablet
is outside 75% to 125%, and the RSD is less than or equal to 7.8%.

For capsules, the first stage is the same as for tablets, except that one capsule may
lie outside of 85–115%, but none outside 75–125%. The second stage assays 20 more
capsules and of the total of 30 capsules, no more than three capsules can be outside
85–115%, none outside 75–125% and the RSD not more than 7.8%.

12.7.2. Assay

The potency of the final product is based on the average of (at least) 20 dosage units.
Twenty random or representative units are ground into a ‘‘homogeneous’’ mix using a
suitable method. A sample(s) of this mix is assayed. This assay must be within the limits
specified in the USP or a specified regulatory document. Typically, but not always, the
assay must be within 90–110% of label claim.

12.7.3 Dissolution

The FDA Guidance for ‘‘Dissolution Testing of Immediate Release Oral Dosage Forms’’
succinctly describes methods for testing and evaluating dissolution data (15). Dissolution
testing evaluates the dissolution behavior of the drug from a dosage form as a function
of time. Thus the typical dissolution-vs-time curve shows the cumulative dissolution of
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Table 12.10 USP Dissolution Test Acceptance Criteria

Stage Number tested Criteria

Q is the dissolution specification in percent dissolved.

Stage 1 (S1)
Stage 2 (S2)

Stage 3 (S3)

6
6

12

Each Unit not less than Q � 5%
Average of 12 units (S1 � S2) equal to or greater than

And no unit less than Q – 15%
Average of 24 Units (S1 � S2 � S3) equal to or greater

than Q; and not more than 2 units are less than
Q–15%, and no unit is less than Q–25%

drug over time. Provided a sufficient quantity of solvent is available, 100% of the drug
should be dissolved, given enough time. The procedure for dissolution testing is described
in the USP. Briefly, the procedure requires that individual units of the product (for solid
dosage forms) be placed in a dissolution apparatus that typically accommodates six separate
units. The volume and nature of the dissolution medium is specified (e.g., 900 ml of 0.1
N HCl), and the containers, rotating basket or paddle (USP), are then agitated at a pre-
scribed rate in a water bath at 37�C. Portions of the solution are removed at specified
times and analyzed for dissolved drug. Usually, dissolution specifications for immediate-
release drugs are determined as a single point in time. Table 12.10 shows the USP Dissolu-
tion Test Acceptance Criteria (16), which may be superseded by specifications in individual
drug monographs. For controlled-release products and during development, dissolution at
multiple time points, resulting in a dissolution profile (see Fig. 12.12) is necessary.

Figure 12.12 Dissolution Profile comparing test to Reference Products.
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Figure 12.13 Dissolution Profile Comparing test to Reference Products for Fast Dissolv-
ing Products.

The principal purposes of dissolution testing are threefold: (1) For quality control,
dissolution testing is one of several tests to ensure the uniformity of product from batch
to batch. (2) Dissolution is used to help predict bioavailability for formulation development.
For the latter purpose, it is well known that dissolution characteristics may predict the
rate and extent of absorption of drugs in some cases, particularly if dissolution is the rate-
determining step for drug absorption. Thus, although not always reliable, dissolution is
probably the best predictor of bioavailability presently available. (3) Finally, dissolution
may be used as a measure of change when formulation or manufacturing changes are
made to an existing formulation.

The so-called f2 method can be used to compare two dissolution profiles. The formula
for the computation of f2 follows.

f

N
2

2 0 550 1 1 100= + ∑ − ×
=

−log{[ ( / ) ( ) ] }.N Ri Ti

number of time pointss

Ri and Ti dissolution of reference products at time = iand test

Consider the following example (Table 12.11 and Fig. 12.12).

f2
2 0 550 1 1 100

50 1 1 5 25

= + − ×

+ × +

−log{[ ( / ) ( ) ] }

log{[ / (

.N Σ [ Ri Ti

36 ++ + + ×
+ × × =

−

−

81 16 25 100

50 1 1 5 183 100 60 6

0 5

0 5

)] }

log{[ / ( )] } .

.

.

=
=

f2 must be greater than 50 to show similarity.
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Table 12.11 Comparison of Test and Reference Dissolution Profiles:

% Dissolution

Time (min) Test Reference Reference Test

5 15 21 6
15 38 43 5
30 61 70 9
45 82 86 4
60 94 99 5

f2 should not be absolute. There are situations where the use of this test does not give
results that give reasonable conclusions. For example, with rapidly dissolving drugs, large
differences at early time points could result in an f2 value less than 50 when the dissolution
profiles seem to be similar. Also, the method should be used and interpreted with care
when few data points are available.
Consider another example (Table 12.12 and Fig. 12.13).

f2 � 50 log�[1 � (1/4) (576 � 36 � 9 � 1)]�0.5 � 100� � 45

These products differ only at the very early, and probably variable, time point. Yet,
they are not considered similar using this test. As noted, an interpretation of these kind
of data should be made with caution.

12.8 OUT OF SPECIFICATION (OOS) RESULTS

A discussion of OOS results (failing assay) is presented in Appendices V and VI. These
articles were prompted by the the Barr decision and FDA’s interpretation of Judge Wolin’s
decision (11). Since these articles were published, the FDA has published a Guidance for
‘‘Investigating Out of Specification (OOS) Test Results for Pharmaceutical Production,’’
which addresses these problems and more clearly defines procedures to be followed if an
OOS result is observed (17).

The following is a synopsis of the document and comments on topics relevant to this
book. All OOS results should be investigated, whether or not the batch is rejected. It is

Table 12.12 A Second Comparison of Test
and Reference Dissolution Profiles

% Dissolution

Time (min) Test Reference

5 51 75
10 89 95
15 93 96
30 97 98
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important to find causes that would help maintain the integrity of the product in future
batches. The laboratory data should first be inspected for accuracy before any test solutions
are discarded. If no errors are apparent, a ‘‘complete failure investigation should follow.’’
If an obvious error occurs, the analysis should be aborted, and immediately documented.
The thrust of the investigation is to distinguish between a laboratory error and problems
with the manufacture of the product. Of course, the optimal procedure would be to have
the opportunity to retest the suspect sample if it is still available. In any event, if a laboratory
error is verified, the OOS result will be invalidated.

In the laboratory phase of the investigation, various testing procedures are defined.
Retesting is a first option if there is not an obvious laboratory error. This is a test of the
same sample that yieleded the OOS result. For example, for a solution, an aliquot of that
same solution may be tested. For a powdered composite, a new weighing from the same
composite may be tested. The analysis should be performed by a person other than the
one who obtained the OOS result. This retesting could confirm a mishandling of the sample
or an instrumental error, for example. The SOPs should define how many assays are
necessary to confirm a retesting result. The number of retests should be based on sound
scientific and statistical procedures. (See Appendix for an example of a basis for retesting.)
However, an OOS result that cannot be documented as a laboratory error, in itself, may
not be sufficient to reject the batch. All analytical and other QC results should ‘‘be reported
and considered in batch release decisions.’’

Resampling is sampling not from the original sample, but from another portion of
the batch. This may be necessary when the original sample is not available or was not
prepared properly, for example. These results may further indicate manufacturing prob-
lems, or may help verify the OOS result as an anomoly.

The document also discusses averaging (see also Appendix VII). Averaging is useful
when measuring several values from a homogeneous mixture. If the individual results are
meant to measure variability, it is clear that averaging without showing individual values
is not tolerable. In any event when reporting averages, the individual values should be
documented. All of these procedures should be clearly spelled out in the appropriate SOPs.
It is of interest that the document discusses the case where three assays yield values of
89, 89, and 92, with a lower limit of 90. Clearly, this should raise some questions, although
the FDA document states that this by itself does not necessarily mean that the batch will
be failed.

Finally, the FDA does allow the use of outlier tests as long as the procedure is clearly
documented in the SOPs. As a final comment, common sense and good scientific judgment
are required to make sensible decisions in this controversial area.

KEY TERMS

Acceptance sampling Consumer’s risk
Action limits Control chart
AQL Control chart for differences
Batch variation Control chart for individuals
Between- and within-batch variation Expected mean square
Chance variation F2

Components of variance Moving average chart
Nested designs Runs
Operating characteristic (OC) Sampling for attributes
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OOS (out of specification) Sampling for variables
Power curve Sampling plan
Producer’s (manufacturer’s) risk Statistical control
Proportion (P) charts Upper and lower limits
Range chart Warning limits
Rational subgroups X̄ charts
Release limits 100% inspection
Resampling

EXERCISES

1. Duplicate assays are performed on a finished product as part of the quality control
procedure. The average of assays over many batches is 9.95 and the average range
of the duplicates is 0.10 mg. Calculate upper and lower limits for the X̄ chart and
the range chart.

2. Past experience has shown the percentage of defective tablets to be 2%. What are
the lower and upper 3� limits for samples of size 1000?

3. A raw material assay shows an average percentage of 47.6% active with an average
range of 1.2 based on triplicate assay. Construct a control chart for the mean and
range.

4. What is the probability of rejecting a batch of product that truly has 1.0% rejects
(defects) if the sampling plan calls for sampling 100 items and rejecting the batch
if two or more defects are found?

5. The initial data for the assay of tablets in production runs are as follows (10 tablets
per batch):

Batch Mean Range

1 10.0 0.3
2 9.8 0.4
3 10.2 0.4
4 10.0 0.2
5 10.1 0.5
6 9.8 0.4
7 9.9 0.2
8 9.9 0.5
9 10.3 0.3

10 10.2 0.6

Construct an X̄ and range chart based on this ‘‘initial’’ data. Comment on observa-
tions out of limits.

6. A sampling plan for testing sterility of a batch of 100,000 ampuls is as follows.
Test 100 ampuls selected at random. If there are no rejects, pass the batch. If there
are one or more rejects, reject the batch. If 50 of the 100,000 ampuls are not sterile,
what is the probability that the batch will pass?
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**7. A new method was tried by four analysts in triplicate.

1 2 3 4

115 105 131 129
120 130 152 121
112 106 141 130

Perform an analysis of variance (one-way). Estimate the components of variance
(between-analyst and within-analyst variance). What is the variance of the mean
assay result if three analysts each perform four assays (a total of 12 assays)? What
is the variance if four analysts each perform duplicate assays (a total of eight
assays)? If the first analysis by an analyst costs $5 and each subsequent assay by
that analyst costs $1, which of the two alternatives is more economical?

8. Construct an X̄ chart for the data of Table 12.2, using the moving average procedure.
Use the moving average to obtain X̄ and R̄ for the graph, from the first 15 batches.
Plot results for first 15 batches only.

9. Duplicate assays were run for quality control purposes for production batches. The
first 10 days of production resulted in the following data: (a) 10.1, 9.8; (2) 9.6,
10.0; (3) 10.0, 10.1; (4) 10.3, 10.3; (5) 10.2, 10.8; (6) 9.3, 9.9; (7) 10.1, 10.1; (8)
10.4, 10.6; (9) 10.9, 11.0; (10) 10.3, 10.4.
(a) Calculate the mean, average range, and average standard deviation.
(b) Construct a control chart for the mean and range and plot the data on the

chart.
10. What are the lower and upper limits for the range for the example of the moving

average discussed at the end of Sec. 12.2.3?
11. What is the variance of the average of duplicate assays performed on the same

tablet where the between tablet variance is 4.9 and the within tablet variance is
2.7? Compare this to the variance of the average of singles assays performed on
two different tablets.

12. How did 8 runs arise from the data in the example discussed in Sec. 12.2.5?
13. For an assay that is being used to determine in-house limits, the within- and between-

day variances are estimated as 0.3% and 0.5%, respectively. Tablet heterogeneity
is 4%. The assay is performed in duplicate on the same day from the same composite.
(a) Compute the in-house limits if the official specifications are 90% and 110%

and there are 25 d.f. for the assay.
(b) Compute in-house limits if single assays are performed on two different com-

posites on the same day.
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VALIDATION

Although validation of analytical and manufacturing processes has always been important
in pharmaceutical quality control, recent emphasis on their documentation by the FDA
has resulted in a more careful look at the implementation of validation procedures. The
FDA defines process validation as ‘‘… a documented program which provides a high
degree of assurance that a specific process will consistently produce a product meeting its
predetermined specification and quality attributes’’ [1]. Pharmaceutical process validation
consists of well documented, written procedures that define processes which ensure that
a specific pharmaceutical technology is capable of and is attaining that which is specified
in official or in-house specifications, e.g., a specified precision and accuracy of an assay
procedure or the characteristics of a finished pharmaceutical product. Validation can be
categorized as either prospective or retrospective. Prospective validation should be applied
to new drug entities or formulations in anticipation of the product’s requirements and
expected performance. Berry [2,5] and Nash [3] have reviewed the physical–chemical
and pharmaceutical aspects of process validation.

Retrospective validation may be the most convenient and effective way of validating
processes for an existing product. Data concerning the key in-process and finished charac-
teristics of an existing product are always available from previously manufactured batches.
Usually, there is sufficient information available to demonstrate whether or not the product
is being manufactured in a manner that meets the specifications expected of it.

13.1 PROCESS VALIDATION

In order to achieve a proper validation, an in-depth knowledge of the pharmaceutical
process is essential. Since the end result of the process is variable (e.g., sterility, potency
assay, tablet hardness, dissolution characteristics), statistical input is essential to validation
procedures. For example, experimental design and data analysis are integral parts of assay
and process validation.

For new products, prospective process validation studies are recommended based on
GMP guidelines. Often, products already marketed have not been validated for various

416
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reasons, e.g., products marketed before the formal introduction of validation procedures.
Retrospective or concurrent validation methods are used to validate processes for products
that have not been validated previously. To recommend specific procedures for validation
is difficult because of the variety of products and conditions used during their manufacture.
However, there are some common procedures, including issues of sampling, assaying and
statistical analysis, that deserve some discussion.

Retrospective Validation

The GMP guidelines referring to validation (1) suggest that either retrospective or prospec-
tive validation may be used to validate a process. Retrospective validation would be appli-
cable for a product that has been on the market for which adequate data is available for
evaluation. Although there is no theoretical lower limit on the number of lots needed for
such an evaluation, 20 lots has been suggested as an approximate lower limit [6]. In fact,
judgement is needed when deciding what constitutes an adequate number of batches. For
example, for a product that is made infrequently, or for a product that has an impeccable
history of quality, a small number of batches (perhaps 5–10) may be sufficient. Retrospec-
tive validation consists of an evaluation of product characteristics over time. The character-
istics should consist of attributes that reflect the consistency, accuracy and safety of the
product. For solid dosage forms, the chief characteristics to be evaluated are typically
blend uniformity, content uniformity, final assay, dissolution, and hardness (for tablets).
The most simple and direct way of evaluating and displaying these characteristics is via
control charts (see Chapter 12, Sec. 12.2.2). Each attribute could be charted giving a visual
display of the batch history. All batches that were released to the market should be included.
However, if a rejected batch is clearly out of specifications, inclusion in the charting
calculations could bias the true nature of the process. Certainly, if not included in the
control charts, the absence of such batches should be clearly documented. Again, scientific
judgement would be needed to make decisions regarding the inclusion of such batches in
the control charts. The control chart not only allows an evaluation of the consistency of
the process, but can be helpful in identifying problems and as an aid in setting practical
in-house release limits. Thus, retrospective validation is a useful evaluative procedure,
and, representing a relatively large number of batches over a long period of time, gives
detailed information on the product performance.

Prospective validation. On the other hand, prospective validation must always be
performed for a new product during initial development and production. Usually, the first
three production batches are evaluated in great detail in order to demonstrate consistency
and accuracy. The important feature of prospective validation is that the attributes mea-
sured reflect the important or critical characteristics of the process. This requires a knowl-
edge of the process. Having identified these features, an experimental design and sampling
plan that captures the relevant measurements is needed. Each type of dosage form or
product is different and may require different considerations.

One should be careful to distinguish process validation from formulation development
and optimization. The validation process follows the formulation and processing conditions
(such as mixing) ‘‘optimization,’’ critical attributes having been evaluated and determined
for the manufacturing process. At this point, the question of whether or not the process
results in a consistent, reproducible product is the primary concern.

13.1.1 Sampling in Process Validation

Sampling is an important consideration during process validation. The answers to where,
when, and how to take samples, as well as sample size and how many samples to be taken,



418 Chapter 13

are often not obvious. Judgement is important and no firm rules can be given. For example,
during the validation procedure for solid dose forms, samples are taken (1) during the
blend stage, (2) when core tablets are produced if applicable, and (3) from the finished
tablets. We speak of random samples during these procedures, but, in fact, it is not possible,
or practical, to take samples randomly during production. Rather, we try to take samples
that are representative of the material being tested. For example, during the blend testing,
we sample from the mixer or drums, ensuring that the samples are taken from locations
that are representative. Samples taken from a blender or mixer, for purposes of validation,
should include areas where good mixing may be suspect because of the geometry of the
blender. The number and size of samples to be taken depend on the purpose of the study.
For purposes of testing drug content or potency, one or more well selected large size,
composited samples may suffice. For purposes of testing uniformity during a validation
study, many smaller size samples are necessary. A sample size equal to no more than
three dosage units has been suggested in a recent court decision [6], but sample sizes as
small as one dosage unit are now becoming routine. Where electrostatic effects may cause
the assay of small samples to be biased, single dose weights washed out of the thief, or
larger sample sizes may give more reliable results. Although there are no rules for the
number of samples to be taken, certainly ten suitably selected samples should be sufficient
when performing time-mix studies to determine the optimal mixing time. Having validated
the process, for routine blend testing, assay of three to six samples, selected representa-
tively, should be sufficient. The number of samples, if any, to be taken during production
depends on the product and the process. For many products, blend testing may be elimi-
nated for production lots after the process has been validated. A product that has a history
of performing well will need less extensive sampling than one that has shown a propensity
for problems during its history.

During routine production, if blend assays are indicated, samples are typically taken
from drums rather than the mixer, as a matter of convenience. Also, sampling from the
drums represents a further step in the process, so that if the blend is satisfactory at this
stage, one has more confidence in the integrity of the batch than if samples are taken only
from the blender. When drums are tested for blend uniformity and drug content during
validation, each drum may be sampled. In addition, some or all of the drums may be
sampled more than once; top, middle and bottom, for example. Some companies, sample
the first and last drums extensively, from top, middle, and bottom, and the intervening
drums only once. Again, as with sampling from the mixer, the size of the sample requires
judgement, based on the nature of the product and the objective of the test.

The assays obtained from the drums can be analyzed for drug potency and uniformity.
These assays should show a relatively small RSD, so that one has confidence that the RSD
of the final product will be within limits, based on content uniformity assays. Although we
cannot ensure that every portion of the mix is identical since the product is by nature not
uniform, we would hope that the uniformity is good based on RSD requirements for the
finished product (less than 6%). For example, if the RSD at an intermediate stage (such
as a blend) were greater than 5%, some doubt would exist about the adequate uniformity
of the mix.

In addition to blend testing for purposes of process validation or routine QC sampling,
sampling for intermediate product testing (e.g., tablet cores) and final product testing is
important. Some sampling procedures have been reviewed in Chapter 4. Product is usually
sampled by selecting units throughout the run from the production lines, by QC personnel.
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The sample is then submitted for assay as a composite of, e.g., tablets over the entire run.
This is a form of stratified sampling, tablets being selected every hour during the run, for
example. Since final product analysis is usually specified in official documents (content
uniformity, dissolution, and a potency composite assay), the number of samples to be
analyzed is prespecified. The samples to be analyzed are taken, at random, from the units
supplied by the QC department. For validation, additional assays are usually performed
to ensure uniformity and compliance. For example, content uniformity and dissolution
tests may be performed on dosage units selected from the beginning, middle and end of
the run. Coated products may be tested from different coating pans. For all of these tests,
in validation studies, analysis of both average drug potency and uniformity are important.
Statistical tests are less useful than statistical estimation in the form of confidence intervals
or point estimates. For example, in a validation study, if content uniformity tests are run
for tablets at the beginning, middle, and each of the run, we would look at the results
from each of the 3 content uniformity tests to ensure that the RSD was similar and comforta-
bly within the official limits without subjecting the data to a rigorous statistical test.

There are no specific rules. The GMPs and validation guidelines are only recommenda-
tions. If a standard procedure is implemented within a company, the procedure should be
examined with regard to each product, to ensure that a particular product is not unique
in some way that would require a variation in the testing procedure. Careful testing, based
on good judgement and science, benefits both the consumer and the manufacturer.

Statistical analysis of the data is useful. However, statistical methods should be used
to aid in an understanding of the data only. Hypothesis testing may not be useful, in part
because of power considerations. Scientific judgement should prevail.

Several examples will be given with solutions to illustrate the ‘‘validation’’ train of
thought. There is no unique statistical approach to any single problem in most practical
situations. In validation procedures, in particular, there will be more than one way of
attacking a problem. What is most needed is a clear idea of the problem and some common
sense. In all of the following examples, statistical methods will be used that have been
discussed elsewhere in this book.

Example 1: Retrospective validation. Quality control data are available for an ointment
that has been manufactured during a period of approximately one year. The in-process
(bulk) product is assayed in triplicate for each batch (top, middle, and bottom of the mixing
tank). The finished product consists of either a 2-ounce container or a 4-ounce container,
or both. A single assay is performed on each size of the finished product. The assay results
for the eight batches manufactured are shown in Table 13.1.

The following questions must be answered to pursue the process validation of this
product:

1. Are the assays within limits as stated in the in-house specifications?
2. Do the average results differ for the top, middle, and bottom of the bulk? This

can be considered as a measure of drug homogeneity. If the results are (statistically
or practically) different in different parts of the bulk container, mixing heterogene-
ity is indicated.

3. Are the average drug concentration and homogeneity in the bulk mix different
from the average concentration and homogeneity of the product in the final con-
tainer?

4. Are batches in control based on the charting of averages using control charts?
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Table 13.1 Results of Bulk and Finished Tablet Assays of Eight Batches

In-process bulk material (%) Finished product (%)

Batch Top Middle Bottom Average 2 oz 4 oz Average

1 105 106 106 105.7 104 101 102.5
2 105 107 103 105.0 108 107 107.5
3 102 109 105 105.3 — 107 107.0
4 105 104 104 104.3 105 107 106.0
5 106 104 107 105.7 107 102 104.5
6 110 108 107 108.3 108 107 107.5
7 103 105 105 104.3 102 104 103
8 108 112 114 111.3 113 — 113

Avg. 105.5 106.9 106.4 106.24 106.7 105 106.38
s.d. 2.56 2.75 3.38 2.40 — — 3.31

Answers:

Question 1. The in-house specifications call for an average assay between 100 and 120%.
All batches pass based on the average results of both the bulk and finished products. Batch
8 has a relatively high assay, but still falls within the specifications.

Question 2. A two-way analysis of variance (Chapter 8) is used to test for equality
of means from the top, middle, and bottom of the bulk container. The average results are
shown in Table 13.1, and the ANOVA table is shown in Table 13.2. The F test shows
lack of significance at the 5% level, and the product can be considered to be homogeneous.
The assay of top, middle, and bottom are treated as replicate assays for purposes of
determining within batch variability. (Some statisticians may not recommend a two-step
procedure where a preliminary statistical test is used to set the conditions for a subsequent
test. However, in this case for purposes of validation in the absence of true replicates,
there is little choice.) Note that if the average results of top, middle, and bottom showed
significant differences (from both a practical and statistical point of view), a mixing prob-
lem would be indicated. This would trigger a study to optimize the mixing procedure
and/or equipment to produce a relatively homogeneous product. We understand that a
heterogeneous system, as exemplified by an ointment, can never be perfectly homogene-
ous. The aim is to produce a product that has close to the same concentration of material
in each part. From Table 13.2, the within-batch variation is obtained by pooling the between

Table 13.2 ANOVA for Top, Middle, and Bottom of Bulk

Source d.f. SS MS F

Batches 7 121.8 17.4 —
Top–middle–bottom 2 7.75 3.88 0.95
Error 14 56.92 4.07 —
Total 23 186.5
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position (top, middle, bottom) sum of squares and the error sum of squares. The within-
batch error (variance) estimate is 64.67/16 � 4.04 with 16 d.f. The standard deviation is
the square root of the variance, 2.01. This would be the same error that would have been
obtained had we considered this a one-way ANOVA with 8 batches and disregarded the
‘‘top-middle-bottom’’ factor. Again, statistical analysis of the data is useful. However,
statistics should be used to help understand the data only. Hypothesis testing may not be
useful because of power considerations, and scientific judgement should always prevail.

Question 3. The comparison of the variability in the bulk and finished product would
be a test of change in homogeneity due to handling from the bulk to the finished product.
Although this may not be expected in a viscous, semisolid product such as an ointment,
a test to confirm the homogeneity of the finished product should be carried out if possible.
In powdered mixes such as may occur in the bulk material for tablets, a disruption of
homogeneity during the transformation of bulk material into the final tablet is not an
unlikely occurrence. For example, movement of the material in the containers during
transport, or vibrations resulting in the settling and sifting of particles in the storage
containers prior to tableting, may result in preferential settling of the materials comprising
the tablet mix.

In order to compare the within-batch variability of the bulk and finished product, a
within-batch error estimate for the finished product is needed. We can use a similar ap-
proach to that used for the bulk. Compare the average results for the two different containers
(when both sizes are manufactured) and if there is no significant difference, consider the
results for the two finished containers as duplicates. The analysis comparing the average
results for the 2- and 4-ounce containers for the 6 batches where both were manufactured
is shown in Table 13.3. The paired t test shows no significant difference (P 
 0.05). The
within batch variation is obtained by pooling the error from each of the 6 pairs, considering
each pair a duplicate determination.

Within mean square

= − + − + + −
×

=( ) ( ) ( )
.

104 101 108 107 102 104

2 6
3 67

2 2 2…

This estimate of the within batch variation is very close to that observed for the bulk
material (3.67 vs. 4.04). If a doubt concerning variability exists, a formal statistical test
may be performed to compare the within batch variance of the bulk and finished products
for the 6 batches (F test; see Chapter 5, Sec. 5.3) where estimates of the variability of
both the bulk and finished product are available. (We can assume that all variance estimates
are independent for purposes of this example.) The results show no evidence of a discrep-
ancy in homogeneity between the bulk and finished product. Although this approach may

Table 13.3 Paired t Test for
Comparison of 2- and 4-Ounce
Containers (Omit Batches 3 and 8)

Average of 2 oz � 105.67
Average of 4 oz � 104.67

t � 1/(2.76�1/6) � 0.89
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Table 13.4 Paired t Test Comparing the
Average of the Bulk and Finished Product

Average of bulk � 106.24
Average of finished � 106.38

t � 0.14/(2.03�1/8) � 0.20

seem complex and circuitous, in retrospective, undesigned experiments, one often must
make do with what is available, making reasonable and rational use of the available data.

The average results of the bulk and finished product can be compared using a paired
t test. For this test we first compute the average result of the bulk and finished material
for each batch. The average results are shown in Table 13.1. The t test (Table 13.4) shows
no significant difference between the average results of the bulk and finished material.

If either or both of the tests comparing bulk and finished product (average result or
variance) shows a significant difference, the data should be carefully examined for outliers
or obviously erroneous data, or research should be initiated to find the cause. In the present
example, where data for only 8 batches are available, if the cause is not apparent, further
data may be collected as subsequent batches are manufactured to ensure that conclusions
based on the 8 batches remain valid.

Question 4. A control chart can be constructed to monitor the process based on the
data available. This chart is preliminary (only 8 batches) and should be updated as new
data become available. In fact, after a few more batches are produced, the estimates and
comparisons described above should also be repeated to ensure that bulk and finished
product assays are behaving normally. The usual Shewhart control chart for averages uses
the within batch variation as the estimate of the variance (see Chapter 12). Sometimes in
the case of naturally heterogeneous products, such as ointments, tablets, etc., a source of
variation between batches is part of the process that is difficult to eliminate. In these cases,
we may wish to use between-batch variation as an estimate of error for construction of
the control chart. As long as this approach results in limits that are reasonable in view of
official and/or in-house specifications, we may feel secure. However, to be prudent, one
would want to find reasons why batches cannot be more closely reproduced. The within-
batch variation for the bulk material was estimated as (s.d.) 2.01. A control chart with 3
sigma limits could be set up as X̄ 	 3 � 2.01/�3 � 106.2 	 3.5 based on the average

of the top, middle, and bottom assays. Because of the presence of between-lot variability,
a moving-average control chart may be appropriate for this data. This chart is constructed
from the averages of the 3 bulk assays for the 8 batches (Table 13.1) using a control chart
with a moving average of size 3. Table 13.5 shows the calculations for this chart.

For samples of size 3, from Table IV.10, the control chart limits are 105.91 	
1.02(3.02) � 105.91 	 3.08. Figures 13.1 and 13.2 show the control charts based on
within batch variation and that based on the moving average. Note that the moving-average
chart show no out-of-control values and would include batch number 8 within the average
control chart limits. The control chart based on within-batch variation finds batch number
8 out of limits. Within-batch variation appears to underestimate the inherent variation that
includes between-batch variability. Until other sources of variability can be discovered,
the moving-average chart, which includes between-batch variation, appears to accomplish
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Figure 13.1 Control chart for Table 13.1 data using within-batch variation to construct
limits.

Table 13.5 Computations for the Moving-
Average Control Chart Shown in Figure 13.2

Moving average (N � 3) Moving range

105.33 0.7
104.87 1
105.1 1.4
106.1 4
106.1 4
107.97 7

Av. 105.91 3.02

Figure 13.2 Moving average control chart for data of Table 13.1
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the objective, i.e., to set up a control chart that allows monitoring of the average result
of the manufacturing process.

A control chart for the moving range can be constructed using the factor for samples
of size 3 in Table IV.10. The upper limit is 2.57 � 3.02 � 7.76.

Another control chart of interest is a ‘‘range chart’’ that monitors within-batch variabil-
ity. If top, middle, and bottom assays are considered to be replicates, we can chart the
range of assays within each batch, a monitoring of product homogeneity. The construction
of range charts is discussed in Chapter 12. Figure 13.3 shows the range chart for the bulk
data from Table 13.1 (See also Exercise Problem 1.)

A control chart for the finished product is less easily conceived. Different batches
may have a different number of assays depending on whether one container or two different
size containers are manufactured. There are several alternatives here including the possibil-
ity of using (1) separate control charts for the two different sizes, (2) a control chart based
on an average result, or (3) a chart with varying limits that depend on the sample size.
Note that only a single assay was performed for each finished container. If separate control
charts are used for each product, one may wish to consider assays from duplicate containers
for each size container so that a range chart to monitor within-batch variability can be
constructed. In the present case, limits for the average control chart for the finished product
would be wider than that for the bulk average chart since each value is derived from a
single (or duplicate) reading rather than the 3 readings from the bulk. (Note that if within
variation is appropriate for construction of the control chart, as may occur with other
products, one might use the pooled within variation from both the finished and bulk
assays as an estimate of the variance to construct limits.) Exercise Problem 2 asks for the
construction of a control chart for finished containers.

A preliminary control chart using a moving average of size 2 is shown for the 4-oz
container in Fig. 13.4.

Should any values fall outside the control chart limits, appropriate action should be
taken. Refer to the discussion on control charts in Chapter 12.

Example 2: An example of a prospective validation study. In this example, a new
manufacturing process is just underway for a tablet formulation of either (1) a new drug
entity or (2) reformulation of an existing product. Since it would be difficult to generate

Figure 13.3 Range chart for Table 13.1 data.
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Figure 13.4 Moving average chart for a 4-ounce container from Table 13.1 data.

data from many batches in a reasonable period of time, a recommended procedure is to
carefully collect and analyze data from at least 3 consecutive batches. Of course, this
procedure does not negate the necessity of keeping careful in-process and finished-product
quality control records to ensure that the quality of the product is maintained.

Prior to the design of the validation procedure, a review of the critical steps in the
manufacturing process is necessary. The critical steps will vary from product to product.
For the manufacture of tablets, critical steps would include (1) homogeneity and potency
after mixing and/or other processes in the preparation of bulk powder prior to tableting,
(2) maintenance of homogeneity after storage of the bulk material prior to tableting, (3)
the effect of the tableting process on potency as well as other important tablet characteris-
tics such as content uniformity, hardness, friability, disintegration, and dissolution.

In this example, we consider a product in which potency and homogeneity are to be
examined as indicators of the validation of the manufacturing process. To this end, both
the bulk material and final product are to be tested. We will assume that the critical steps
have been identified as (1) the mixing or blending step prior to compression and (2) the
manufacture of the finished tablet. Therefore, the product will be sampled both prior to
compression in the mixing equipment and after compression, the final manufactured tablet.
Three mixing times will be investigated to determine the effect of mixing time on the
homogeneity of the mix.

If many variables are considered to be critical, the number of experiments needed to
test the effects of these variables may not be feasible from an economic point of view.
In these cases, one can restrict the range of many of the variables based on a ‘‘knowledge’’
of their effects from experience. Other options include the use of fractional factorial designs
or other experimental screening designs [4].

The question of how many samples to take, as well as where and how to sample is not
answered easily. The answer will depend on the nature of the product, the manufacturing
procedure, as well as a certain amount of good judgement and common sense. We are
interested in taking sufficient samples to answer the questions posed by the validation
process:
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1. Does the process produce tablets that are uniform?
2. Does the process produce tablets that have the correct potency?
3. Does the variability of the final tablet correspond to the variation in the pre-

compression powdered mix?

Usually, samples are taken directly from the mixing equipment to test for uniformity.
Samples may be taken from different parts of the mixer depending on its geometry and

Table 13.6 Analysis of Bulk Mix in Blender and Final Tablets

5 minutes mixing time
Location 1 2 3 4 5 6

101 104 101 104 101 109
93 110 104 100 105 103

102 106 96 94 99 105
Average 98.7 106.7 100.3 99.3 101.7 105.7
s.d. 4.93 3.06 4.04 5.03 3.06 3.06

10 minutes mixing time
Location 1 2 3 4 5 6

101 105 100 104 99 103
103 102 99 100 103 104
103 104 103 101 102 103

Average 102.3 103.7 100.7 101.7 101.3 103.3
s.d. 1.15 1.53 2.08 2.08 2.08 0.58

20 minutes mixing time
Location 1 2 3 4 5 6

102 100 101 99 101 103
101 102 104 100 101 98
104 103 100 102 105 102

Average 102.3 101.7 101.7 100.3 102.3 101.0
s.d. 1.53 1.53 2.08 1.53 2.31 2.65

Final tablets
Beginning Middle End

102 99 102
98 100 103

103 105 100
100 101 100
103 97 104
103 102 102
101 98 100
100 103 97
99 102 105

104 100 101
Average 101.3 100.7 101.4
s.d. 2.00 2.41 2.32
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potential trouble spots. For example, some mixers, such as the ribbon mixer, are known
to have ‘‘dead’’ spots where mixing may not be optimal. Such ‘‘dead’’ spots should be
included in the samples to be analyzed. The finished tablets can be sampled at random
from the final production batch, or sampled as production proceeds. In the present example,
10 samples (tablets) will be taken at each of the beginning, middle, and end of the tableting
process.

Data for the validation of this manufacturing process are shown in Table 13.6. Tripli-
cate assay determinations were made at 6 different locations in the mixer after 5, 10, and
20 minutes of mixing. In this example, 6 locations were chosen to represent different parts
of the mixture. In other examples, samples may be chosen by a suitable random process.
For example, the mixer may be divided into 3-dimensional sectors, and samples taken
from a suitable number of sectors at random. In the present case, each sample assayed
from the bulk mix was approximately the same weight as the finished tablet. During tablet
compression, 10 tablets were chosen at 3 different times in the tablet production run and
drug content measured on individual tablets. This procedure was repeated for 3 successive
batches to ensure that the process continued to show good reproducibility. We will discuss
the analysis of the results of a single batch.

Analysis of variance can be used to estimate the variability and to test for homogeneity
of sample averages from different parts of the blender or from different parts of the
production run (see Table 13.7).

For the bulk mix, none of the F ratios for between sampling locations mean squares
are significant. This suggests that drug is dispersed uniformly to all locations after 5, 10,
and 20 minutes of mixing. However, the within MS is significantly larger in the 5 minute
mix compared to the 10- and 20-minute mixes. A test of the equality of variances can be
performed using Bartlett’s test or a simple F test, whichever is appropriate (see Exercise
Problem 3). The data suggest a minimum mixing time of 10 minutes. The homogeneity
of the finished tablets is not significantly different from the bulk mixes at 10 and 20
minutes as evidenced by the within MS error term. The tablet variance is somewhat greater
than that in the mix (5.06 compared to 2.83 and 3.94 in the 10- and 20-minute bulk mixes).
This may be expected, a result of moving and handling of the mix subsequent to the
mixing and prior to the tableting operation.

The average results and homogeneity of the final tablets appear to be adequate. Never-
theless, it would be prudent to continue to monitor the average results and the within
variation of both the bulk mix and finished tablet during production batches using appropri-

Table 13.7 ANOVA for Table 13.6

Description Source d.f. MS F

5-minute mix Between 5 33.79 2.16
Within 12 15.67 —

10-minute mix Between 5 4.10 1.45
Within 12 2.83 —

20-minute mix Between 5 1.82 0.46
Within 12 3.94 —

Tablets Between 2 1.43 0.28
Within 27 5.06 —
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ate control charts. Again, a moving-average chart, where between-batch rather than within-
batch variance is the measure of variability, may be necessary in order to keep results for
the average chart within limits.

13.2 ASSAY VALIDATION

Validation is an important ingredient in the development and application of analytical
methodology for assaying potency of dosage forms or drug in body fluids. Assay validation
must demonstrate that the analytical procedure is able to accurately and precisely predict
the concentration of unknown samples. This consists of a ‘‘documented program which
provides a high degree of assurance that the analytical method will consistently result in
a recovery and precision within predetermined specifications and limits.’’ To accomplish
this, several procedures are usually required. A calibration ‘‘curve’’ is characterized by
determining the analytical response (optical density, area, etc.) over a suitable range of
known concentrations of drug. Unknown samples are then related to the calibration curve
to estimate their concentrations. During the validation procedure, calibration curves may
be run in duplicate for several days to determine between- and within-day variation. In
most cases, the calibration curve is linear with an intercept close to 0. The proof of the
validity of the calibration curve is that known samples, prepared independently of the
calibration samples, and in the same form as the unknown samples (tablets, plasma, etc.),
show consistently good recovery based on the calibration curve. By ‘‘good,’’ we mean
that the known samples show both accurate and precise recovery. These known samples
are called quality control (QC) samples and are used in both the assay validation and in
real studies where truly unknown samples are to be assayed. Typically, the QC samples
are prepared in 3 concentrations that cover the range of concentrations expected in the
unknown samples, and are run in duplicate. The QC samples are markers and as long as
they show good recovery, the assay is considered to be performing well, as intended.

In general, specific statistical procedures are not recommended by the FDA. This is
not necessarily negative as judgment is needed for the many different scenarios that are
possible when developing new assays. For example, linearity ‘‘should be evaluated by
visual inspection.’’ If linearity is accepted, then standard statistical techniques can be
applied, such as fitting a regression line by least squares (see Section 7.5). Transformations
to achieve linearity are encouraged. ‘‘The correlation coefficient, y-intercept, slope of the
regression line and residual sum of squares should be submitted.’’ An analysis of residuals
is also recommended.

Some definitions used in assay methodology and validation follow:

Accuracy: Closeness of an analytical procedure result to the true value
Precision: Closeness of a series of measurements from the same homogeneous sample
Repeatability: Closeness of results under the same conditions over a short period of

time (intra-assay precision)
Interlaboratory (collaborative studies): Studies comparing results from different labo-

ratories. This is not recommended for approval of marketing. This is used more
for defining standardization of official assays

Detection limit: Lowest level that can be detected but not necessarily quantified. The
signal to noise ratio is used when there is baseline noise. Compare low concentration
samples with a blank. ‘‘Establish the minimum concentration at which the analyte
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can be reliably detected.’’ A signal-to-noise ratio of 2/1 or 3/1 is considered accept-
able. The detection limit may be expressed as

DL sigma/S

Sigma SD of response

S slope of calibration cu

=
=

=

3 3.

rrve

Quantitation limit (QL): The QL is determined with ‘‘known concentrations of
analyte, and by establishing the minimum level at which the analyte can be quanti-
fied with acceptable accuracy and precision.’’

A typical calculation of QL is:

QL sigma/slope= 10

Good experimental design should be carefully followed in the validation procedure.
Careful attention should be paid to the use of proper replicates and statistical analyses. In
the following example, the calibration curve consists of 5 concentrations and is run on 3
days. Separate solutions are freshly prepared each day for construction of the calibration
curve. A large volume of a set of QC samples at 3 concentrations is prepared from the
start to be used throughout the validation and subsequent analyses. A complete validation
procedure can be rather complicated in order to cover the many contingencies that may
occur to invalidate the assay procedure. In this example, only some of the many possible
problems that arise will be presented. The chief purpose of this example is to demonstrate
some of the statistical thinking needed when developing and implementing assay validation
procedures.

The results of the calibration curves run in duplicate on 3 days are shown in Table
13.8 and Fig. 13.5.

As is typical of analytical data, the variance increases with concentration. For the
fitting and analysis of regression lines, a weighted analysis may be used with each value

Table 13.8 Calibration Curve Data for Validation (Peak Area)

Day Concentration Replicate 1 Replicate 2 Average

1 0.05 0.003 0.004 0.0035
0.20 0.016 0.018 0.017
1.00 0.088 0.094 0.092

10.0 0.920 0.901 0.9105
20.0 1.859 1.827 1.843

2 0.05 0.006 0.004 0.005
0.20 0.024 0.020 0.022
1.00 0.108 0.116 0.112

10.0 1.009 1.055 1.032
20.0 2.146 2.098 2.122

3 0.05 0.005 0.008 0.0065
0.20 0.019 0.023 0.021
1.00 0.099 0.105 0.102

10.0 1.000 0.978 0.989
20.0 1.998 2.038 2.018
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Figure 13.5 Calibration curves from Table 13.8 (weighted least squares fits).

weighted by 1/X2, where X is the concentration. For analysis of variance, either a weighted
analysis or a log transformation of the data can be used to get rid of the variance heterogene-
ity (heteroscedascity). Analyses will be run to characterize the reproducibility and linearity
of these data. The calibration lines are at the heart of the analytical procedure as these
are used to estimate the unknown samples during biological (e.g., clinical) studies or for
quality control.

ANOVA: Table 13.9 shows the analysis of variance for the data of Table 13.8 after
a log (ln) transformation. The analysis is a three-way ANOVA with factors Days (random),
Replicates (fixed), and Concentration (fixed). The two replicates from Table 13.8 are
obtained by running all concentrations at the beginning of the day’s assays and repeating

Table 13.9 Analysis of Variance for Calibration Data (Log Transformation)

Source d.f. SS MS F

Days (A) 2 0.3150 0.1575 —
Replicates (B) 1 0.01436 0.01436 0.36
Concentrations (C) 4 155.78 38.945 1528*
AB 2 0.0803 0.04016 —
AC 8 0.2038 0.0255 —
BC 4 0.0155 0.0387 0.18
ABC 8 0.1742058 0.02178 —
Total 29 156.5834

*p � 0.01
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the procedure at the end of the day. Although the ANOVA for 3 factors has not been
explained in any detail in this book, the interpretation of the ANOVA table follows the
same principles presented in Chapters 8 and 9, Analysis of Variance and Factorial Designs,
respectively.

The terms of interest in Table 13.9 are Replicates and Replicate � Concentration
(BC) interaction. If the assay is performing as expected, neither of these terms should be
significant. A significant Replicate term indicates that the first replicate is giving consis-
tently higher (or lower) results than the second. This suggests some kind of time trend in
the analysis and should be corrected or accounted for in an appropriate manner. A Replicate
� Concentration interaction suggests erroneous data or poor procedure. This interaction
may be a result of significant differences between replicates in one direction at some
concentrations and opposite differences at other concentrations. For example, if the areas
were 1.0 and 1.2 for replicates 1 and 2, respectively, at a concentration of 10.0, and 2.3
and 2.1 at a concentration of 20.0, a significant interaction may be detected. Under ordinary
conditions, this interaction is unlikely to occur.

A least squares fit should be made to the calibration data to check for linearity and
outliers. A weighted regression is recommended as noted above (see also Sec. 7.7). This
analysis is performed if the ANOVA (Table 13.9) shows no problems. A single analysis
may be performed for all 3 (days) calibration curves, but experience suggests that calibra-
tion curves may often vary from day to day. (This is the reason for the use of QC samples,
to check the adequacy of each calibration curve.) In the present case, regression analysis
is performed separately for each day’s data. Table 13.10 shows the analysis of variance
for the weighted least squares fit for the calibration data on day 1 (weight � 1/X2). Each
concentration is run in duplicate. The computations for the analysis are lengthy and are
not given here. Rather, the interpretation of the ANOVA table (Table 13.10) is more
important.

The important feature of the ANOVA is the test of deviations from regression (devia-
tions). This is an F test (deviation MS/within MS) with 3 and 5 d.f. The test shows lack
of significance (Table 13.10) indicating that the calibration curve can be taken as linear.
This is the usual, expected conclusion for analytical procedures. If the F test is significant,
the regression plot (Fig. 13.5) should be examined for outliers or other indications that
result in nonlinearity (e.g., residual plots, Chapter 7). Sometimes, even with a significant
F test, examination of the plot will reveal no obvious indication of nonlinearity. This may
be due to a very small within MS error term, for example, and in these cases, the regression
may be taken as linear if the other days’ regressions show linearity. If curvature is apparent

Table 13.10 ANOVA for Regression Analysis for Calibration Data from Day 1

Source d.f. SS MS F

Slope 1 0.056889 0.056889 1653.0
Error 8 0.000275 0.0000344 —

Deviations from regression 3 0.000004 0.0000013 0.02
Within (duplicates) 5 0.000271 0.0000542 —

Total 9 0.057164
Slope (weighted regression) � 0.09153

Intercept � �0.00109
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as indicated by inspection of the plot and a significant F test, the data should be fit to a
quadratic model, or an appropriate transformation applied to linearize the concentra-
tion–response relationship. The test for linearity is discussed further in Appendix II.

A control chart may also be constructed for the slope and intercept of each day’s
calibration curve, starting with the validation data. This will be useful for detecting trends
or outlying data.

A critical step in the assay validation procedure is the analysis of the performance of
the quality control (QC) samples. These samples provide a constant standard from day to
day to challenge the validity of the calibration curve. In the simplest case, large volumes
of QC samples at 3 concentrations are prepared to be used both in the validation and in
the real studies. The concentrations cover the greater part of the concentration range
expected for the unknown samples. The QC samples are run in duplicate (a total of 6
samples) throughout each day’s assays. Usually, the samples will be run at evenly spaced
intervals throughout the day with the 3 concentrations (low, medium, and high) run during
the first part of the day and then run again during the latter part of the day. Each set of
three should be run in random order. For example, the six QC samples may be interspersed
with the unknowns in the following random order:

Medium … Low … High … Low … High … Medium

Table 13.11 shows the results for the QC samples, in terms of percent accuracy,
during the validation procedure. Percent accuracy is used to help equalize the variances
for purposes of the statistical analysis. The first step is to perform an ANOVA for the
QC results using all of the data. In this example, the factors in the ANOVA are Days (3
days), Concentrations (3 concentrations), and Replicates (2, beginning of run vs. end of
run). The ANOVA table is shown in Table 13.12.

Table 13.12 should not indicate problems if the assay is working as expected. No
effect should be significant. A significant Replicates effect indicates a trend from the
first set of QC samples (beginning of run) to the second set. A significant Replicate �
Concentration interaction is also cause for concern, and the data should be examined for
errors, outliers, or other causes. Table 13.12 shows no obvious evidence of assay problems.

To test that the assay is giving close to 100% accuracy, a t test is performed comparing
the overall average of all the QC samples vs. 100%. This is a two-sided test:

Table 13.11 Data for Quality Control Samples (% Recovery)

Day Concentration Replicate 1 Replicate 2 Average

1 0.50 106.5 103.9 105.2
1.50 97.8 102.4 100.1

15.0 101.6 97.2 99.4
2 0.50 99.4 107.6 103.5

1.50 104.0 105.4 104.7
15.0 96.9 100.7 98.8

3 0.50 97.4 100.2 98.8
1.50 100.6 99.2 99.9

15.0 104.2 101.8 103.0
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Table 13.12 Analysis of Variance for Quality Control Samples

Source d.f. SS MS F

Days (A) 2 9.418 4.709 —
Replicates (B) 1 5.556 5.556 0.44
Concentrations (C) 2 13.285 6.642 0.31
AB 2 25.498 12.749 —
AC 4 84.675 21.169 —
BC 2 11.231 5.616 0.73
ABC 4 30.956 7.739 —
Total 17 180.618

(13.1)t =
−Overall average

Days MS

100

3/

where 3 � number of days. This is a weak test with only 2 d.f. If no significant effects
are obvious in the ANOVA, one may perform the t test on all the data disregarding days
and replicates (N � 18), and the t test would be:

(13.2)t
S

=
−Overall average 100

182 /

The interpretation of this test should be made with caution because of the assumption of
the absence of day, replicate, concentration, and interaction effects.

For the data of Table 13.11, the t tests [Eqs. (13.1) and (13.2)] are:

(13.1)t =
−

=
101 489 100

4 709 3
1 188

.

. /
.

(13.2)t =
−

=
101 489 100

180 618 17 18
1 938

.

( . / ) /
.

We can conclude that the assay is showing close to 100% accuracy. Should the t test
show significance, at least one of the three QC concentrations is showing low or high
assay accuracy. The data should be examined for errors or outliers, and if necessary, each
concentration analyzed separately. The t tests would proceed as above but the data for a
single concentration would be used. For the low concentration in Table 13.11, the t test
(ignoring the day and replicate effects), would be:

t =
−

=
102 5 100

4 12 1 6
1 486

.

. /
.

To monitor the assay performance, control charts for QC samples may be constructed
starting with the results from the validation data. Control charts may be used for each QC
concentration separately or, if warranted, all QC concentrations during a day’s run can
be considered replicates. In the example to follow, we examine the control chart for each
QC concentration separately and use the medium concentration as an example. Probably,
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Table 13.13 Data for Medium QC Sample (Concentration � 1.50) for Control Chart

Day Replicate 1 Replicate 2 Average Moving range

1 97.8 102.4 100.1 —
2 104.0 105.4 104.7 4.6
3 100.6 99.2 99.9 4.8
4 99.3 97.8 98.55 1.35
5 103.8 101.4 102.6 4.05
6 103.4 103.0 103.2 0.60
7 99.6 102.4 101.0 2.2
8 99.4 103.8 101.6 0.6
9 100.1 97.6 98.85 2.75

the best approach is to use a control chart for individuals or a moving average chart (see
Chapter 12). The validation data cover only 3 days. Following the validation, data were
available for 6 more days using unknown samples from a clinical study. The data for the
medium QC sample from the 3 validation days and the 6 clinical study days are shown
in Table 13.13.

The average moving range is 2.62 based on samples of size 2. The overall average
(of the ‘‘average’’ column in Table 13.13) is 101.17. The 3 sigma limits are 101.17 	
3(2.62/1.128) � 101.17 	 6.97. The control chart is shown in Fig. 13.6. All the results
fall within the control chart limits. Another control chart can be constructed for the range
for the duplicate assays performed each day. The average range is 2.38. The upper limit

Figure 13.6 Moving average chart for Table 13.13 data.
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for the range chart is 7.78 (see Exercise Problem 4). As for all control charts, the average
and limits should be updated as more data become available.

The control chart for the individual daily averages of the QC samples and the control
charts for the slope and intercept, if desired, are used to monitor the process for the analysis
of the unknown samples submitted during the clinical studies or for quality control. If QC
samples fall out of limits and no obvious errors can be found, the analyses of the samples
during that run may be suspect.

A detailed description of analytical validation for blood assays in bio-availability
studies has been published by Lang and Bolton [7,8].

For further discussion of assay validation, see Ref. 11.

13.3 CONCLUDING REMARKS

In this chapter, some examples of statistical analysis and design of validation studies have
been presented. As we have noted, statistical input is a necessary part of the design and
analysis of validation procedures. The statistical procedures that may be used to analyze
such data are not limited to the examples given here, but are dependent on the design of
the procedures and the characteristics of the data resulting from these experiments. The
design of the experiments needed to validate processes will be dependent on the complexity
of the process and the identification of critical steps in the process. This is a most important
part of validation and the research scientist should be very familiar with the nature of the
process, e.g., a manufacturing process or assay procedure [1,2,3]. The steps in the valida-
tion and statistical analysis are best implemented with the cooperation of a scientist familiar
with the physical and chemical processes and a statistician. This is one of the many areas
where such a joint venture can greatly facilitate project completion.

KEY TERMS

Assay validation Process validation
Average control chart Prospective validation
Calibration curve Quality control samples
Control chart Range control chart
Critical steps Refractive validation
Moving average control chart Weighted analysis
Moving range control chart

EXERCISES

1. Construct the range chart using within-batch variation for the bulk material in Table
13.1. Assume that the 3 readings within each batch are true replicates.

2. Construct a moving average chart (n � 3) for the 2-oz finished container in Example
2, Table 13.1.

3. Compare the variances during the mixing stage in Example 2 using Bartlett’s test.
(The variances are estimated from the within MS terms in the ANOVAs in Table
13.7.)

4. Construct a range chart for the data of Table 13.12. Use the range of the daily
duplicates to construct this chart.
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5. Construct a control chart for individuals based on the data for 3 days for the low
QC concentration from Table 13.11.
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COMPUTER-INTENSIVE METHODS

The widespread availability of powerful computers has revolutionized society. The field
of statistics is no exception. Twenty years ago, the typical statistician had a collection of
tables and charts, without which he or she would have been lost. Today one can perform
complex statistical analyses without ever referring to a printed table, relying instead on
the statistical functions available in many standard software packages. The ubiquitous
availability of personal computing power and sophisticated programming packages permit
us to approach statistics today in a less mathematical, more intuitive manner than is possible
with the traditional formula-based approach.

The study of statistics by those lacking a strong mathematical background can be a
daunting task. The traditional approach usually begins with the introduction of basic proba-
bility theory followed by a presentation of standard statistical distributions. To this point,
nothing beyond algebra is required. Unfortunately, the progression to real-life problems
and the development of inferential methods often involve the derivation of formulas. In
many cases, this is accomplished through application of the calculus. The resulting formu-
las are generally neither intuitive nor simple to comprehend. Too often, the study of
statistics is relegated to a process of memorization of these formulas that are then used
in cookbook fashion. While the formula-based method of problem solving has an important
place in statistics, it is often intimidating to the nonstatistician. For the statistician, this
standard approach can become so automatic that the art of data analysis is lost and impor-
tant characteristics of the data may go unrecognized. Using computer-intensive methods,
we approach the solution of statistical problems through a logical application of basic
principles applied to a computer-based experiment.

Computer simulations can let us explore the behavior of probability-based processes
without becoming overly concerned about the underlying mathematics. When a real-life
process can be formulated to follow, or to approximately follow, a known statistical distri-
bution, its characteristics can be explored using Monte Carlo simulation. Bootstrapping
is a form of computer simulation that is applied to a specific set of data (a sample)
without assuming any specific underlying statistical distribution. Bootstrapping methods

437
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complement standard nonparametric statistical analyses. These are used when we do not
know, or do not want to assume, what underlying statistical distribution is operative.

14.1 MONTE CARLO SIMULATION

Monte Carlo simulation enables exploration of complex, probability-based processes,
many of which would be difficult to understand by even the most astute statistician using
standard formula-based methods. In simulation, the computer performs a large number of
experiments, such as the random drawing of balls from an urn, the tossing of a fair or
biased coin, or the drawing of random samples from a normal distribution. Solving a
problem using computer simulation involves reducing it to a simple probability-based
model, designing a sampling experiment based on the model, and then conducting the
experiment, via the computer, a large number of times. The cumulative frequency distribu-
tion of the experimental outcomes is viewed as the cumulative probability distribution for
the outcomes.

A simple example of how Monte Carlo simulation can be used instead of, or to
complement, formula-based methods can be demonstrated using the antibiotic example
of Chapter 3. In this example, the cure rate for an antibiotic treatment is stated to be 0.75.
The question posed is, what is the probability that three of four treated patients will have
a cure? The analysis tool add-in of Microsoft Excel provides a convenient way to simulate
an answer to this question. To activate this Excel option, if it is not already available in
your installation, choose the Tools option from the Main Menu and then select Add-ins.
From the choices in the drop-down Add-ins menu, select (click on) both the Analysis
ToolPak and the Analysis ToolPak-VBA. Both choices should show a check mark in their
respective boxes.

To answer our antibiotic question, open a new Excel worksheet.

Execute the following commands to simulate 30,000 flips of a biased coin, expected
to land on head 75% of the time and tail 25% of the time:

From the Main Menu bar, choose Tools.
From the options listed under Tools, choose Data Analysis
From the Data Analysis options, choose the Random Number Generator

In the drop-down Dialog Box, enter the following:

For Number of variables, enter 6.
For Number of Random Numbers, enter 30000.
For Distribution, select Binomial from the choices in the pop-up menu.
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Enter 0.75 for the P Value and 4 for the Number of Trials.
Enter 12345 for the Random Seed. (Any random number can be used for the seed)
Click on Output Range and enter A1 in the area to the right of this option.
Click OK to start the simulation.

The commands instructed Excel to generate entries in the cells of the first six columns
of the first 30,000 rows of the worksheet. The entry in each of these 180,000 cells represents
the simulated number of successes (heads) observed in four independent Bernoulli trials
(4 flips of a biased coin). The possible outcome of each trial (flip) is either a 0 (tail) or
a 1 (head), with the probability of getting a 1 (success) being 0.75 and the probability of
getting a 0 (failure) being 0.25 (The coin is biased toward heads.) We might also have
flipped a balanced tetrahedron with three sides labeled success and one labeled failure.
The possible cell values are 0, 1, 2, 3, or 4 (number of heads in 4 flips of the biased coin).
The following shows partial results of one simulation and the set of commands used to
obtain these results.

Commands in Simulation
Main Menu Tools → Data Analysis → Random Number Generator
Dialog Box

Number of Variables Enter 6 Generate 6 variables
Number of Random Enter 30,000 Generate 6 variables 30,000
Numbers times
Distribution Select Binomial Simulate flips of a coin
P Value Enter 0.75 Coin comes up heads 3 out

of 4 flips
Number of Trials Enter 4 Each Variable is � heads in

4 flips
Random Seed Enter 12345 Can enter desired value here
Output Range Enter A1 Simulated values in cells A1

– F30000
OK Click on this to perform

the random numbers
generation

We need to determine the proportion of the 180,000 cells that have a simulated value of
exactly 3 (three heads from four flips of the coin). The final set of commands to obtain
a solution to our question is:
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Final Commands in Simulation
Into: Enter: Result:
Cell H1 � IF(A1 � 3,1,0) Places a 1 if A1 is a 3, 0

otherwise
Cells I1 through M1 Copy the formula from H1 Determines if 3 heads are in

cells B1:F1
Cells I2 through M30000 Copy formulas from row 1 Determines where 3 heads

to rows 2 through 30,000 occur in remaining cells
Cell G1 � AVERAGE(H1: Proportion (probability) of 3

M30000) heads in 4 flips

The probability, 0.4235, observed in the simulation, compares favorably to the exact value,
0.4219, calculated using the formula for the binomial expansion. We can increase the
accuracy of the simulation estimate by including more columns in the simulation or repeat-
ing it a number of times and using the average result of all the repeats. Performing the
simulation, with the same seed, 12345, but using 10 columns (variables) instead of 6 gave
a probability of 0.4222.

The Central Limit Theorem, used extensively in statistics, indicates that the shape of
the distribution of sample means tends toward normality as the sample size increases. This
occurs regardless of the underlying statistical distribution from which the sample is drawn.
This important concept is not particularly intuitive. Computer simulation is a simple way
to demonstrate the impact that the Central Limit Theorem has on the sampling process.

We use Excel to simulate samples drawn from the Uniform distribution, whose shape
is markedly different from that of the Normal distribution. In the Uniform distribution,
every value has an equal probability of occurrence. A histogram of independent, single
samples (sample size of 1) is expected to be represented by a series of bars of equal height
(frequency). As a result of the Central Limit Theorem, a histogram of the sample means,
where the sample consists of a sufficient number of values drawn from the Uniform
distribution, should have a pattern approximating the familiar bell-shaped curve of the
Normal distribution. We can show this by performing a Monte Carlo simulation. We
simulate the sampling of 6 values randomly and independently drawn from the Uniform
distribution with range 0–1. We then determine the mean of the six values in the sample.
The sampling is then repeated a large number of times. Histograms are constructed for
both the first value from each set of six independent values and for the mean of the six
independent values in each sample. The histogram of the single values shows how distinctly
different the shape of the Uniform distribution is from that of the Normal distribution.
The histogram of the sample mean demonstrates the power of the Central Limit Theorem,
even when dealing with a relatively small number of values, only six, sampled from a
distribution whose shape is extremely nonnormal.
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Commands in the Simulation
Main Menu Tools → Data Analysis → Random Number Generator
Dialog Box

Number of Variables 6 Generate 6 variables in each
trial

Number of Random 1,000 Generate 1,000 trials
Numbers
Distribution Uniform Simulate the Uniform

distribution
Between 0 and 1 Distribution range
Random Seed 12345 Can enter a different seed

value if desired
Output Range A2 Simulated values placed in

cells A2 – F1001
OK Click to perform simulation

Cell G2 � Average(A2:F2) Calculate mean of simulated
values, trial 1

Cells G3:G1001 Copy H2 formula Calculate mean for remaining
trials

Cells H2:H12 0,0.1,0.2, …,0.9,1.0 Bins for histogram bars
Cells I2:I14 0.20,0.25, …0.75,0.80 Bins for histogram
Main Menu Tools → Data Analysis → Histogram
Dialog Box

Input Range A2:A1001 Use variable 1 values
Bin Range H2:H12 Bin range
New Worksheet Ply Check this option
Chart Output Check this option
OK Click to create histogram

In New Worksheet Click on Histogram Chart
Main Menu Chart → Location
As new sheet Click this option & enter

‘‘Graph 1’’
Double Click on one of the histogram bars
Options Tab Click to open
Gap Width 10
Sheet 1 Click on this to return to

simulation results
Main Menu Tools → Data Analysis → Histogram
Dialog Box

Input Range G2:G1001 Use mean of the 6 values in
each trial

Bin Range I2:I14 Bin range
New Worksheet Ply Check this option
Chart Output Check this option
OK Click to create histogram
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In New Worksheet Ply Click on Histogram Chart
Main Menu Chart → Location
As new sheet Click this option & enter ‘‘Graph Mean’’
Double Click on a Bar
Options Tab Click to open
Gap Width 10

A B C D E F G H I

1 Var 1 Var 2 Var 3 Var 4 Var 5 Var 6 Mean Bins1 Bins Mean

2 0.23 0.58 0.79 0.68 0.18 0.71 0.53 0.0 0.20

3 0.84 0.17 0.89 0.71 0.46 0.45 0.59 0.1 0.25

4 0.62 0.66 0.29 0.43 0.67 0.31 0.50 0.2 0.30

5 0.80 0.12 0.31 0.25 0.34 0.47 0.38 0.3 0.35

6 0.08 0.32 0.65 0.11 0.04 0.84 0.34 0.4 0.40

7 0.65 0.06 0.40 0.97 0.14 0.69 0.48 0.5 0.45

8 0.20 0.64 0.48 0.87 0.46 0.42 0.51 0.6 0.50

9 0.68 0.78 0.38 0.89 0.05 0.23 0.50 0.7 0.55

10 0.09 0.55 0.75 0.86 0.57 0.23 0.51 0.8 0.60

11 0.56 0.22 0.11 0.81 0.11 0.05 0.31 0.9 0.65

12 0.03 0.14 0.81 0.72 0.02 0.28 0.33 1.0 0.70

13 0.85 0.24 0.76 0.54 0.46 0.67 0.59 0.75

14 0.26 0.80 0.86 0.45 0.57 0.44 0.56 0.80

One of the most useful applications of computer simulation is in dealing with a
complex probability problem. This can be demonstrated by an example based on FDA’s
guidance for industry entitled ‘‘Bioanalytical Method Validation,’’ May 2001, copies of
which are available at www.fda.gov/cder/guidance/index.htm. The prescribed procedure
for monitoring the accuracy and precision of a validated bioanalytical method, in routine
use, involves the measurement of quality control (QC) samples, processed in duplicate,
at each of three different concentrations. The QC samples are prepared in the same matrix
(serum, plasma, blood, urine, etc.) as the samples with unknown concentrations to be
analyzed. The three concentration levels of the QC samples cover the working range of
the bioanalytical method, one in the lower region, a second at midrange, and the third in
the upper region of the standard curve. QC samples are to be analyzed with each batch
run of unknown samples. The run is acceptable if at least four of the six QC sample values
are within 20% of their nominal concentrations. Two of the six samples may be outside
the 	20% acceptance region, but not two at the same concentration level.

Assume that we have QC levels at 10 ng/ml, 250 ng/ml, and 750 ng/ml. Our assay
method has a 15% CV (% relative standard deviation) over its entire working range. What
proportion of batch runs do we expect to reject when the assay is running as validated?
Also assume that we have accurately prepared our QC samples and that any deviations
in their assayed values are random errors that follow a Normal distribution (i.e., the mean
deviation � 0%, standard deviation � CV% of the assay).
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Histogram of simulated values (sample of size 1) from the Uniform distribution.

The traditional formula-based calculations rely on the known properties of the Normal
and Binomial distributions. The probability that a single QC value will be within the
acceptance region is equal to the proportion of the Standard Normal distribution, which
lies between �Z and �Z, where Z � 20%/CV%. With a CV% equal to 15%, the probabil-
ity that any single QC value will be acceptable is the proportion of the Standard Normal
distribution that lies between Z-values of �1.33 and �1.33, or p � 0.8176. (Z � (X –
�)/� � (20 – 0)/15 � 1.33; see Chapter 3). The probability that a single QC value will
fail to be accepted is 1-p or q � 0.1824. The batch run is acceptable if all six QC values

Histogram of the sample mean (n � 6) simulated from the Uniform distribution.
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pass the criteria, five of six pass, or four of six pass. According to the binomial expansion,
this probability is p6q0 � 6p5q1 � 15p4q2. (See Chapter 3.) However, three of the 15
ways that four QC values pass involve two failures at the same concentration level. This
is not permitted by the FDA acceptance criteria. Therefore, this reduces the 15 possible
ways of 4 QC values passing to 12 ways. The probability of run acceptance, based on the
QC results, is p6 � 6p5q1 � 12 p4 q2, or 0.88. We expect that 12% of our runs (1–0.88
� 0.12) will fail due to random error alone.

The simulation to evaluate this same question is easily accomplished using Excel.
Open an Excel Worksheet and place the labels in the cells as shown in row 1.

A B C D E F G

1 QC1 QC1 QC2 QC2 QC3 QC3 Prob Pass

2

3

4

5

Commands in Simulation
Main Menu Tools → Data Analysis → Random Number Generator
Dialog Box

Number of Variables 6 Generate 6 QC values for each
run (row)

Number of Random 5,000 Generate the values for 5,000
Numbers runs
Distribution Normal Sample is from the Normal Dist.
Mean 0 True QC deviation is 0% (100%

accurate)
Standard Deviation 15 CV for QC deviation is 15%
Random Seed Enter 12345 Can enter a different seed if

desired
Output Range Enter A2 Variable values in cells A2–

F5001
Click OK

Cell H2 � IF(ABS(A2) � 20,1,0) If QC1 deviation is � 20%, it
passes (1)

Cells I2, H3:I5001 Copy H2 formula Evaluates remaining QC1 values
Cell J2 � IF((H2 � I2) 
0,1,0) QC1 passes (1) if either replicate

passes
Cells J3:J5001 Copy J2 formula Evaluates runs 2–5000 for QC1

passing
Cell K2 � IF(ABS(C2)�20,1,0) If QC2 deviation is �20%, it

passes (1)
Cells L2, K3:L5001 Copy K2 formula Evaluates remaining QC2 values
Cell M2 � IF((K2 � L2)
0,1,0) QC2 passes (1) if either replicate

passes
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Cells M3:M5001 Copy M2 formula Evaluates runs 2–5000 for QC2
passing

Cell N2 � IF(ABS(E2)�20,1,0) If QC3 deviation is � 20%, it
passes (1)

Cells O2, N3:O5001 Copy N2 formula Evaluates remaining QC3
values

Cell P2 � IF((N2 � O2)
0,1,0) QC3 passes (1) if either replicate
passes

Cells P3:P5001 Copy P2 formula Evaluates runs 2–5000 for QC3
passing

Cell Q2 � J2*M2*P2 Flag is 1 if each QC level passes
Cells Q3:Q5001 Copy Q2 formula Evaluates runs 2–5000 for

passing each level
Cell R2 � IF((H2 � I2 � K2 � Flag is 1 if � 4 QC passing

L2 � N2 � O2) 

3,1,0

Cells R3:R5001 Copy R2 formula Evaluates runs 2–5000 for � 4
passing

Cell S2 �Q2*R2 Flag value is 1 if all QC criteria
are met

Cells S3:S5001 Copy S2 formula Evaluates runs 2–5000 for
meeting criteria

Cell G1 � Average(S2:S5001) Probability of run passing (here,
0.8754)

A B C D E F G

1 QC1 QC1 QC2 QC2 QC3 QC3 Prob Pass

2 �11.01 3.22 11.95 6.82 �13.85 8.49 0.8754

3 14.83 �14.60 18.18 8.49 �1.64 �1.82

4 4.74 6.32 �8.26 �2.66 6.61 �7.36

5 12.40 �17.59 �7.36 �9.93 �6.22 �1.26

6 �21.03 �7.02 5.91 �18.44 �26.17 15.19

7 5.74 �22.78 �3.95 28.12 �16.39 7.45

8 �12.51 5.25 �0.90 16.61 �1.51 �2.88

9 7.18 11.53 �4.59 18.02 �25.29 �11.08

10 �20.20 1.84 9.95 16.37 2.66 �11.17

In this simulation of 5000 runs, 87.5% passed (probability � 0.8754) and 12.5%
failed. These results are in close agreement with the theoretical values of 88% passing
and 12% failing.

In the QC example, it would have been easier to apply the normal and binomial
formulas rather than conducting the Excel simulation to answer our question. Had we
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H I J K L M N O P Q R S

1 P1_1 P1_2 Pass1 P2_1 P2_2 Pass2 P3_1 P3_2 Pass3 No 2 Pass4 Run

2 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1 1 1 1 1 1

6 0 1 1 1 1 1 0 1 1 1 1 1

7 1 0 1 1 0 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1 1 1 1 1 1

9 1 1 1 1 1 1 0 1 1 1 1 1

10 0 1 1 1 1 1 1 1 1 1 1 1

wanted to investigate a more complex and perhaps more realistic situation, a simulation
approach might be far simpler, and considerably more intuitive, than the formula-based
approach. As an example, consider the situation where the standard deviation is 18% at
the lowest concentration QC, 15% at the next higher concentration, and only 12% at the
highest concentration. In addition, if the highest QC value exceeds the highest standard
curve concentration, it cannot be reported so it is considered a failing value. It would be
difficult to deal with this using the formula-based approach, but only marginally more
difficult than our previous example if solved by simulation. The more complicated (realis-
tic) our scenario, the more likely it is that computer simulation will prove to be the easier
methodology to implement.

Monte Carlo simulation also offers an intuitive approach to hypothesis testing. In
Table 5.9, the percent dissolutions after 15 min for two different tablet formulations, A
and B, are listed. The distributions of the mean values for the two samples (10 values for
each formulation) are assumed to follow normal distributions. Is the average dissolution
of formulation A at 15 min different than that of formulation B? The formula-based
approach relies on the application of the t-test for the difference between two independent
means as described in section 5.2.2. The calculated t-statistic, 1.99, indicates that the
probability of seeing a difference as large as that observed for these two formulations, if
the two formulations are actually equivalent, is 0.062. The simulation approach requires
applying only our knowledge that the variance of the sample mean is equal to the variance
of the individual values divided by n, the size of the sample. The square root of this
variance is the standard error of the mean. According to the Central Limit Theorem, the
sample mean will tend to be normally distributed about its true mean value with a variability
equal to the standard error.

Our question is formulated for a simulation solution by the following null hypothesis
and its alternative:

Ho: The difference actually observed between the A and B means, 5.7, occurs by
chance at least 5% of the time from two independent samples, each of size 10, taken
from the same Normal distribution with mean and standard deviation equivalent to
those in the combined (A � B) sample.

Ha: The difference observed between the sample means, 5.7, occurs less than 5% of
the time by chance, indicating that it is unlikely that the two formulations represent
the same population (i.e. their means are not equal).

The following is a simulation to evaluate our hypotheses.
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A B C D E F G H

1 Form Percent Sim A Sim B Abs(Diff) GE 5.7 Prob (Diff GE 5.7)

2 A 68 72.7 74.7 2.1 0 0.065

3 A 84 76.0 75.2 0.7 0

4 A 81 72.2 75.5 3.2 0

5 A 85 76.4 72.1 4.3 0

6 A 75 76.9 75.5 1.4 0

7 A 69 74.0 74.0 0.0 0

8 A 80 74.9 75.2 0.2 0

9 A 76 73.1 73.9 0.8 0

10 A 79 75.2 73.2 2.0 0

11 A 74 76.1 71.7 4.4 0

12 B 74 73.2 72.8 0.4 0

13 B 71 73.3 74.1 0.7 0

14 B 79 71.2 73.2 2.0 0

15 B 63 75.1 71.6 3.5 0

16 B 80 70.4 76.5 6.0 1

17 B 61 75.1 70.9 4.1 0

18 B 69 73.7 78.3 4.7 0

19 B 72 71.9 75.3 3.5 0

20 B 80 72.4 75.0 2.6 0

21 B 65 74.1 76.7 2.5 0

22 74.0 73.8 0.2 0

23 Mean 74.25 75.3 75.9 0.6 0

24 Variance 47.46053 73.6 76.9 3.3 0

25 Stderr 10 2.178544 70.6 72.6 2.1 0

Commands in Simulation
Cells B2-B21 Enter the 15-minute dissolution values from Table 5.9
Cell B23 � AVERAGE(B2:B21) Mean of combined A and B values
Cell B24 � VAR(B2:B21) Variance of combined values
Cell B25 � SQRT(B24/10) Standard Error of mean for n �10

values
Main Menu Tools → Data Analysis → Random Number Generator
Dialog Box

Number of Variables 2 Generate simulated means for two
samples

Number of Random 30000 Perform 30000 simulations
Numbers
Distribution Normal The means are Normally

distributed.
Mean 74.25 Actual mean from combined A �

B sample
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Standard Deviation 2.178544 Standard Error of a mean for a
sample (n � 10)

Random Seed Enter 12345 Can enter a different seed if desired
Output Range Enter D2 Simulated means in cells D2 –

E30001
Click OK

Cell F2 � ABS(D2-E2) Absolute value of difference
between the two

simulated means
Cells F3-F30001 Copy formula from F2
Cell G2 � IF(F2 � 5.7,0,1) If simulated means differ as much

as what we saw for
the actual sample then value is 1,

otherwise it is 0
Cells G3-G30001 Copy formula from G2
Cell H2 � AVERAGE(G2: Proportion of times that results are

G30001) as extreme as what we saw with
actual sample (probability)

Our estimated probability for the difference between the Formulation A and B means
is 0.065, which is very similar to the result obtained with the t-test, p � 0.062. We can
further refine our estimate by repeating the simulation multiple times (using different seed
values each time) and using the average probability. The results from a second simulation
using a seed value 5555 gave a probability estimate of 0.062. The estimated probability
obtained from averaging those from the two simulation estimates p � 0.0635.

The next example again uses the data in Table 5.9, in Chapter 5. Having observed a
difference of 5.7 between the mean 15-min dissolution values of formulations A and B,
what is the 95% confidence interval for the true mean difference between the formulations?
Using Monte Carlo simulation, the answer can be obtained in a very intuitive way. Assume
that the means from the two samples are normally distributed, a reasonable assumption
given the Central Limit theorem. The variance of the difference between two sample
means is the sum of the two sample’s variance divided by the number of observations (n)
in the sample. It is assumed that there is a common variance (VAR) for the two formula-
tions. The variance for the difference between the sample means is (VAR/na � VAR/
nb), where na and nb are the number of values in the A and B samples, respectfully. As
both samples consist of 10 values, the variance for the difference between means is equal
to (2 � VAR/10). The standard error for the difference is equal to the square root of this
value.

Applying the Central Limit Theorem, we can assume that the difference between the
two means will be approximately normally distributed with � � 5.7 (our observed mean
difference) and standard deviation equal to our estimated standard error. Simulating 30,000
mean differences, we can easily estimate the lower and upper 95% confidence limits. The
95% confidence limits encompass values between the 2.5th and 97.5th percentiles of the
distribution describing the mean difference between the two samples (see Chapter 5).
These limits, for our Monte Carlo simulation of 3000 mean differences, are simply the
750th sorted value (2.5th percentile) and the 29,250th sorted value (97.5th percentile).
The confidence interval obtained from the simulation, �0.34 to 11.79%, is comparable
to that calculated using the t-distribution method, �0.32 to 11.72% (see Chapter 5 for a
description of how to apply the t-distribution method).
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A B C D E F G

1 Form Percent Sim Diff Sorted Position 95% Cl Lo 95% Cl Hi

2 A 68 2.14 �23.68 �0.34 11.79

3 A 84 �1.95 �23.68 2.5%

4 A 81 4.83 �6.65 751

5 A 85 3.79 �6.14

6 A 75 7.35 �5.83 97.5%

7 A 69 3.48 �5.83 29251

8 A 80 5.44 �5.60

9 A 76 7.76 �5.15

10 A 79 2.14 �5.15

11 A 74 4.97 �5.04

12 B 74 6.55 �4.95

13 B 71 5.83 �4.78

14 B 79 7.84 �4.64

15 B 63 2.10 �4.64

16 B 80 4.55 �4.51

17 B 61 5.04 �4.41

18 B 69 3.15 �4.31

19 B 72 7.07 �4.26

20 B 80 0.07 �4.18

21 B 65 4.57 �4.03

22 5.96 �3.96

23 Mean A 77.1 11.29 �3.93

24 Mean B 71.4 1.74 �3.90

25 Difference 5.7 10.80 �3.79

26 Variance 47.46053 5.64 �3.59

27 Stderr Diff 3.080926 5.70 �3.59

Commands in Simulation
Cells B2-B21 Enter the Formulation A and B dissolution values from

Table 5.9
Cell B23 � AVERAGE(B2:B11) Mean of formulation A values
Cell B24 � AVERAGE(B12:B21) Mean of formulation B values
Cell B25 �B23-B24 Difference between A and B

means
Cell B26 � VAR(B2:B21) Variance of combined A and B

values
Cell B27 � SQRT(2*B26/10) Standard Error for difference

between means
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Main Menu Tools → Data Analysis → Random Number Generator
Dialog Box

Number of Variables 1 Generate a simulated difference
between means

Number of Random 30000 Generate 30000 mean
Numbers differences

Distribution Normal Value is from the Normal Dist.
Mean 5.7 Observed mean difference

between A & B values
Standard Deviation 3.080926 Standard Error of the mean

difference
Random Seed Enter 12345 Can enter a different seed if

desired
Output Range Enter C2 Simulated differences in cells

C2 – C30001
Click OK
Select Column C by clicking at the top of the column and then from Main Menu

choose Edit → Copy
Click at the top of column D and from Main Menu choose Edit → Paste
Cell D1 Change label to Sorted
Click on Column D to select it
Main Menu Data → Sort

Choose to sort only the selection in ascending order.
Cell E4 �1 � 0.25*30000 Column D cell with 2.5th

percentile value
Cell E7 �1 � 0.975*30000 Column D cell with 97.5th

percentile value
Cell F2 �D751 Lower 95% confidence limit

value
Cell G2 �D29251 Upper 95% confidence limit

value

The next example comes from section 5.2.6 in Chapter 5. In two groups of patients,
the incidences of headaches are evaluated to obtain a 95% confidence interval on the true
difference in headache rates between the groups. In Group 1, there were 46 patients with
headaches among the 196 patients, for a rate (proportion) of 0.2347. In the second group,
35 of the 212 patients experienced headaches, for a rate of 0.1651. The following Excel
worksheet shows how to obtain the 95% confidence interval on the difference between
the incidence proportions in the two groups by simulation.

We start by generating random values of the number of headaches in the two groups
based on the binomial distribution. For Group 1, N � 196 and p � 0.2347. For Group
2, N � 212 and p � 0.1651. For each generated number of headaches for the two groups
(simulated trial), we calculate the proportion of headaches ‘‘observed’’ in the groups and
then find the difference between these proportions (Groups 1–Group 2). Thus, we generate
30,000 trials (see below). From the distribution of the Group 1-to-2 differences in theses
trials, we find the 2.5th and 97.5th percentiles as in the previous example. This is the
Bootstrap 95% confidence interval.
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A B C D E F G H I J

1 S1 S2 Sim S1 Sim S2 p1 p2 Diff Sorted Position 95% Cl

2 46 35 47 41 0.240 0.193 0.046 �0.079 2.5% Low

3 51 40 0.260 0.189 0.072 �0.073 751 �0.009

4 N1 N2 33 30 0.168 0.142 0.027 �0.072

5 196 212 39 27 0.199 0.127 0.072 �0.072 97.5% Hi

6 50 38 0.255 0.179 0.076 �0.070 29251 0.147

7 P1 P2 40 30 0.204 0.142 0.063 �0.070

8 0.2347 0.1651 48 47 0.245 0.222 0.023 �0.069

9 55 33 0.281 0.156 0.125 �0.064

10 51 40 0.260 0.189 0.072 �0.063

Commands in Simulation
Cells A2 & B2 Enter the number of patients in Group 1 and 2,

respectively, who experienced headaches
Cells A5 & B5 Enter the total number of patients in Groups 1 and 2,

respectively
Cell A8 �A2/A5 Group 1 observed proportion of

headaches
Cell B8 �B2/B5 Group 2 observed proportion of

headaches
Main Menu Tools → Data Analysis → Random Number Generator
Dialog Box

Number of Variables 1 Simulate Group 1 headache number
Number of Random 30000 Generate 30000 simulated trials
Numbers
Distribution Binomial Simulated number is from binomial

distribution
p Value 0.234694 Group 1 observed proportion of

headaches
Total Number of Trials 196 Number of patients in Group 1
Random Seed Enter 12345 Enter a different seed if desired
Output Range Enter C2 Simulated headache numbers in C2

– C30001
Click OK

Main Menu Tools → Data Analysis → Random Number Generator
Dialog Box

Number of Variables 1 Simulate Group 2 headache number
Number of Random 30000 Generate 30000 simulated trials
Numbers
Distribution Binomial Simulated number is from binomial

distribution
p Value 0.165094 Group 2 observed proportion of

headaches



452 Chapter 14

Total Number of Trials 212 Number of patients in Group 2
Random Seed Enter 12345 Enter a different seed if desired
Output Range Enter D2 Simulated headache numbers in D2

– D30001
Click OK

Cell E2 �C2/196 Proportion of Group 1 simulated
headaches in trial 1

Cell F2 �D2/212 Proportion of Group 2 simulated
headaches in trial 1

Cell G2 �E2-F2 Difference between group headache
rates for 1st trial

Cells E3:G30001 Copy E2:G2 Calculates proportions and
differences for other trials

Cells H2:H30001 Copy column G values, using the Paste Special, Values
method

Click at top of column H to choose it (column is
highlighted)

Main Menu Tools → Data → Sort
Click option to continue without expanding current

selection
Click OK to sort the column with a header, in ascending

order
Cell I3 �1�0.025*30000 Row with the 2.5th percentile

difference
Cell I6 �1�0.975*30000 Row with the 97.5th percentile

difference
Cell J3 �H751 95% CI low limit � 2.5th percentile

value
Cell J6 �H29251 95% CI hi limit � 97.5th percentile

value

The 95% confidence interval limits based on the simulations, �0.009 to 0.147, are in
close agreement with the limits of �0.008 to 0.148 calculated using normal approximation
methods and with the limits �0.012 to 0.152 obtained using the more conservative continu-
ity-corrected, normal approximation. Running the simulation a number of times, using
different seed values each time, and then averaging the results should provide values closer
to the exact limits.

One area where Monte Carlo methods are extremely useful is in determining the sizes
of samples needed to obtain a desired power for a given statistical evaluation. A number
of formulas are presented in Chapter 6 that can be used for these calculations. In many
situations, while the formulas are easily applied, their derivations are not so easily
understood. Simulation provides an extremely intuitive approach in this area. As
discussed in Chapter 6, to determine the sample size needed for a given study we
need to state the alpha level (e.g., 0.05), the beta level (e.g., 0.2 � power of 0.8),
and a difference between treatments of a specified magnitude (usually a difference of
practical significance). To determine the probability of obtaining a given outcome from
a particular statistical test (e.g., the probability of getting a p-value � 0.05 in an
independent group t-test) we simply simulate a large number of random samples,
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calculate the statistic for each simulation, and then determine the proportion of times
the statistic had the desired outcome. The more complicated the problem, the more
intuitive and useful is the simulation method.

For sample size determination, we usually calculate the proportion of times we get
a significant difference under the null hypothesis, which causes us to reject it in favor of
the alternative hypothesis where the meaningful difference is specified. The following
example uses both this approach and a modification needed when we want to test for
noninferiority (or equivalence) rather than testing for a difference.

In this example, we want to conduct a clinical trial on a new drug developed to treat
a certain disease. Preliminary animal studies indicate that the new drug will be at least as
effective as the current treatment for the disease and is likely to have fewer serious side
effects. The FDA has indicated that it wants to see a placebo-controlled, noninferiority
trial. This trial will compare the new drug, A, the current treatment B, and placebo, in
the treatment of subjects with the disease. The primary efficacy measure will be the
proportion of subjects who show improvement. We intend to show that the new drug is
at least as effective as (noninferior to) the current drug B. To demonstrate noninferiority
we must construct a 95% confidence interval for the difference between the Drug A and
Drug B proportions and then show that this difference is no worse than 20% (i.e., Drug
A is no more inferior to Drug B than 20%). In addition to showing noninferiority, we
must simultaneously demonstrate that the clinical trial had adequate sensitivity to detect
true differences in efficacy had they existed. This is established by showing that both
Drugs A and B have superior efficacy to that of the placebo.

From prior experience, we know that 25% of patients left untreated will improve
spontaneously (placebo success proportion is expected to be 0.25) and improvement is
seen in 45% of those treated with Drug B (success rate for B is expected to be 0.45). We
believe that the new drug will be successful in treating at least 50% of the patients (cure
rate for Drug A is conservatively set at 0.50).

The statistical evaluation comparing Drug A to Drug B involves the construction of
the 95%, continuity-corrected, confidence interval on the difference between their success
proportions. If the lower limit of this confidence interval is greater than �0.20, then
noninferiority of A to B will be established. Note that while our interest is only with the
lower confidence interval limit (i.e., it is one-sided), the FDA usually requires the use of
the more conservative, two-sided, confidence interval (critical Z-value of 1.96 is used
instead of 1.645). Had our intention been to show therapeutic equivalence of Drug A to
Drug B, rather than noninferiority, then we would need to show that the entire confidence
interval falls within the equivalence interval �0.20 to � 0.20. For the trial to be successful,
we must also show that the two-sided, continuity-corrected, Z-tests on the differences
between the success proportions for Drug A compared to placebo and for Drug B compared
to placebo show statistical superiority for the active treatments (i.e., differences 
 0 and
p � 0.05). The following equations will be used (see Chapter 5):

95 1 96 0 5 11 2% ( ) [ . [( ) / ( ) / ] . ( //CI p p p q n p q n na b a b a b b b a= − ± ∗ ∗ + ∗ + ∗ +11

1 0 5 1 1 1 1

/ )]

[( ) . ( / / )] /[( )( / /

n

test p p n n p q n n
b

a p a p 0 0 aZ − = − − ∗ + ∗ + pp

b p b p 0 0 btest p p n n p q n n

)]

[( ) . ( / / )] /[( )( / /

/1 2

2 0 5 1 1 1 1Z − = − − ∗ + ∗ + pp )] /1 2

where:
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We will determine our sample size by trial and error. First we specify a given sample
size. We assume that the two active products’ success rates actually differ by 5% (0.50
vs. 0.45) and that the placebo success rate is that known to occur in untreated patients
(0.25). We then randomly generate (simulate) success/failure results for treating patients
with Drug A, Drug B, and placebo. From these results, we calculate the proportions of
patients with success in each treatment group and calculate the above statistics. Our proba-
bility of trial success (power) is the proportion of times that our simulated samples meet
the criteria for noninferiority and superiority.

Our initial evaluation uses a 2:2:1 randomization (A:B:placebo) in about 350 patients
(a number consistent with our initial budget allocation). We propose to use 340 patients,
136 in each active treatment group and half that number, 68, in the placebo group. We
want to estimate the probability that our trial will show both noninferiority of drug A
compared to drug B, and superiority of both A and B over placebo. We determine this
easily using Monte Carlo simulation.

As shown in the following Excel worksheet, we simulate the results for 30,000 trials
each involving the treatment of 136 patients for Drugs A and B, and 68 patients for
placebo. The number of successfully treated patients for Drug A is placed in column A,
for Drug B in column B, and for placebo in column C. Columns D, E, and F contain the

A B C D E F G H I J K

1 Drug A Drug B Placebo na nb np pa pb pp p01 p02

2 66 61 10 136 136 68 0.485 0.449 0.147 0.373 0.348

3 65 57 13 136 136 68 0.478 0.419 0.191 0.382 0.343

4 63 59 17 136 136 68 0.463 0.434 0.250 0.392 0.373

5 66 62 18 136 136 68 0.485 0.456 0.265 0.412 0.392

6 66 57 14 136 136 68 0.485 0.419 0.206 0.392 0.348

7 63 60 16 136 136 68 0.463 0.441 0.235 0.387 0.373

8 67 63 14 136 136 68 0.493 0.463 0.206 0.397 0.377

9 67 66 18 136 136 68 0.493 0.485 0.265 0.417 0.412

10 73 61 20 136 136 68 0.537 0.449 0.294 0.456 0.397

11 73 70 19 136 136 68 0.537 0.515 0.279 0.451 0.436

12 82 61 20 136 136 68 0.603 0.449 0.294 0.500 0.397
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total number of treated patients (136, 136, and 68) for Drug A, Drug B, and placebo,
respectively. The calculated success proportions for Drug A, Drug B, and placebo are
placed in columns G, H, and I, respectively. The pooled success proportions for the Drug
A and placebo comparisons and for the Drug B and placebo comparisons, under the null
hypothesis of no difference between treatment success proportions, are placed in columns
J and K, respectively. A portion of the worksheet with these results are shown below
along with the commands used to obtain them.

Commands in Simulation
Main Menu Tools → Data Analysis → Random Number Generator
Dialog Box

Number of Variables 1 Simulate number of successes for
Drug A

Number of Random 30000 Generate 30000 simulated trials
Numbers
Distribution Binomial Numbers come from binomial

distribution
p Value 0.50 Expected Drug A success proportion
Total Number of Trials 136 Number of patients in treatment group
Random Seed Enter 1234 Enter a different seed if desired
Output Range Enter A2 Drug A number of successes in A2 –

A30001
Click OK

Main Menu Tools → Data Analysis → Random Number Generator
Dialog Box

Number of Variables 1 Simulate number of successes for
Drug B

Number of Random 30000 Generate 30000 simulated trials
Numbers
Distribution Binomial Numbers come from binomial

distribution
p Value 0.45 Expected Drug B success proportion
Total Number of Trials 136 Number of patients in treatment group
Random Seed Enter 2341 Enter a different seed if desired
Output Range Enter B2 Drug B number of successes in B2 –

B30001
Click OK

Main Menu Tools → Data Analysis → Random Number Generator
Dialog Box

Number of Variables 1 Simulate number of successes for
placebo

Number of Random 30000 Generate 30000 simulated trials
Numbers
Distribution Binomial Numbers come from binomial

distribution
p Value 0.25 Expected placebo success proportion
Total Number of Trials 68 Number of patients in treatment group
Random Seed Enter 3412 Enter a different seed if desired



456 Chapter 14

Output Range Enter C2 placebo number of successes in C2 –
C30001

Click OK
Cells D2,E2,F2 Enter number of patients in treatment groups A, B and

placebo
Cell G2 �A2/D2 Proportion of successes for Drug A
Cell H2 �B2/E2 Proportion of successes for Drug B
Cell I2 �C2/F2 Proportion of successes for placebo
Cell J2 �(A2�C2)/ Pooled proportion for A & placebo

(D2�F2)
Cell K2 �(B2 � C2)/ Pooled proportion for B & placebo

(E2 � F2)
Cells D3:K30001 Copy formulas from cells D2 through K2

Next we calculate the continuity correction, 0.5 � (1/na � 1/nb), for the noninferiority
calculation and place it in column L. We do the same for the superiority comparisons of
Drug A to placebo and Drug B to placebo, and place these values in columns M and N.
The 90% confidence interval lower limit for each trial (row) is calculated and placed in
Column O. The Z-test value for the comparison of Drug A to placebo is calculated and
placed in column P and that for Drug B to placebo is placed in column Q. Flags in columns
R, S, and T are set to 1 if we pass the noninferiority test, the A-to-placebo superiority
test, and the B-to-placebo superiority test, respectively. If all three tests are passed, then
a 1 is placed in column U indicating that the trial was successful. A failed test is designated
by a flag value of 0 placed in its respective column.

L M N O P Q R S T U

1 CCAB CC1 CC2 95%CI LO Z-test1 Z-test2 Flag1 Flag2 Flag3 Flag All

2 0.007 0.011 0.011 �0.089 4.557 4.105 1 1 1 1

3 0.007 0.011 0.011 �0.067 3.820 3.076 1 1 1 1

4 0.007 0.011 0.011 �0.096 2.789 2.406 1 1 1 1

5 0.007 0.011 0.011 �0.097 2.867 2.484 1 1 1 1

6 0.007 0.011 0.011 �0.059 3.701 2.858 1 1 1 1

7 0.007 0.011 0.011 �0.104 2.998 2.714 1 1 1 1

8 0.007 0.011 0.011 �0.097 3.794 3.421 1 1 1 1

9 0.007 0.011 0.011 �0.119 2.962 2.867 1 1 1 1

10 0.007 0.011 0.011 �0.037 3.131 1.973 1 1 1 1

11 0.007 0.011 0.011 �0.104 3.333 3.045 1 1 1 1

12 0.007 0.011 0.011 0.030 4.010 1.973 1 1 1 1

13 0.007 0.011 0.011 �0.082 3.888 3.328 1 1 1 1

14 0.007 0.011 0.011 �0.029 3.397 2.161 1 1 1 1

15 0.007 0.011 0.011 �0.163 3.491 3.960 1 1 1 1

16 0.007 0.011 0.011 �0.082 3.169 2.598 1 1 1 1

17 0.007 0.011 0.011 �0.015 2.139 0.664 1 1 0 0

18 0.007 0.011 0.011 �0.148 3.678 3.960 1 1 1 1
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Commands in Simulation (Continued)
Cell L2 �0.5*(1/D2 � 1/E2) Continuity correction (A vs. B)
Cell M2 �0.5*(1/D2 � 1/F2) Continuity correction (A vs. placebo)
Cell N2 �0.5*(1/E2 � 1/F2) Continuity correction (B vs. placebo)
Cell O2 �(G2-H2)-((1.96*SQRT(G2*(1-G2)/D2�H2*(1-H2)/E2)�L2))
Cell P2 �(G2-I2–M2)/SQRT(J2*(1-J2)*(1/D2�1/F2))
Cell Q2 �(H2-I2–N2)/SQRT(K2*(1-K2)*(1/E2�1/F2))
Cell R2 �IF(O2
�0.2,1,0) Flag � 1 if 95% CI is above �0.20
Cell S2 �IF(P2
1.96,1,0) Flag � 1 if A vs. placebo Z-test is

significant
Cell T2 �IF(Q2
1.96,1,0) Flag � 1 if B vs. placebo Z-test is

significant
Cell U2 �R2*S2*T2 Flag � 1 if all three tests pass
Cells L3: Copy formulas from

U30001 cells L2 through U2

Our probability (power) of showing noninferiority, superiority, or passing all three
required tests is simply the average of the 0/1 entries in the corresponding flag column,
the proportion of simulated trials in which we observed a successful (1) outcome.

V W X Y

1 p (noninf) p (superA) p (superB) p (trial)

2 0.9830 0.9206 0.7668 0.7353

Final Commands in Simulation
Cell V2 � Average(R2:R30001) Proportion where A was non-inferior to B
Cell W2 � Average(S2:S30001) Proportion where A was superior to placebo
Cell X2 � Average(T2:T30001) Proportion where B was superior to placebo
Cell Y2 � Average(U2:U30001) Proportion where A was non-inferior to B

and both A and B were each superior to
placebo (overall probability of success)

The probability of showing noninferiority, 0.983, and the probability of showing the
superiority of Drug A over placebo, 0.921, are both high with assumed proportions of 0.5
and 0.25 for Drug A and placebo, respectively. The probabilities of showing superiority
of Drug B (assumed proportion 0.45) over placebo, 0.767, and for the overall success of
the trial, 0.735, are unacceptably low.

We would like to know if there is a way to increase the probability of overall success
without increasing our costs (i.e., patient numbers). We decide to explore the question by
looking to a different randomization scheme. Perhaps a 1:1:1 randomization would increase
the probability of trial success. We will evaluate using an equivalent number of patients
in each treatment group to see if this improves our expected outcome. By setting our
sample sizes to 110 patients in each treatment ((330 total) and performing the simulation
and calculations again, we find that the probability of showing noninferiority decreases
slightly to 0.947, the probability of showing superiority of Drug A over placebo increases
slightly to 0.963, and the probability of showing Drug B to be superior to placebo signifi-
cantly increases to 0.849. The overall effect is that the probability of a successful trial is
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now increased to 0.789. By adding a few more patients to each treatment group and using
the 1:1:1 randomization scheme, we can bring the overall probability of trial success to
0.80, a typical level of power used in designing a clinical trial design. This is accomplished
by using essentially the same number of subjects that would provide only a 0.74 probability
of trial success with the 2:2:1 randomization scheme. Using computer simulations, these
types of what-if evaluations are easy to conduct and to understand.

Another important application of Monte Carlo simulation is estimating the properties
of a certain statistic when there is no known formula for doing so. For example, we might
want to determine the probability distribution for the difference between two sample
medians when the samples are drawn from similar, or dissimilar, statistical distributions.
When there are no standard formulas to evaluate the distributional properties of a complex
or unusual statistic, computer simulation is often the only tool available.

14.2 BOOTSTRAPPING

Bootstrapping (sometimes called resampling) encompasses a group of computer simulation
methods in which samples are repeatedly drawn not from some hypothesized statistical
distribution, but from the set of values that come from an actual sample obtained from
some real population. These methods typically assume only that the sample was randomly
selected from the population, thereby ensuring that it is likely to be representative of the
population from which it was drawn. The theory behind Bootstrap methods proposes
that the probabilistic information contained in the sample is reflective of corresponding
information contained in the actual population. This same assumption is also required for
most standard inferential methods. The primary difference between bootstrapping and
standard inferential methods is how we use this information contained in the sample.

Standard inferential methods rely on our knowledge of the distribution of a statistic
or parameter (e.g., mean, standard deviation, etc.) that we calculate from a sample collected
from a population with some assumed statistical distribution. As an example, it is known
that the average value calculated from a sample whose underlying population is assumed
to be normally distributed with mean � and variance �2 will follow a Normal distribution
with mean � and variance �2/n, regardless of the size of the sample, n. When neither �
nor � is known, we estimate these parameters from the sample average and its standard
deviation. A 95% confidence interval on � is calculated using the standard equation:
average 	 t�/2, n-1 � SE, where SE is the sample standard deviation divided by the square
root of n. The value t�/2, n-1 is obtained from student’s t-distribution. In the standard method,
using statistics calculated from the sample (e.g., mean and standard deviation) we infer
back to the values of the unknown parameters (e.g., � and �) of the underlying population.

In bootstrapping, we make no assumptions about the statistical distribution of the
population from which the sample was collected or about the distributional properties of
the sample itself. Instead, we treat the sample as if it was the population and repetitively
take samples (resamples) from it using computer simulation. The distribution of statistics
calculated from these computer-generated samples theoretically mimics the distribution in
the population. Using the frequency distribution of the statistic in the computer-generated
samples, we make inferences about the corresponding distribution in the underlying popu-
lation. One of the simplest bootstrapping methods will be used to provide a brief introduc-
tion to these powerful, computer-intensive simulation methods. The method is known as
the percentile method and is one of the most intuitive ones available.

Table 5.1 shows the assay results for 10 randomly selected tablets. The average value
for these results is 103.0 mg and the standard deviation is 2.218. If we assume that the
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sample comes from a population that is normally distributed, or that based on the Central
Limit Theorem the sample average is normally distributed, then we can calculate a 95%
confidence interval on �. This interval is determined to be 101.4 to 104.6, as shown in
Chapter 5. If we do not want to make distributional assumptions about the underlying
population or about the sample, then a Bootstrap method can be used to obtain a confidence
interval on � (the population average value) as shown below.

A B C D E F G H I J K L M

1 Mean Stdev Number: 1 2 3 4 5 6 7 8 9 10

2 103.0 2.218 Sample: 101.8 102.6 99.8 104.9 103.8 104.5 100.7 106.3 100.6 105.0

In row 1, columns D–M, we enter the numbers 1–10 to identify each observed assay
value in the sample. The observed sample values are entered into row 2, immediately below
their corresponding identification numbers. The mean (cell A2) and standard deviation (cell
B2) of the values are calculated using the Excel formulas �AVERAGE(D2:M2) and
�STDEV(D2:M2). We now go to column Y, reserving columns N–W for use later. We
next generate 10 random numbers from the Uniform distribution for each of our 3001
simulated trials (rows) and place these numbers in columns Y–AH. The numbers will be
rounded to integer values, and placed into columns N–W, to be used in obtaining our
Bootstrap sample for each simulated trial.

Y Z AA AB AC AD AE AF AG AH

1

2

3 3.08 6.26 8.09 7.08 2.60 7.43 8.55 2.49 8.99 7.43

4 5.11 5.07 6.62 6.97 3.62 4.87 7.03 3.81 8.16 2.08

5 3.81 3.29 4.05 5.20 1.72 3.88 6.88 1.99 1.36 8.60

Commands in Simulation
Main Menu Tools → Data Analysis → Random Number Generator
Dialog Box

Number of Variables 10 Simulate 10 values for each trial
Number of Random 3001 Perform the simulation for 3001 trials
Numbers
Distribution Uniform Values come from the Uniform

distribution
Parameters Between 1, 10 Generate equally-probable values

between 1 & 10
Random Seed 12345 Enter a different seed if desired
Output Range Y3:AH3003 Place values in cells Y3 through

AH3003
Click OK
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To convert the simulated Uniform distribution values into integer, index numbers, enter
the following equation into cell N3: �ROUND(Y3,0). Next, copy this formula to all cells
within the range N3:W3003.

N O P Q R S T U V W

1 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

2

3 3 6 8 7 3 7 9 2 9 7

4 5 5 7 7 4 5 7 4 8 2

5 4 3 4 5 2 4 7 2 1 9

Using one of Excel’s table lookup functions (HLOOKUP), we select values (resample)
from the original sample whose assigned numbers in row 1 of columns D–M match the
corresponding index values found in cells N3–W3003. In this way, each of the 3001 rows,
representing a trial, contains a computer-generated sample of size 10 drawn from the
original sample. As each original value can appear more than once in the Bootstrap sample,
the method involves sampling with replacement. For each of the 3001 Bootstrap samples
(rows 3–3003), we calculate the mean and standard deviation for its 10 values in columns
D–M. These are the Bootstrap sample means and standard deviations whose frequency
distributions will be used to make inferences to the characteristics of the underlying popula-
tion from which our original sample was obtained.

A B C D E F G H I J K L M

1 Mean Stdev Number 1 2 3 4 5 6 7 8 9 10

2 103.0 2.2181 Sample 101.8 102.6 99.8 104.9 103.8 104.5 100.7 106.3 100.6 105.0

3 101.6 2.17 99.8 104.5 106.3 100.7 99.8 100.7 100.6 102.6 100.6 100.7

4 103.2 1.99 103.8 103.8 100.7 100.7 104.9 103.8 100.7 104.9 106.3 102.6

5 102.7 1.93 104.9 99.8 104.9 103.8 102.6 104.9 100.7 102.6 101.8 100.6

Commands in Simulation
Cell D3 � HLOOKUP(N3,$D$1: From the sample values in row 2,

$M$2,2) section D1 to M2, select the
value whose number in row 1
matches the random index
number in N3.

Cells E3:M3 Copy formula from cell D3 Generate first bootstrap sample
Cells D4:M3003 Copy formulas from cells Generate the remaining 3000

D3:M3 samples
Cells A3:A3003 Copy formula from cell A2 Calculate the Bootstrap samples’

means
Cells B3:B3003 Copy formula from cell B2 Calculate the samples’ standard

deviations
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Now we will estimate a 95% confidence interval on � and test the hypothesis that � is
less than 102. These results will be compared to those obtained by standard formulas that
assume that the sample is normally distributed The procedure that we use in the percentile
method is similar to that shown in previous examples, but here we apply them to the
Bootstrap samples rather than samples simulated from some underlying assumed statistical
distribution.

We start by opening a new worksheet and transferring the mean (sample average)
values from our existing column A to column A in the new worksheet. Wanting to transfer
only the values and not the formulas, we use the Edit →Paste Special →Values sequence
in Excel. We delete the first entry in the new column A, as this is the mean for the original
sample, not for a Bootstrap sample. All remaining values in the column shift upwards.
The Bootstrap estimate of � is the average of the Bootstrap sample means. The 95%
confidence interval lower limit is the 2.5th percentile sorted mean and the upper limit is
the 97.5th percentile sorted mean. The probability that � � 102 is simply the frequency
that we have a Bootstrap mean value that is less than 102. The analyses and the commands
to conduct the analyses are shown in the following.

A B C D

1 Mean �102

2 100.78 1 Bootstrap

3 100.78 1 Mean 103.0

4 100.85 1 2.5% observation 76

5 101.00 1 97.5% observation 2927

6 101.00 1 95% Cl Lower 101.7

7 101.03 1 95% Cl Upper 104.2

8 101.10 1 Prob(mu�102) 0.076

9 101.10 1

10 101.14 1

11 101.14 1 Normality Assumed

12 101.19 1 95% Cl Lower 101.4

13 101.29 1 95% Cl Upper 104.6

14 101.29 1 Z � 102 �1.426

15 101.29 1 Prob(mu�102) 0.077

Commands in Simulation
New Column A Data → Sort Sort the Bootstrap means in

ascending order
Cell B2 � IF(A2 � 102,1,0) 1 if bootstrap mean is � 102, 0

otherwise
Cells B3:B3002 Copy formula from B2
Cell D3 � AVERAGE(A2:A3002) Bootstrap estimate of �
Cell D4 �1 � 0.025*3001 Row number for 2.5th percentile

mean value
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Cell D5 �1 � 0.975*3001 Row number for 97.5th percentile
value

Cell D6 �A76 2.5th percentile value is Bootstrap CI
lower limit

Cell D7 �A2927 97.5th percentile value is Bootstrap
CI upper limit

Cell D8 � AVERAGE(B2:B3002) P-value is proportion of the means
that are � 102

Cells D12 & D13 95% confidence limits obtain from text assuming Normal
distribution

Cell D14 �(102–103)/(2.2181/ Z-value for standard test of � � 102
SQRT(10))

Cell D15 � Normsdist(D14) p-value from Standard Normal
Distribution

A similar evaluation for standard deviation can be conducted from the Bootstrap sample
values. Copy the standard deviation values from column B of our original worksheet
into column A of a new worksheet. Delete the standard deviation value for the original
sample, leaving only those for the Bootstrap samples. As with the analysis of the
means, we sort the column of values. The average of the Bootstrap values is our
estimate of �. The 2.5th and 97.5th percentile values are our lower and upper 95%
confidence interval limits.

For the standard method, we rely on the chi-square distribution (see Chapter 5) as
the assumed statistical distribution of the variance. The square root of the variance, the
standard deviation of the original sample values, is the estimate of �. By using the 2.5th
percentile and 97.5th percentile critical chi-square values, we can construct a 95% confi-
dence interval on � using standard formulas. A comparison of the two methods is shown
later.

The average standard deviation value of our Bootstrap samples is 2.122. The 2.5th
percentile and the 97.5th percentile standard deviations are the 76th and 2927th sorted
values. The Bootstrap 95% confidence interval limits are 1.4 and 2.7.

The 95% confidence interval limits based on the chi-square distribution are derived
from the distribution’s critical values of 2.70 (0.025 probability level, 9 df) and 19.02
(0.975 probability level, 9 df). The lower limit, 1.5, is calculated as SQRT(2.218�2*9/
19.02) and the upper limit, 4.0, is calculated as SQRT(2.218�2*9/2.70).

It is notable that while the lower limits from both the Bootstrap method and the
formula-based method are quite similar, those for the upper limit are not. This may be
due to the small size of the original sample, resulting in a biased bootstrap estimate of
variability. If this was the case, then taking a second sample and combining it with the
original sample, then repeating the Bootstrap process, might improve the estimate. It is
also possible that the actual underlying statistical distribution for the sample variance is
not that of the assumed chi-square distribution. In this case, the Bootstrap confidence
interval may be closer to reality than that obtained by the standard formulas. Only addi-
tional actual sampling would help us evaluate the cause of the discrepancy between the
two estimates.

Both Monte Carlo simulation and bootstrapping methods are powerful tools for
solving problems. Monte Carlo simulation, carrying out repeated computer-simulated
experiments based on simple statistical principles, is a process that has an intuitive
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A C D

1 Stdev

2 0.703 Bootstrap

3 0.811

4 0.891 stdev 2.122

5 0.982 2.5% obs 76

6 1.001 97.5% obs 2927

7 1.001 95% Cl Low 1.4

8 1.020 95% Cl Hi 2.7

9 1.020

10 1.105

11 1.116 Chi-Sq on sample

12 1.116

13 1.128 95% Cl Low 1.5

14 1.132 95% Cl Hi 4.0

15 1.132

16 1.160

17 1.171

appeal to many scientists. While less intuitive in its theoretical underpinnings, Bootstrap-
ping provides a simple nonparametric method for solving problems when we are unable
to make assumptions about the underlying statistical properties that govern the process
of interest.

While the examples presented have relied upon the computing power of Microsoft
Excel, there are other packages that may provide more accessible simulation and bootstrap-
ping capabilities. The author is familiar with two such packages provided by the company
Resampling Stats, Inc. (www.resample.com). One is marketed as an Excel Add-in which
enhances the built-in simulation capabilities in Excel and provides a considerably easier
way to perform bootstrapping in Excel. The second, Resampling Stats, is a self-
contained simulation and bootstrapping package with extremely intuitive commands
and easy to use programming wizard interface. The reader who wishes to further
pursue simulation methods would be well advised to consider one of these computer
packages.
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NONPARAMETRIC METHODS

Nonparametric statistics, also known as distribution-free statistics, may be applicable when
the nature of the distributions are unknown, and we are not willing to accept the assump-
tions necessary for the application of the usual statistical procedures. For most of the
statistical tests described in this book, we have assumed that data are normally distributed.
This assumption, although never exactly realized, is bolstered by the central limit theorem
(Sec. 3.4.2) when we are testing hypotheses concerning the means of distributions. How-
ever, occasions arise in which data are clearly too far from normal to accept the assumption
of normality. The data may deviate so much from that expected for a normal distribution
that to assume normality, even when dealing with means, would be incorrect. In these
situations, a data transformation may be used, Chapter 10, or nonparametric methods may
be applied for statistical tests. As we shall see, many of the nonparametric tests are easy
to compute, and can be used for a quick preliminary approximation of the level of signifi-
cance when parametric tests may be more appropriate. Although some people believe
that any kind of data, no matter what the distribution, can be correctly analyzed using
nonparametric methods, a kind of panacea, this is not true. Most nonparametric methods
require that the data be continuous and independent, for example. Both of these assump-
tions are also required for parametric analyses, as exemplified by the normal t, and F
tests.

15.1 DATA CHARACTERISTICS AND AN INTRODUCTION TO
NONPARAMETRIC PROCEDURES

Before proceeding, a review of the different kinds of data that are usually encountered in
scientific experiments will be useful for the understanding of the applications of nonpara-
metric methods.

1. Perhaps the most elementary kinds of data are categorical or attribute measure-
ments. These are also known as nominal observations (i.e., the observation is given a
name). Thus a person is observed to be a ‘‘male’’ or a ‘‘female’’ or ‘‘black,’’ ‘‘white,’’

464
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Table 15.1 Examples of Nominal Data

Products categorized as acceptable and unacceptable in quality control
Side effects in a clinical study
Males and females in a clinical study
Various descriptions of “feel” of an ointment preparation, or taste of a product (tart, biting, sharp,

etc.)
Concomitant diseases or medicaments in a clinical study

or ‘‘yellow.’’ Some other examples are given in Table 15.1. The assignment of a number
to such nominal data may be useful to differentiate the categories, perhaps for computer
usage. However, actual values, a number assigned to these categories where the numbers
have meaning in terms of rank, would not make sense. For example, we could assign the
number 1 to a male and 2 to a female, but this does not imply that a female is larger (or,
for that matter, smaller) than a male. Data that comprise two classes and consist of such
attribute measurements may be analyzed using the binomial distribution. As discussed in
Chapter 5, chi-square tests may be used to test the significance of differences of the
proportion of attributes in comparative groups if the sample size and incidences are suffi-
ciently large. These kinds of data are usually presented in the form of contingency tables,
such as the 2 � 2 table for proportions discussed in Chapter 5.

2. The next, perhaps more ‘‘sophisticated’’ level of measurement involves data that
can be ranked in order of magnitude. That is, we can say that one measurement is equal
to, less than, or greater than another. These kinds of ordered data are known as ordinal
measurements. Continuous variables are ordinal measurements according to this definition,
but here, we usually think of ordinal data as arising from some arbitrary scale, as con-
structed for rating scales. For example, patients receiving antidepressant medication, may
be rated according to attributes such as ‘‘sociability.’’ A high score will be assigned to a
patient performing well on this criterion. If the patient shows characteristics of ‘‘with-
drawal,’’ a low score will result. Intermediary scores reflect various degrees of response.
These are ordinal measurements. A patient with a score of zero after 1 week of medication,
and a score of 3 after 2 weeks of medication can be said to have improved during the
period between 1 and 2 weeks of treatment. A score of 3 is better than a score of zero.
Some examples of this kind of data are shown in Table 15.2. Many nonparametric tests
are based on ranking data. Certainly, data derived from a continuous distribution, such
as the normal distribution, can be ranked in order of magnitude. (Ordinal data, by definition,
can be ranked.) The nonparametric tests that will be discussed here, which use ranks for

Table 15.2 Examples of Ordinal Data

Rating scales for sensory attributes (degree of liking)
Degree of effectiveness of therapeutic agent (pain relief, joint swelling, etc.)
Dichotomization of a continuous variable (underweight and overweight)
Number of anginal attacks in one week
Number of ulcers in skin-diseased patient
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the analysis, require that the data have a continuous distribution. One might question the
validity of nonparametric tests using data derived from an arbitrary ordinal rating scale
such as that described above. If we understand (or assume) that the rating scale has an
underlying continuity, the discreteness and arbitrary nature of the scale can be considered
acceptable for nonparametric tests. The condition of the ‘‘depressed’’ patient is a contin-
uum. The condition can vary from one extreme to another with infinitely small gradations,
in theory. It is not possible practically to measure the subjective condition with its infinite
subtleties, and therefore we substitute an ordered scale that approximates the condition
of the patient. Controversy exists regarding the analysis of this kind of data. Some people
believe that data derived from rating scales, as described above, should not be analyzed
by parametric methods such as the t test. One reason for this position is that the intervals
in these rating scales are not equal in terms of the degree of response; that is, the scores
do not represent an equi-interval scale. In fact, the scale points do not precisely correspond
to the description of the condition. The points are usually arbitrarily defined. Thus there
is not an exact correspondence of the numbers on the rating scale to the patients’ conditions,
as defined by an arbitrary description based on an assumed underlying continuous distribu-
tion (Fig. 15.1). For example, if a score of 3 represents ‘‘marked improvement’’ in sociabil-
ity, 2 represents ‘‘moderate improvement,’’ and 1 represents ‘‘no improvement,’’ one
usually cannot say that the difference between scores of 3 and 2 is equal in magnitude to
the difference of 2 and 1. Yet the data analysis of such scores usually treat a difference
between 3 and 2 as equivalent to a difference between 2 and 1. Perhaps, if the psychological
aspects of depression were known to a sufficient extent, and the observer could discern
subtle differences, the scoring system could be shown to be better represented by 3,
2.5, and 0.8 for the conditions corresponding to ‘‘marked improvement,’’ ‘‘moderate
improvement,’’ and ‘‘no improvement,’’ respectively.

Although we can and do analyze data from a rating scale using non-parametric meth-
ods (as presented below), the typical parametric methods (ANOVA, t tests) are also com-

Figure 15.1 Problems with correspondence of a number and a subjective condition.
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monly applied to such data. The use of parametric methods to analyze rating scale data
is considered to be acceptable by many statisticians, including members of the FDA.
Snedecor and Cochran discuss the analysis of this kind of data using a modified t test [1].

3. When comparing ages using a ‘‘ranking’’ scale, one person may be said to be
older than another without regard to the magnitude of the difference in age. One can also
specify the numerical differences with such data (e.g., one person is two years older than
another). This is an example of numerical data, often encountered in scientific experiments,
where the distances between the values representing experimental outcomes have physical
meaning. These data have a precise, better defined meaning than data which are only
ranked. Such data are often categorized as interval or ratio scaled data, depending on
whether or not a true ‘‘zero point’’ exists. Age, weight, and concentration are examples
of ratio scales. A person who weights 200 pounds is twice as heavy as one who weighs
100 pounds. Temperature does not have a true zero point (according to the concept above)
and is an example of an interval scale. A temperature designated as ‘‘zero’’ is an arbitrary
position on the scale and does not represent the lack of temperature. We cannot say that
40� is twice as hot as 20�. Ratio and interval type data are the kinds of numbers that usually
are subjected to the typical parametric tests. If these data are not normally distributed, they
may be appropriately analyzed using nonparametric methods. One should understand that,
in general, nonparametric tests can be applied to most of the data that we usually encounter,
including that from continuous data distributions. Hence data that are normally distributed
may also be analyzed using these methods. A disadvantage of using nonparametric methods
rather than the usual analyses for normally distributed data is that nonparametric methods
are less sensitive (i.e., they are less powerful). Nevertheless, some nonparametric methods
are surprisingly sensitive and are able to differentiate treatments which are normally distrib-
uted with efficiency almost equal to that of the parametric tests.

Nonparametric tests are most effectively used for data which consist of only classified
(nominal) variables or ranked variables which are considered to have an underlying contin-
uous distribution. Data derived from continuous distributions are particularly amenable
to nonparametric methods when the distributions deviate greatly from normality. A marked
disadvantage of the simpler nonparametric techniques is the lack of flexibility of the design
and analysis. Elementary designs may be readily analyzed using nonparametric methods,
but more complex designs in which interactions and other ANOVA components are present
cannot be simply analyzed with these techniques, particularly when sample sizes are small.

Most of the nonparametric methods for data that are not categorical use ranking
procedures. The observations in the various treatment groups are ranked according to
specific procedures, and the ranks that replace the raw data are then analyzed. These
analyses use simpler statistical computations than the corresponding parametric analyses.
The transformation to ranks results in simple whole or fractional numbers of relatively
small magnitude.

15.2 SIGN TEST

The sign test is probably the simplest of the nonparametric tests. The sign test is a test
of the equality of the medians of two comparative groups. This test is used for paired
data with an underlying continuous distribution, and can be applied to ranked or higher-
level data such as continuous interval and ratio-type data. The pairs are matched, and
differences of the measurements for each pair tabulated. The differences are then catego-
rized only with regard to the sign of the difference. That is, we count the number of times



468 Chapter 15

one treatment has a higher value than the other. Ties are not counted for this test. Ties
give no information regarding which treatment has the higher median value. Theoretically,
with continuous variables, there should be no ties.* However, with limited measuring
instruments or the use of a crude rating scale, ties do occur.

As noted above, the sign test is a test of equal medians. If the test shows ‘‘signifi-
cance,’’ we can say that two comparative populations have different medians at the �
level of significance. Under the null hypothesis that the medians of the two comparative
distributions are the same, the probability of observing a value for treatment A being
larger or smaller than an observation for treatment B is one-half; that is, the probability
that an observation for treatment A will be greater than a paired observation for treatment
B is one-half. Having recorded the differences, we compute the proportion of observations
where the difference of treatment pairs is positive (or negative), disregarding ties (i.e.,
zero differences).

If positive and negative signs are observed to occur with approximately equal fre-
quency, we can conclude that the treatments have a similar median. If either positive (�)
or negative (�) signs predominate, there is evidence that one treatment has a higher
median than the other. The statistical test is based on the binomial distribution. When
applying two treatments to the same person, there are two possible outcomes: either treat-
ment A is favored or treatment B is favored. Under the null hypothesis, the probability
of A being favored is one-half; H0: P � 0.5. We compare the observed proportion to
one-half (0.5). With N small and P � 0.5, the probabilities of various experimental out-
comes can be calculated from the expansion of the binomial [Eq. (3.9)], or from tables
of the binomial distribution (Table IV.3). For sample sizes of 6 to 20, inclusive, the number
of positive or negative signs needed for significance at the 5% level for the sign test is
given in Table IV.12. For sample sizes greater than 20, the normal approximation to the
binomial, with a continuity correction, will suffice (see Sec. 5.2.4). The normal approxima-
tion test is
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where P is the observed proportion and N is the sample size. If Z is greater than 1.96, the
treatments differ at the 5% level (two-sided test). The calculation can be simplified as
follows:
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Remember that ties are discarded and that N, the sample size, does not include ties.
Example 1: Because of its simplicity, the sign test may be used for a fast look at data

from comparative experiments before applying a more sensitive parametric test such as
the t test (if appropriate). This was the case for the data in Table 15.3, which was obtained
to compare the ‘‘time to peak’’ plasma level for two oral formulations of the same drug.
These data would usually be analyzed using a more sensitive nonparametric test (see Sec.
15.3) or a t test for paired data (or ANOVA for a crossover design). Values were obtained

* With continuous measurements, the probability of two values being identical is zero.
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Table 15.3 Paired Data Obtained from the Bioavailability
Experiment: Time to Peak Plasma Concentration

Time to peak (hr)
Difference:

Subject A B B � A

1 2.5 3.5 �1
2 3.0 4.0 �1
3 1.25 2.5 �1.25
4 1.75 2.0 �0.25
5 3.5 3.5 0
6 2.5 4.0 �1.5
7 1.75 1.5 �0.25
8 2.25 2.5 �0.25
9 3.5 3.0 �0.5

10 2.5 3.0 �0.5
11 2.0 3.5 �1.5
12 3.5 4.0 �0.5

by administering both drugs to each of 12 persons on two different occasions. Although
these data would ordinarily result from a crossover design, and ANOVA techniques might
be more appropriate, for the present purposes, we will consider an example where treat-
ments have been assigned in random order. We will, therefore, not analyze ‘‘order’’ effects,
and we will assume that no carryover effects are present.

From Table 15.3, tabulation of the differences (B � A) results in nine positive signs
and two negative signs. One subject showed no difference between treatments A and B.
Referring to Table IV.12, 10 of 11 positive (or negative) signs are needed to obtain
significance at the 5% level. Thus, according to the sign test, the difference just misses
significance, although product B appears to take a longer time to peak than does product
A.

If the differences can be assumed to have a normal distribution, the paired t test would
be a more sensitive test than the sign test. For any given, specific example, one could not
predict that the t test would result in a ‘‘more significant’’ difference; but on the average,
the t test will be more discriminating. In this example, the t test results in a highly significant
difference between the two formulations (t � 3.02; see Exercise Problem 1).

15.3 WILCOXON SIGNED RANK TEST

For the comparison of two treatments in a paired design, a more sensitive nonparametric
test than the sign test is the Wilcoxon signed rank test. In the Wilcoxon test, the magnitude
of the difference between the paired results is taken into consideration in addition to the
sign. This feature results in a more powerful test. the sign test still retains its advantage
for a very quick assessment of the experimental results.

The Wilcoxon test is based on the assumption that the distributions of the comparative
treatments are symmetrical. Therefore, we are testing the equality of the means or the
medians; the mean and median are equal in a symmetrical distribution.
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The initial calculations are the same as in the sign test. We first take differences
between the treatment pairs as in Table 15.3. Again, when the values for a treatment pair
are equal (a difference of zero), a tie, these data are discarded for purposes of the test.
As in the sign test, a zero difference does not contribute information regarding the differen-
tiation of treatments in the Wilcoxon signed rank test. The differences of the united pairs
are then ranked in order of magnitude, disregarding sign. For the data in Table 15.3, the
comparison of the time to peak plasma concentration for two formulations, A and B, the
ranking of the absolute values of the differences is shown in Table 15.4. Differences of
equal magnitude (disregarding sign) are given the average rank. The three subjects, 4, 7,
and 8, all showed a difference (absolute value) equal to 0.25. Each of the differences are
given a rank of 2, since these are the three smallest differences observed; 2 is the average
of ranks 1, 2, and 3.

After ranking (disregarding sign) is completed, the signs corresponding to the signs
of the original differences are reassigned to the ranks. For example, for subject 7 (originally
given a rank of 2), the rank is changed to �2, because the difference for this subject was
negative. The ranks with like signs are summed as shown following Table 15.4. The sum
of the positive ranks is 59, and the sum of the negative ranks is 7. These are known as
the rank sums. Table IV.13 gives the values of the smaller of the two rank sums needed

Table 15.4 Data from Table 15.3: Ranking Differences Without Regard to Sign for the
Wilcoxon Signed Rank Test

Subject Value Rank Assigned rank Assigned rank
with sign

7 �0.25 1 2 �2
4 0.25 2 2 2
8 0.25 3 2 2
9 �0.5 4 5 �5

10 0.5 5 5 5
12 0.5 6 5 5
1 1.0 7 7.5 7.5
2 1.0 8 7.5 7.5
3 1.25 9 9 9
6 1.5 10 10.5 10.5

11 1.5 11 10.5 10.5

Ranks with positive signs Ranks with negative signs

2 2
2 5
5 sum � 7
5
7.5
7.5
9

10.5
10.5

sum � 59
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for significance at the 5% level for various sample sizes, N (N is the sample size, the
number of pairs, less the number of ties). The smaller rank sum must be equal to or less
than that designated in Table IV.13 for the two means to be significantly different at the
5% level. In our example, Table IV.13 shows that the means are significantly different.
The table shows that a rank sum of 10 or less for the smaller rank sum is significant at
the 5% level for N � 11. In our example, the smaller rank sum is 7. Therefore the
difference is significant at the 0.05 level (P � 0.02) [2]. This test gives very similar
conclusions to that obtained by the t test. The Wilcoxon signed rank test is 95% as efficient
as a t test for the comparison of normal populations. This means that a sample size of
100 which is analyzed using the Wilcoxon test would have equal sensitivity to a sample
size of 95 using the t test. Considering the less restrictive assumptions of the Wilcoxon
test compared to the t test, there is much to recommend it.

For sample sizes larger than those shown in Table IV.13, a normal approximation is
available to compare two population means using the Wilcoxon signed rank test:

(15.3)Z
R N N

N N N
=

− +

+ +

( ) /

[ ( / )( )] /

1 4

1 2 1 12 

where R is the sum of ranks (either the larger or smaller rank sum can be used) and N is
the sample size (disregarding ties). This formula works well also for smaller sample sizes.
In our example, N � 11 and R � 59.

Z =
−

=
59 11 12 4

11 11 5 12 12
2 31

( ) /

( . )( ) /
.

From Table IV.2, P � 0.02, which is very close to the exact probability, if the data are
normally distributed.

15.3.1 Nonparametric Confidence Intervals for Crossover Studies and
Bioequivalence

If the assumptions of ANOVA (and t test) are violated, particularly the assumption of
normality, a confidence interval can be formed based on a non-parametric approach. The
method is based on ordering or ranking the outcomes and is relevant to bioequivalence
studies, being introduced in this context. For the analysis of bioequivalence, a controversy
concerning the nature of the data distribution recently polarized regulatory agencies. For
many years, bioequivalence parameters were analyzed as the raw, untransformed values.
For a two-period crossover design, this would be analogous to analyzing the differences of
the treatments for each individual in the absence of period and carryover effects. Recently,
agreement appears to have been reached, in the spirit of international harmonization, that
a log transformation of AUC and Cmax values is appropriate prior to the statistical analysis.
This is analogous (but not the same) to an analysis of the ratio of the estimated parameters.
However, one can use a nonparametric test in which the error structure and distribution
assumptions are less rigid. A non-parametric confidence interval for ratios (or differences
of logs) is given in Hollander and Wolfe (3) and is expounded in a paper by Steinijans
and Diletti (9). In this method, as opposed to parametric techniques, period and sequence
(carryover) effects are assumed to be absent, and no adjustment is made for these effects.

The example in Steinijans and Diletti uses logs which would be appropriate in light
of current practice. The method is described for N subjects in a two-period crossover
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design (or paired designs). First, compute the difference for each subject (e.g., test—refere-
nce). For the case of a log transformation for AUC, compute the difference of the product
responses,

log AUC log AUC log (AUC /AUCt r t r R− = =)

for each subject. (One may also calculate the ratios AUCt/AUCr because of the one-one
relationship of ranks to the differences of logs. Compute R′, the average (geometric mean
for ratios) of all possible pairs of the N individual ratios (R), where N is the number of
subjects. There are N(N � 1)/2 such pairs, including the ratio, R, for the same subject.
(This will be clarified in the example below.) The values of R′ are then ranked in order
from low to high. The lower and upper nonparametric 90% and 95% confidence limits
are given in Table 15.5. ‘‘C,’’ is defined as the value of the R′ that has the rank given in
the table. For example, if ‘‘C’’ for the lower limit in Table 15.5 is 11, this means that the
11th ranked R′ is given as the lower limit of the confidence interval. The details of the
theory and the computations of C are given in references 3, 9, and 10. In practice, it is
not necessary to compute the logs because we are really interested in the ratios of test to
reference. If we compute the ratios and use the geometric mean of the N(N � 1)/2 pairs
for the ranks, we will obtain the confidence interval for the ratio of test/reference directly.
Again, this is a result of the monotonic relationship between the ratio and difference of
the logs. The following example clarifies the procedure. In this example, both the paramet-
ric and nonparametric confidence intervals are calculated for purposes of comparison.

Table 15.5 Nonparametric Confidence Intervals Based On Wilcoxon’s
Signed Rank Test

Rank for Lower Limit Rank for Upper Limit

Subjects (N) 95% 90% 95% 90%

6 1 3 21 19
7 3 4 26 25
8 4 6 33 31
9 6 9 40 37

10 9 11 47 45
11 11 14 56 53
12 14 18 65 61
13 18 22 74 70
14 22 26 84 80
15 26 31 95 90
16 30 36 107 101
17 35 42 119 112
18 41 48 131 124
19 47 54 144 137
20 53 61 158 150
21 59 68 173 164
22 66 76 188 178
23 74 84 203 193
24 82 93 219 208
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Table 15.6 Results for Cmax from Bioequivalence Study

Product Ratio

Subject A B B/A

1 135 102 0.7555556
2 179 147 0.8212290
3 101 385 3.8118813
4 109 106 0.9724771
5 138 189 1.3695653
6 135 105 0.7777778
7 158 130 0.8227848
8 156 125 0.8012821
9 174 144 0.8275862

10 147 133 0.9047619
11 145 114 0.7862069
12 147 167 1.1360544

Example: Data for 12 subjects comparing two products for Cmax is shown in Table
15.6. The ratio of the Cmax for the products (B/A) is also calculated for each subject. In
Table 15.7, the geometric mean of each pair of ratios (B/A) is shown in rank order. There
are N(N � 1)/2 such combinations (pairs) including each ratio with itself. The geometric
mean is simply the square root of the product of 2 ratios. Thus, the ratio for subject 1
combined with itself is 102/135 � 0.756, and the geometric mean is the square root of
0.756 � 0.756 � 0.756. For subject 1 combined with subject 2, the geometric mean is
the square root of 0.756 � 0.821 � 0.788, and so on.

For 12 subjects, the lower and upper cutoff points for a 95% confidence interval are
the values ranked 14 and 65 (Table 15.5). For the data in this example, these values
correspond to the ratios 0.800 and 1.247, respectively. The 90% confidence interval refers
to the 18th and 61st rankings in Table 15.7, corresponding to an interval of 0.804 to 1.065.
The 90% confidence interval would just pass the lower limits of the FDA requirements
of 0.8 for the ratio.

Using a parametric analysis of variance (two-way ANOVA, assuming no period or
sequence effects), with a log transformation (see Exercise Problem 15), the 90% interval
is 0.79 to 1.26. The wider interval observed using the parametric approach is due to the
‘‘outlying’’ ratio for subject 3.

15.4 WILCOXON RANK SUM TEST (TEST FOR DIFFERENCES
BETWEEN TWO INDEPENDENT GROUPS)

The sign test and Wilcoxon signed rank test are nonparametric tests for the comparison
of paired samples. These data result from designs where each treatment is assigned to the
same person or object (or at least subjects that are very much alike). If two treatments
are to be compared where the observations have been obtained from two independent
groups, the nonparametric Wilcoxon rank sum test (also known as the Mann—Whitney
U-test) is an alternative to the two independent sample t test. The Wilcoxon rank sum test
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1 1, 1 0.75556
2 1, 6 0.76659
3 1, 11 0.77073
4 6, 6 0.77778
5 1, 8 0.77808
6 6, 11 0.78198
7 11, 11 0.78621
8 1, 2 0.78771
9 1, 7 0.78845

10 6, 8 0.78944
11 1, 9 0.79075
12 8, 11 0.79371
13 2, 6 0.79921
14 6, 7 0.79996
15 8, 8 0.80128
16 6, 9 0.80230
17 2, 11 0.80353
18 7, 11 0.80429
19 9, 11 0.80663
20 2, 8 0.81119
21 7, 8 0.81196
22 8, 9 0.81433
23 2, 2 0.82123
24 2, 7 0.82201
25 7, 7 0.82278
26 2, 9 0.82440
27 7, 9 0.82518
28 1, 10 0.82680
29 9, 9 0.82759
30 6, 10 0.83887
31 10, 11 0.84340
32 8, 10 0.85145
33 1, 4 0.85718
34 2, 10 0.86198
35 7, 10 0.86280
36 9, 10 0.86531
37 4, 6 0.86970
38 4, 11 0.87440
39 4, 8 0.88274

Table 15.7 Ranks for Determining Confidence Interval for Bioequivalence Study

Rank Subjects A, B R� Geometric mean Rank Subjects A, B R� Geometric mean

40 2, 4 0.89366
41 4, 7 0.89451
42 4, 9 0.89711
43 10, 10 0.90476
44 1, 12 0.92647
45 4, 10 0.93801
46 6, 12 0.94000
47 11, 12 0.94508
48 8, 12 0.95410
49 2, 12 0.96590
50 7, 12 0.96681
51 9, 12 0.96963
52 4, 4 0.97248
53 10, 12 1.01383
54 1, 5 1.01724
55 5, 6 1.03209
56 5, 11 1.03767
57 5, 8 1.04757
58 4, 12 1.05109
59 2, 5 1.06053
60 5, 7 1.06154
61 5, 9 1.06463
62 5, 10 1.11316
63 12, 12 1.13605
64 4, 5 1.15407
65 5, 12 1.24736
66 5, 5 1.36957
67 1, 3 1.69708
68 3, 6 1.72186
69 3, 11 1.73116
70 3, 8 1.74768
71 2, 3 1.76930
72 3, 7 1.77098
73 3, 9 1.77614
74 3, 10 1.85711
75 3, 4 1.92535
76 3, 12 2.08099
77 3, 5 2.28487
78 3, 3 3.81188

is applicable if the data are at least ordinal (i.e., the observations can be ordered). This
nonparametric procedure tests the equality of the distributions of the two treatments.

The calculations for the Wilcoxon rank sum test are similar to those for the signed
rank test discussed above. First, the observations from both groups are pooled and ranked,
regardless of group designation. Identical observations are given a rank equal to the average
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of the ranks. In this procedure, the signs of the observations are taken into account for
ranking. For example, a value of �1 has a lower rank than 0.5, which has a lower rank
than 1. After ranking the pooled data, the observations are returned to their respective
treatment groups. The observations are then replaced by their corresponding ranks. The
sum of the ranks of the smaller sample is the basis for the statistical test. If the sample
sizes are equal in the two treatment groups, the sum of the ranks in either group can be
used as the statistic for the Wilcoxon rank sum test.

Table 15.8 shows tablet dissolution results observed in the original dissolution appara-
tus and a modification of the apparatus. The objective of this experiment was to compare
the performance of the two pieces of apparatus. Twelve individual tablets were used for
each ‘‘treatment’’ (apparatus). The amount of drug dissolved in 30 min was determined
for each tablet. One tablet assay, determined in the original apparatus, is not included in
the results (Table 15.5) because of an overt error during the assay procedure for this tablet.

Note how the ranks are obtained. The original apparatus has the four smallest values,
50, 52, 53, and 54, which are ranked 1, 2, 3, and 4, respectively. The next two highest
values are from the modified apparatus, both equal to 55. These values are both given the
average rank of 5 and 6, equal to 5.5. The next value, 56, from the modified apparatus
is given a rank of 7. The next highest value is 57, which occurs twice in the original and
once in the modified apparatus. These are each given a rank of 9, the average of the three
ranks which these values occupy, 8, 9, and 10, and so on.

For moderate-sized samples, the statistical test for equality of the distribution means
may be approximated using the normal distribution. This approximation works well if the
smaller sample is equal to or greater than 10. For samples less than size 10, refer to Table
IV.16 for exact significance levels [2]. The normal approximation is

(15.4)Z
T N N N

N N N N
=

− + +

+ +
1 1 2

1 2 1 2

1 2

1 12

( ) /

( ) /  

Table 15.8 Results of a Dissolution Test Using the Original Dissolution
Apparatus and a Modification: Amount Dissolved in 30 Minutes

Original apparatus Modified apparatus

Amount dissolved Rank Amount dissolved Rank

53 3 58 11
61 14 55 5.5
57 9 67 21
50 1 62 15.5
63 17 55 5.5
62 15.5 64 18.5
54 4 66 20
52 2 59 12.5
59 12.5 68 22
57 9 57 9
64 18.5 69 23

56 7
Sum of ranks 105.5 170.5
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where N1 is the smaller sample size, N2 is the larger sample size, and T is the sum of
ranks for the smaller sample size. If Z is greater than or equal to 1.96, the two treatments
can be said to be significantly different at the 5% level (two-sided test). In our example

Z =
− + +

+ +
= =

105 5 11 11 12 1 2 26 5

16 25
1 63

. ( ) / .

.
.

(11)(12)(11 12 1)/12 

A value of Z equal to 1.63 is not large enough to show significance in a two-sided test
at the 5% level (P � 0.11, Table IV.2). Therefore, these data do not provide sufficient
evidence to show that the two different pieces of apparatus give different dissolution
results.

One should appreciate, as noted previously, that in ranking tests, ties result only
because of measurement limitations, because the distributions are assumed to be continu-
ous. Too many ties result in erroneous probabilities with regard to the test of significance.
The error is on the ‘‘conservative’’ side. For data with many ties (more than 10% of the
data results in ties, as is the case in our example) statistical tests will tend to give results
that overestimate � (i.e., the � error is larger than it should be). Hence we tend to miss
significant differences more often than we should when too many ties appear in the data.
A correction for ties is available, but in most applications the difference between the
corrected and uncorrected Z value is negligible.

It would also be of interest to compare the two pieces of equipment using the two
independent sample t test in order to see how the conclusions might differ. Of course, in
general, one cannot determine what would be expected to occur from a single example.
The t test is more efficient than the nonparametric rank sum test if the assumptions for
the t test are valid (see Sec. 5.2.4). Similar to the signed rank test, the Wilcoxon rank sum
test is very efficient, approximately 95% compared to the corresponding t test. A two-
independent-groups t test for the data of Table 15.8 results in a t value of 1.84 with 21
d.f. (P �0.10):

t = −
+

=61 3 57 45

5 05
1 84

. .

.
.

1/12 1/11 

The probability level is somewhat less for the t test compared to the Wilcoxon rank sum
test in this example. However, the conclusions are similar for the two statistical procedures.

The tests described above may replace the paired t test (use the sign test or signed
rank test) or the two-independent-groups t test (use the rank sum test) when the assumptions
required for the validity of the t tests are questionable. For the comparison of more than
two groups, nonparametric tests, analogous to the analysis of variance parametric methods,
are available. However, simple nonparametric tests are not available for the analysis of
more advanced designs or for tests of interaction. The tests to be described below can be
used to test for treatment effects for a simple one-way or two-way analysis of variance.
These tests are widely used, and are recommended when ANOVA assumptions regarding
normality are suspect and/or cannot be easily tested. The nonparametric tests are useful in
experiments where the data consist of values derived from a rating scale with an underlying
continuous distribution.

15.4.1 Nonparametric Analysis of Two-Way Crossover (Bioequivalence
Designs)

Some people advocate the use of nonparametric analyses for crossover designs or for
pharmacokinetic parameters from bioequivalence studies. As presented earlier (Sec.
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15.3.1), the reason for this is the less restrictive assumptions of the nonparametric analysis.
In particular, this would, apparently, resolve the problem of violations of certain assump-
tions inherent in ANOVA, e.g., linearity, normality, and variance assumptions. One prob-
lem with nonparametric techniques for the analysis of these data is that we cannot account
simultaneously for effects due to periods or carryover in the nonparametric model. Cornell
[11] has presented a lucid discussion of methods to analyze these data taken from Koch
[12]. One can demonstrate that specific sums and differences of observations in the two-
way crossover design are equivalent to effects of interest, i.e., treatment, period, and
carryover effects (see discussion of parametric analysis in Sec. 11.4.2). Applying a model
that includes treatment, period, carryover, and random effects, the principles of the analysis
follow:

1. Total the data for each subject over both periods and compare the totals for group
(Sequence) I (subjects taking test followed by reference) to the totals for group
II (subjects taking reference followed by test). This comparison is a test for
unequal carryover effects (Note that this is the same procedure as in the parametric
analysis, where the sequence effect is confounded with a carryover).

2. Take differences of period 1 and period 2 for each subject. Compare the differ-
ences for group 1 to group 2. This is a test of treatment differences.

3. Take differences of treatment 1 and treatment 2 for each subject. Compare the
differences for group 1 to group 2. This is a test of period differences.

To see how this works, consider the estimate of treatment effects (item 2 above). In
group 1, Treatment 2 follows Treatment 1; in group 2, Treatment 1 follows Treatment 2.
The expected value for each subject is:

In group 1, period 1: � � P1 � T1

In group 1, period 2: � � P2 � T2 � C1

In group 2, period 1: � � P1 � T2

In group 2, period 2: � � P2 � T1 � C2

where Pi Ti and Ci refer to the effects due to period i, Treatment i and carryover due to
treatment i, respectively.

The expected values of the differences between period 1 and 2 for the two groups
are:

Group 1: P1 � T1 � P2 � T2 � C1

Group 2: P1 � T2 � P2 � T1 � C2

If carryover has been shown to be nonsignificant, C1 � C2 (see next paragraph), the
difference between the expected values for groups 1 and 2 is equal to 2(T1 � T2), or
twice the treatment effect. The same approach can be used to demonstrate the results of
the calculations for sequence and period effects, items 1 and 3 above. (See Exercise
Problem 16.)

The nonparametric statistical tests may be applied sequentially. If the sequence effect
is significant, we may have to use only the period I data as is the case for the parametric
analysis, as has been noted in Chapter 11. For bioequivalence studies, real carryover effects
are very rare because of the nature of the design (short period of dosing and washout
period). Therefore, significant carryover effects may be dismissed if there is no rational
or reasonable explanation for their existence. (The FDA has accepted carryover effects as
spurious for single dose studies, in some cases, if the sponsor can demonstrate no obvious
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Table 15.9 AUC (log) Data for Crossover Study (11) to Illustrate Nonparametric
Analysis

Sequence (Group) I Pd. 1 Pd. 2 Total Rank Pd. 1 � Pd. 2 Rank Tr 1 � Tr 2 Rank

Tr 1 � Tr 2 2.60 2.16 4.76 16 0.44 1.5 0.44 1.5
2.81 2.53 5.34 5 0.28 4 0.28 4
3.02 2.69 5.71 1 0.33 3 0.33 3
2.59 2.50 5.09 9 0.09 9 0.09 12
2.70 2.45 5.15 8 0.25 5 0.25 5
2.01 2.49 4.50 17 �0.48 17 �0.48 17
2.71 2.27 4.98 10 0.44 1.5 0.44 1.5
2.67 2.55 5.22 7 0.12 8 0.12 10

Total 73 49 54
Sequence (Group II) Pd. 1 Pd. 2 Total Rank Pd. 1 � Pd. 2 Rank Tr 1 � Tr 2 Rank

Tr2 � Tr1 2.57 2.38 4.95 11 0.19 6 �0.19 16
2.36 2.50 4.86 13.5 �0.14 13 0.14 13
2.73 2.75 5.48 2 �0.02 11 0.02 9
2.38 2.55 4.93 12 �0.17 14 0.17 8
2.64 2.75 5.39 3 �0.11 12 0.11 11
2.52 2.71 5.23 6 �0.19 15 0.19 7
2.46 2.32 4.78 15 0.14 7 �0.14 15
2.57 2.79 5.36 4 �0.22 16 0.22 6
2.46 2.40 4.89 13.5 0.06 10 �0.06 14

Total 80 104 99

cause. However, in the nonparametric test, no adjustment is made for the treatment differ-
ences in the presence of period or carryover effects. Therefore, one should be cautious
when applying these tests in the presence of a significant ‘‘carryover.’’) We can then
apply the usual nonparametric tests. The data in Table 15.9, taken from Wallenstein and
Fisher [13], as also presented by Cornell, are used to illustrate the procedure.

To test for significance, the Wilcoxon Rank Sum test is applied to the ranks of each
of the differences (period I – period 2 and treatment 1 – treatment 2) in Table 15.9. Eight
subjects are in sequence I, treatment 1 followed by treatment 2. Nine subjects are in
Sequence II. The comparison of treatment totals for Sequences I and II is a test for a
sequence or carryover effect. The sequence effect is not significant (See Exercise Problem
17 and Eq. 15.4). The Treatment effect can be tested by comparing the Period I – Period
2 differences for the two sequences [(Treatment 1 – Treatment 2)1– (Treatment 2 –
Treatment 1)2]. The sum of ranks for Period 1 – Period 2 for Sequence I is 49. Applying
Eq. 15.4,

Z p= − + + × + + = <49 8 8 9 1 2 8 9 8 9 1 12 2 21 0 05( ) / / ( ) / . ( . )

The test for period effects is based on the comparison of the ranks in the two sequences
in the last column of Table 15.9 (See Exercise Problem 17). Of course, the current test
for bioequivalence is not based on statistical significance. Nevertheless, the nonparametric
approach to this problem is instructive. See Sec. 15.3.1 for an illustration of a nonparametric
confidence interval to bioequivalence data.



479Nonparametric Methods

15.5 KRUSKAL–WALLIS TEST (ONE-WAY ANOVA)

The Kruskal–Wallis test is an extension of the rank sum test to more than two treatments,
and is a test of the location of the distributions. Significant differences can be interpreted
as meaning that the averages of at least two of the comparative treatments are different.
The computations and analysis will be illustrated using an experiment in which data
were obtained from a preclinical experiment in which rats, injected with two doses of an
experimental compound and a control (a known sedative), were observed for sedation.
The time for the animals to fall asleep after injection was recorded. If an animal did not
fall asleep within 10 min of the drug injection, the time to sleep was arbitrarily assigned
a value of 15 min. The experimental results are shown in Table 15.10. One data point was
lost from the control group because of an illegible recording, obliterated in the laboratory
notebook.

The analysis for treatment differences is not dependent on equal numbers of observa-
tions per group, although, as in most experiments, equal sample sizes are most desirable
(optional). The analysis consists of first combining all of the data, as in the Wilcoxon
rank sum test. To obtain the ranks, one lists all observations in order of magnitude, identify-
ing each value by its group designation. The observations are then reclassified into their
original groups, similar to the Wilcoxon rank sum test procedure. The ranks corresponding
to each observation are retained and summed for each group as shown in Table 15.10.
Note that ties are given the average rank as in the previously described rank sum test. In
addition to the usual analysis, we will present a procedure that corrects the analysis for
tied observations [3].

The test statistic for the Kruskal–Wallis test, as described below, is approximately
distributed as chi-square with k � 1 degrees of freedom, where k is the number of treat-
ments (groups) in the experiment. For small sample sizes, tables to determine the treatment
rank sums needed for significance are available [3]. The chi-square approximation is good
if the number of observations in each group is greater than five. The computation of the
chi-square statistic follows:

Table 15.10 “Time to Sleep” for a Control and Two Doses of an Experimental
Compound (min)

Control Rank Low dose Rank High dose Rank

8 22 10 26 3 10
1 3.5 5 13 4 12
9 24.5 8 22 8 22

6 15 1 3.5
9 24.5 7 18.5 1 3.5
6 15 7 18.5 3 10
3 10 15 28 1 3.5

15 28 1 3.5 6 15
1 3.5 15 28 2 7.5
7 18.5 7 18.5 2 7.5

Sum of ranks 149.5 191.0 94.5



480 Chapter 15

(15.5)χk
i

iN N

R

n
N− =

+








 − +∑1

2
212

1
3 1

( )
( )

where

N � total number of observations in all groups combined
Ri � sums of ranks in ith group
ni � number of observations in ith group
k � number of groups

In our example, N � 29, R1 � 149.5, R2 � 191, R3 � 94.5, n1 � 9, n2 � 10, n3 �
10, and k � 3. Applying Eq. (15.5), we have
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The value of chi-square with 2 d.f. must be equal to or greater than 5.99 to be significant
at the 5% level (Table IV.5). Therefore, the average ‘‘time to sleep’’ differs for at least
two of the three treatment groups (control, high dose, and low dose) at the 5% level of
significance.

As in the parametric tests, if statistically significant differences among treatments are
found, one usually would want to know which treatments are different. For individual
(pairwise) comparisons, Table IV.17 tabulates the differences between rank sums needed
for significance at the 5% level, given the number of treatments in the design and the sample
size [2]. To perform the pairwise treatment comparisons, the number of observations per
treatment must be the same. For example, in the case of three treatments, each with a
sample size of 10, a difference between the rank sums of two of the treatments (groups)
must exceed 92 in order for the two treatments to be considered different at the 5% level.
In our example, had the control group had 10 observations instead of nine, we could apply
the pairwise test. However, if an additional observation had been included in the control
group, the greatest difference between the rank sums of the control group and one of the
doses of the experimental drug in this experiment could not exceed 92.* The observed
difference between the high and low doses is (191–94.5) � 96.5, which exceeds 92. Thus
the pairwise comparison criterion shows a significant difference between the high and
low doses of the experimental drug (P � 0.05), agreeing with the significant chi-square
test. For more details concerning multiple comparisons in the Kruskal–Wallis test, see
Refs. 2 and 3.

As in the ranking procedures previously described, tied values are given the average
rank. A correction for ties can be used which increases the value of chi-square. Therefore,
if the null hypothesis is rejected (significant treatment differences), the correction only
increases the degree of significance. If chi-square just misses significance, the correction
may result in statistically significant differences. The correction is as follows:

* The largest difference between the control and one of the experimental drug doses would occur
if the tenth value in the control group were the highest observation. The rank sum of the control
group would be increased by 30, resulting in a rank sum of 179.5 (Table 15.10). The difference
between the rank sums of the control and high-dose groups would be 179.5–94.5 � 85, which
is not significant at the 5% level.
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Correction =
− − −∑

χ2

3 31 ( ) /( )t t N Ni i

where ti is the number of tied observations in group i and N is the total number of observa-
tions. The calculations are illustrated below. There are eight groups of ties in the data
shown in Table 15.10. For example, there are six values equal to 1. For this group of ties,
t3 � t is equal to 63 � 6 � 210. Another group of ties are the two values equal to 2.
There are two values of 2 in the data, and for this group, t � 2 and t3 � t � 6. The
other ties occurred for values of 3, 6, 7, 8, 9, and 15. The reader can verify that the sum
of T (where T � t3 � t) is 378. The correction for chi-square is

6 89
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6 89
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(Note that N � 29 in this example.) The correction for ties is usually very small. Of
course, in this example, the correction does not change the conclusion of significant differ-
ences among treatment means.

15.6 FRIEDMAN TEST (TWO-WAY ANALYSIS OF VARIANCE)

The Friedman test is a nonparametric test applied to data which is, at least, ranked and
which is in the form of a two-way ANOVA design (randomized blocks). This test, which
may be applied to ranked or interval/ratio type data, is used when more than two treatment
groups are included in the experiment. For two groups in a paired (two-way) design, the
rank sum test may be used. In the Friedman test, the treatments are ranked within each
block (e.g., animal or person), disregarding differences between blocks. The procedure
will be illustrated using the data from Table 15.11. These data describe the results of a
validation experiment to test the performance of four tablet presses, with regard to tablet
hardness. The average hardness of 10 tablets was computed for five different tablet prod-
ucts manufactured on four presses. The tablets are a random selection of five typical tablet
products. The presses were identically set for the same pressure for each tablet formulation.

The parenthetical values in Table 15.11 are the ranks of the average hardness for each
formulation over the four presses. For formulation 1, the lowest value, 6.9, is assigned a
rank of 1, and the highest value, 7.5, is assigned a rank of 4. Although no ties occurred
in this example, if ties were observed, the average rank would be assigned to the tied
observations as discussed in the preceding sections. If one of the presses consistently had
the highest (or lowest) rank, one would conclude that the press (treatment) produced harder
(or less hard) tablets than the other presses. In our example, tablet press C had the highest
hardness value for all formulations with the exception of formulation 1, where it had the
next-to-largest value. The test of significance is an objective assessment of whether or
not the data of Table 15.11 provide sufficient evidence to say that tablet press C is, indeed,
producing harder tablets than the other presses.

If the sample sizes are sufficiently large, a chi-square distribution can be used to
approximate the test of significance. The chi-square test is

(15.6)χc irc c
R r c− =

+ ( ) − +∑1
2 212

1
3 1

( )
( )

where
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Table 15.11 Average Hardness of 10 Tablets for Five Different Tablet
Formulations Prepared on Four Pressesa

Tablet
Tablet press

formulation A B C D

1 7.5 (4) 6.9 (1) 7.3 (3) 7.0 (2)
2 8.2 (3) 8.0 (2) 8.5 (4) 7.9 (1)
3 7.3 (1) 7.9 (3) 8.0 (4) 7.6 (2)
4 6.6 (3) 6.5 (2) 7.1 (4) 6.4 (1)
5 7.5 (3) 6.8 (2) 7.6 (4) 6.7 (1)

Ri 14 10 19 7

a Parenthetical values are the within-tablet-press ranks.

� 2
c�1 � the �2 statistic with c � 1 degrees of freedom

r � number of rows (blocks)
c � number of columns (treatments)

Ri � sums of ranks in the ith group (column)

In our example, the chi-square statistic has 3 degrees of freedom:

χ3
2 2 2 2 212

5 4 4 1
14 10 19 7 3 5 5 9 72=

+
+ + + − =

( )( )( )
( ) ( )( ) .

A chi-square value of 7.81 or larger is needed for significance at the 5% level (Table
IV.5). We can conclude that at least two of the tablet presses differ with regard to tablet
hardness. Examination of Table 15.7 shows that tablet press C produces harder tablets
than those produced by the other presses. Table IV.18 shows that a difference of 11 is
needed for significance (P � 0.05) for individual comparisons between pairs of means
for 4 treatments (k � 4) and 5 rows (n � 5). Therefore, press C produces significantly
harder tablets than press D with a sum of ranks of 19 and 7, respectively.

For small samples, exact probabilities for the Friedman test are given in Nonparamet-
ric Statistical Methods [3]. This test also describes a test that corrects chi-square for tied
observations.

15.6.1 Modified Friedman Test

Conover [14,15] recommends a statistic that has an approximate F distribution with (c �
1), (c � 1)(r � 1) d.f. (where r is the number of rows and c is the number of columns
in the RXC matrix of data). This method of analysis has been shown to be superior to
the chi-square distribution for the Friedman nonparametric analysis (Sec. 15.6) of a two
way ANOVA model. The statistic T2 is calculated as follows:

Compute A2 � � (xij)2, where the xij are the individual ranks.

A2 is equal to cr(c � 1) (2c � 1)/6 if there are no ties (ties are given the value of
the average rank).
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c � number of columns and r � number of rows
Compute B2 � (1/r) � (Ci)2

where Ci is the sum of observations in Column i. Then

T2 � [(r � 1)�B2 � rc(c � 1)2/4�]/[A2 � B2]

Refer T2 to an F table with c � 1 and (r � 1)(c � 1) d.f.
Example: The computations for this analysis are shown below for the data from Table
15.11

A2 � cr(c � 1)(2c � 1)/6 � 4 � 5 � (4 � 1)(2 � 4 � 1)/6 � 150
B2 � [1/r) � (Ci)2 � (1/5)(142 � 102 � 192 � 72) � 706/5 � 141.2
T2 � [(5 � 1)(141.2 � 4 � 5(4 � 1)2/4)]/(150 � 141.2) � 7.364

Compare 7.364 to the tabled value of F with 3 and 12 d.f. at the 5% level (App. IV, Table
IV.6A):

F3,12,0.05 � 3.49

Since the observed F (7.364) is larger than the tabled F (3.49) at the 5% level, the
differences among tablet presses are significant (p � 0.005). The usual Friedman test
which uses a chi-square statistic shows a level of 0.02 (Sec. 15.6). See Exercise Problem
18 at the end of this chapter for the application of ANOVA to this data.

Multiple Comparisons for the Modified Friedman Test

If the null hypothesis of equal treatment means is rejected, the following formula can be
used to calculate a least significant difference between pairs of treatments.

[ ] [ ( ] /[( )( )]C C t r A B r cj i− > − − −2 1 12 2

where t � tabled t value with (r � 1)(c � 1) d.f. at the specified alpha level.
Applying this formula to the data in Table 15.11 for tablet press differences at the

5% level,

[ ] . ( ( . ) /[( )( )] .C Cj i− > × − − − =2 18 2 5 150 141 2 5 1 4 1 5 90

Any difference in rank sums �5.9 is significant at the 0.05 level. Inspection of the results
shown in Table 15.11 shows that Tablet Press C gives higher results (p � 0.05) than B
and D, and A is higher than D. In this example, we see more significant differences with
the modified test compared to the Friedman test described in Section 15.6.

15.6.2 Quade Test for Randomized Block Design

Conover [14] presents another test (Quade Test) which is still valid in the presence of
many ties. In addition to the usual computations as shown in the Friedman Test, a further
computation is needed. The range of values (largest minus smallest value) is calculated
for each block (row). The blocks are ranked in order from the smallest to the largest with
regard to the range of values within a block. Call these ranks Q1 … Qr where r is the
number of rows (blocks). Let R(Xij) be the rank of each observation, where ranks are
within each row or block. Compute for each observation:

S Q R X kij i ij= − +[ ( ) ( ) / ].1 2
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where k � number of treatments (columns).

Let Si � � Sij for each treatment.
Calculate A � � S 2

ij (for all observations).
Calculate B � � S 2

i /r

For Table 15.11, the calculations for the ‘‘Quade’’ test are as follows:

Range of row 1 � 0.6 (7.5 � 6.9)
Range of row 2 � 0.6 (8.5 � 7.9)
Range of row 3 � 0.7 (8.0 � 7.3)
Range of row 4 � 0.7 (7.1 � 6.4)
Range of row 5 � 0.9 (7.6 � 6.7)

Qi is the rank of row i.

Q1 � 1.5
Q2 � 1.5
Q3 � 3.5
Q4 � 3.5
Q5 � 5

(Note: as usual, compute the average rank for ties.)
As an example, the calculation of S11 follows:

S11 � value for formulation 1 on Press 1 � 1.5[4 � (4 � 1)/2] � 2.25

The values of Sij derived from the data in Table 15.11 are shown in Table 15.12.

A S

B S r

ij

i

= =

= = + − + + − =
∑
∑

( )

/ [ ( . ) ( . )] .

2

2 2 2 2 2

270

2 5 5 21 17 5 5 156 3

The test statistic is:

T r B A B

T

= − −
= − =

( ) /( )

( . ) /( . ) .

1

4 156 3 270 156 3 5 499

Refer T to an F distribution with (c � 1) and (r � 1)(c � 1) d.f. at at the appropriate
alpha level (App. IV, Table IV.6A.

Table 15.12 Table to Aid Computations for Quade Test (Sij) Press

A B C D Range Rank

Formulation
1 2.25 �2.25 0.75 �0.75 0.6 1.5
2 0.75 �0.75 2.25 �2.25 0.6 1.5
3 �5.25 1.75 5.25 �1.75 0.7 3.5
4 1.75 �1.75 5.25 �5.25 0.7 3.5
5 2.5 �2.5 7.5 �7.5 0.9 5
Sum 2.00 �5.50 21.00 �17.50
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Tabled F3,12 � 3.49 at the 5% level.

Therefore, at least two of the presses are significantly different (p � 0.013). Multiple
comparisons can be made if the F test shows significance. The difference between the
sums of any two treatments is significant if the absolute value of the difference exceeds

t r A B r c× − − −[{ ( )}/{( )( )}] /2 1 1 1 2

where t is the appropriate tabled t value at the alpha level with (r � 1)(c � 1) d.f. In
this example, t0.05,12 � 2.18, and the least significant difference is:

2 18 10 270 156 3 4 3 21 221 2. [{ ( . )}/{( )( )}] ./− =

We conclude that Press C gives higher results than Presses B and D at the 5% level
of significance.

This analysis is identical to an analysis of variance on the ranks in Table 15.12. The
least significant difference is computed as in Fisher’s LSD, based on the analysis of the
‘‘adjusted’’ ranks, as computed from Eq. 8.7. (See Exercise Problem 19).

Three different tests applied to these data give somewhat different overall conclusions.
This is caused by the fact that some of the comparisons are close to significant (C vs. A
and C vs. B). As always the test to be applied and the level of significance should be
clearly defined at the initiation of the experiment.

15.7 NONPARAMETRIC ANALYSIS OF COVARIANCE

Quade has proposed a simple and neat nonparametric analysis of covariance (ANCOVA)
[17]. The procedure is described in detail using the data of Table 15.13.

Rank each of X and Y (raw material and product assays, respectively) disregarding
treatment. Let the lowest value have rank 1 up to the highest value, rank N, where there
are a total of N observations. Correct the rankings so the mean of the ranks � 0, by
subtracting the average rank, (N � 1)/2, from each rank. In this example, N � 8. The

Table 15.13 Data for Quade Nonparametric Covariance Analysis (ANCOVA)

Final Raw
Assay Material Ranks �4.5
Y X Ry Rx Predicted Residual

Method I
98.00 98.40 2.50 �3.00 1.4451220 1.0548780
97.80 98.60 1.50 �1.00 0.4817073 1.0182927
98.50 98.60 3.50 �1.00 0.4817073 3.0182927
97.40 99.20 �0.50 2.50 �1.2042683 0.7042683
Sum 5.795732
Method II
97.60 98.70 0.50 0.50 �0.2408537 0.7408537
95.40 99.00 �3.50 1.50 �0.7225610 �2.7774391
96.10 99.30 �2.00 3.50 �1.6859756 �0.3140245
96.10 98.40 �2.00 �3.00 1.4451220 �3.4451220
Sum �5.795732
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lowest value of Y (product assay) is 95.4 and is given a rank of 1. Subtract (N � 1)/2 �
9/2 � 4.5 from 1, resulting in Ry � 1 � 4.5 � �3.5. Similarly, the largest assay is
98.5, with an adjusted rank of 8 � 4.5 � �3.5. The ranks of the raw material assays
are calculated similarly. Use average ranks in case of ties.

Next perform a regression of the adjusted ranks of Y(Ry) on the adjusted ranks of
X(Rx) for all data, to obtain the residuals. Remember, the residuals are the difference
between the observed values of Ry and the predicted values of Ry based on the calculated
regression parameters (See Table 15.13).

An analysis of variance is performed on the residuals (Group I vs. Group II). Note
that there is no correction for the mean because the mean of the residuals is 0.

Quade used the following formula which has an F distribution with k � 1 and N �
k d.f., where k � number of groups and N is the total number of observations. In our
example, we have two groups and 8 observations, resulting in an F1,6 distribution.

F
N k Z n

k Z Z n
k N k

ij i

i j ij ij i

− − =
−

− − 

∑
∑ ∑ ∑1

2

2 21
,

( ) ( ) /

( ) ( ) /

N � 8

k � 2

n1 � n2 � 4

� (Zij)2/ni � (5.7957332 � ��5.795732�2)/4 � 16.795261

�i �j Z2
ij � 31.98628

Fk�1,N�k � (8 � 2)(16.795261/[(2 � 1)(31.98628 � 16.795261)]

F1,6 � 6.634

P � 0.042 (This result may be compared to P � 0.037 using a parametric analysis,
Section 8.6.)

An assumption for this test is that the variables be on an ordinal scale, not necessarily
continuous (dichotomous variables may be used). We do not have to assume normality
or linearity of y on x. However, the distribution of X should be the same in each group,
a requirement not needed for the parametric analysis.

15.8 RUNS TEST FOR RANDOMNESS

When performing an experiment (or observing a process) where values are observed se-
quentially, it may be of interest to determine whether the observations are randomly varying
about the central value (i.e., the median). If the process is not random, we might expect
to see trends in the data, perhaps a consecutive series of high or low values, which are
unlikely to occur by chance. The runs test is a simple method of investigating the ‘‘ran-
dom’’ nature of such a process. Tests for runs were introduced in Section 12.2.5, the
discussion of control charts. A run is a series of uninterrupted, like observations. For
example, suppose that the median weight of 20 tablets, sequentially taken during a batch
run, is 200 mg. Twenty consecutive tablets were weighted with the following results:

The first six tablets weighed more than 200 mg.
The next five tablets weighed less than 200 mg.
The next four tablets weighed more than 200 mg.
The next (remaining) five tablets weighed less than 200 mg.
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If we designate tablet weights less than 200 mg by a minus (�), and tablet weights more
than 200 mg by a plus (�), the 20 weights can be described by the following sequence:

200 mg → + + + + + + + + + +
− − − − − − − − − −

The first six values, �’s, represent a run. Each time that a series of like signs change, a
new run begins. There are four runs in these data: six pluses, five minuses, four pluses,
and five minuses. If the tablet weights follow a random process, one might suspect that
the sequence of values described above is unlikely. It appears that the pluses and minuses
come in ‘‘bunches.’’ One might guess that the sequence of pluses and minuses could have
been due to too-frequent weight adjustments on the tablet press. For example, the first
tablets sampled were over the median weight of 200 mg. The tablet press may then have
been adjusted down, more than necessary, resulting in too-low tablet weights (the next
five tablets were underweight), and so on.

To test for randomness for sample sizes as large as 40, we can refer to Table IV.14.
The table gives the lower and upper limits for the number of runs that would be expected
to occur in a random process in a sample of size N. An observed number of runs equal
to or less than or greater than that shown in Table IV.14 is an indication that the process
is not random at the 5% level. The runs test is usually a two-sided test; either too few or
too many runs leads to significance (nonrandomness). In some cases, e.g., control charts,
only relatively few runs may be considered to suggest problems with a process. In these
situations, critical values for a one-sided test as shown in Table IV.14 are appropriate.
According to Table IV.14, for a sample size of 20, between 7 and 16 runs would be
expected to occur if the null hypothesis of randomness is true. We observed four runs in
the sample of 20 tablets (N � 20) in our example. Therefore, we conclude that the process
is not random (P � 0.05). The clusters of high and low values are probably due to some
malfunctioning of the tableting process.

Consider the following as a further example of an application of the runs test. A
standard is analyzed every twentieth sample in an automated analytical procedure. A
record of the readings for the standard in chronological order derived from one day’s
assay results are shown in Table 15.14. The median value for the data in the table is
0.7985 (the 20th and 21st ordered values are 0.798 and 0.799). As in the previous example,
we label values greater than the median as � and values less than the median as �. The
sequence of plusses and minuses is as follows (Samples 1 and 2 are below the median;
3 and 4 are above the median, etc.):

− − + + − + − + − + − − − + + + + + + + − − −
+ + + + + − − + + + − − − − − − −

The runs are underlined in the previous sequence. There are 15 runs. For sample sizes of
40 or more, a normal approximation to the distribution of runs is available, under the null
hypothesis that the observed values occur in a random manner.

(15.7)Z
r N

N N N
=

− +

− −

( / )

( ) / ( )

2 1

2 4 1

where r is the number of runs and N is the sample size.
Values of Z equal to or greater than 1.96 are unlikely (P � 0.05) if the observations

are random. In our example N � 40 and r � 15. Therefore,
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Table 15.14 Readings of a
Standard Solution in Chronological
Order (Optical Density)

Sample Reading

1 0.795
2 0.796
3 0.804
4 0.801
5 0.792
6 0.816
7 0.791
8 0.819
9 0.796

10 0.815
11 0.782
12 0.795
13 0.798
14 0.800
15 0.800
16 0.802
17 0.799
18 0.805
19 0.820
20 0.802
21 0.796
22 0.797
23 0.795
24 0.802
25 0.800
26 0.801
27 0.802
28 0.820
29 0.788
30 0.780
31 0.813
32 0.804
33 0.801
34 0.793
35 0.790
36 0.791
37 0.784
38 0.791
39 0.788
40 0.794
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The value of Z is not quite large enough for the data to be considered nonrandom at the
5% level. Table IV.14 shows that for a sample of size 40, an observation of between 15
and 26 runs leads to acceptance of the null hypothesis of randomness, agreeing with the
conclusion of the normal approximation [Eq. (15.7)]. Had 14 runs been observed, we
would have concluded that the data were not random (P � 0.05).

15.9 CONTINGENCY TABLES

Chi-square tests for contingency tables (e.g., 2 � 2 tables) are often categorized as nonpar-
ametric tests. The analysis of 2 � 2 tables using a chi-square test was described in Sec.
5.2.5. The chi-square test can be applied to nominal or categorical data which cannot be
analyzed using the ranking techniques discussed above. These data cannot be ordered (the
data are not ordinal or on an interval/ratio scale). Nominal data are usually available in
the form of counts, such as 25 males and 12 females entered into a clinical study; or the
number of tablets categorized as acceptable, chipped, cracked, and so on. For large samples,
chi-square methods can be used to compare ‘‘statistically’’ the relative frequency of such
events which occur in two or more groups. Here we will briefly expand the case of the
fourfold table, discussed in Chapter 5, to the analysis of R � C tables, R rows and C
columns. We will then examine the case of 2 � 2 tables with small expected frequencies,
followed by different tests of hypotheses for four-fold tables.

15.9.1 R  C Tables

In the binominal case, data are dichotomized, resulting in the 2 � 2 table, for example,
comparison of success rates of two treatments as shown in Table 15.15. When experiments
consist of more than two comparative groups and/or more than two possible outcomes,
we are, in general, confronted with an R � C table (Table 15.15).

In the experiments involving contingency tables, we are usually interested in testing
group differences with regard to proportions or the distribution of counts in the various
outcome categories. Consider the data in the 2 � 3 table in Table 15.15. Two treatments
have been compared where the outcomes are categorized as ‘‘unsuccessful,’’ ‘‘moderately
successful,’’ and ‘‘successful.’’ Inspection of the data indicates that treatment A has a
greater incidence of ‘‘successful’’ events and less ‘‘moderately successful’’ events than
treatment B.

Equivalently the hypothesis in contingency tables is often stated in terms of the rela-
tionship between rows and columns. ‘‘Acceptance’’ of the null hypothesis suggests that
the rows and columns are independent. For example, in the 2 � 3 contingency table in
Table 15.15, lack of rejection of the null hypothesis would be interpreted, in this context,
as meaning that the experimental outcomes are independent of the treatment (i.e., the
treatments do not differ with respect to the experimental outcome).

The relationship of the rows and columns in an R � C contingency table may be
tested by means of the chi-square distribution with (R � 1) (C � 1) degrees of freedom.
Note that for a 2 � 2 table, we have 1 d.f., agreeing with the analysis of 2 � 2 tables
described in Chapter 5. The chi-square statistic is calculated as
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(15.8)χ( )( )

( )
R C

O E

E− − = −∑1 1
2

2

where O is the observed count and E is the expected count. The summation in Eq. (15.8)
is for all R � C cells in the contingency table.

The chi-square test is an approximate test and should be used only when the expected
values are sufficiently large. The usually recommended minimum expected value of five
for each cell, as described in Sec. 5.2.5, is conservative [1]. If most of the cells have an
expected value of five or more, the test should be reliable. If there is doubt about using
the chi-square test, the exact test (multinomial) may be computed [4]. The calculations
for the exact test solution are usually very tedious.

Table 15.16 shows data from a clinical study in which patients entering the study
were categorized according to the severity of disease. Severity was divided into three
classes: very severe, moderately severe, and mildly severe. The categorization was made
to ensure that the severity of disease was similar for patients in the two treatment groups.
Thus the question addressed by these data is: ‘‘Is the severity of disease similar for patients
entered into the two treatment groups?’’ or ‘‘Is there a relationship between ‘‘treatment’’
and ‘‘severity of disease’’?’’ In a sense, this test is a confirmation of the randomization
procedure used to assign patients to the two treatment groups. We would expect that, ‘‘on
the average,’’ the severity would be similar in groups A and B.

The chi-square calculation is similar to that for the fourfold (2 � 2) table (Chapter
5). The expected values for each cell are obtained by multiplying the row and column
totals corresponding to the cell, and dividing this result by the grand total (row total �
column total/grand total). In the example in Table 15.16, this calculation needs to be done
for only two cells (note the 2 d.f.), because the remaining four expected values can be
obtained by subtraction from the fixed row and column totals. The sum of the expected
values must equal the row and column totals of the raw data. In the table the expected
value for the cell with 13 patients (treatment A, very severe) is (32)(55)/(106) � 16.60.
For the cell defined by treatment A, moderately severe, the expected value is (44)(55)/
(106) � 22.83. The expected values are shown in Table 15.17

The chi-square statistic is calculated according to Eq. (15.8).

χ2
2

2 2 213 16 60

16 60

24 22 83

22 83

18 15 57

15 57

19

= − + − + −

+

( . )

.

( . )

.

( . )

.

( −− + − + − =15 4

15 40

20 21 17

21 17

12 14 43

14 43
2 54

2 2 2. )

.

( . )

.

( . )

.
.

For significance at the 5% level, a value of 5.99 is needed for chi-square with 2 degree

Table 15.16 Patients Categorized by Severity of Disease Entered into Two Treatment
Groups in a Clinical Study

Very severe Moderately severe Mildly severe Total

Treatment A 13 24 18 55
B 19 20 12 51

Total 32 44 30 106

{
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Table 15.17 Expected Values for the Data of Table 15.10

Very severe Moderately severe Mildly severe Total

Treatment A 16.60 22.83 15.57a 55
B 15.40a 21.17a 14.43a 51

Total 32 44 30 106

a Obtained by subtraction from total; see the text (e.g., 55–16.60–22.83 � 15.57).

{

of freedom (Table IV.5). Since the observed chi-square is 2.54, we conclude that there is
not sufficient evidence to show that severity and treatment are related; that is, the two
treatment groups cannot be shown to differ with regard to the distribution of severity of
disease.

Another example of an R � C table is shown in Table 15.18. This differs from the
previous example in that we have three treatments each with a dichotomous outcome,
rather than two treatments with three categories of outcome. The analysis tests for differ-
ences among the three treatments. This data is derived from a clinical study in which three
treatments were randomly assigned to 60 patients. Only 54 patients successfully completed
the study. Patients were classified as success or failure, depending on their response to
treatment.

The analysis proceeds exactly as in the preceding example. The value of chi-square
with 2 d.f. is 7.76. Since the table chi-square with 2 d.f. is 5.99, the treatments are signifi-
cantly different. To test for differences suggested by the data (a posteriori tests), perform
a chi-square test for two treatments (a 1 d.f. test), but use the chi-square cut-off point for
2 d.f., 5.99, for significance. For example, the chi-square value for the comparison of
treatments B and C is 7.79, and treatments B and C are significantly different (see Exercise
Problem 13).

For a further discussion of multiple comparisons and other topics in the analysis of
categorical data, the book Statistical Methods for Rates and Proportions by Fleiss [6] is
highly recommended.

15.9.2 Fisher’s Exact Test

In the chi-square analysis of 2 � 2 contingency tables, if the expected values are too
small, the chi-square test may not be appropriate. Dichotomous data with small expected

Table 15.18 Number of Successes and Failures Following Three
Treatments

Treatment Successes Failures Total

A 9 6 15
B 8 11 19
C 17 3 20

Total 34 20 54
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Table 15.19 Fourfold Table as an Aid to the Calculation of Fisher’s Exact Test

Column

I II Total

Row I A C A � C
II B D B � D

Total A � B C � D A � B � C � D � N

values are commonly encountered in pharmaceutical research, particularly in preclinical
toxicology studies. For example, in preclinical animal carcinogenic studies, when compar-
ing control and treatment groups with respect to some characteristic that occurs infre-
quently, the comparison of the frequencies may not be amenable to a chi-square analysis.
Fisher’s exact test for 2 � 2 tables can be used to compute the exact probabilities. This
test can be used, for example, to compare proportions for two independent groups (treat-
ments), a binomial test, where expected values are very small.

Fisher’s exact test makes use of the fact that the probability of a given configuration
in a fourfold table with fixed margins* can be computed using the hypergeometric distribu-
tion. The probability calculation will be described with reference to the notation in Table
15.19 to help clarify the procedure.

The probability of the values found in Table 15.19, given the four fixed margins, (A
� C), (B � D), (A � B), and (C � D), is

(15.9)
( )!( )!( )!( )!

! ! ! ! !

A B C D A C B D

N A B C D

+ + + +

The numerator of Eq. (15.9) is obtained by multiplying the factorials of the marginal
totals. The denominator is the product of the factorials of the individual cells of the fourfold
table, multipled by N!, the factorial of the total number of observations.

Table 15.20 shows data typically analyzed using the Fisher’s exact test. One group
of animals was administered a placebo preparation consisting of all components of the
drug formulation with the exception of the active ingredient (placebo group). Another
group of animals (drug group) was administered the drug formulation. After a fixed period
of time, the incidence of a particular type of carcinoma was noted. The probability of the
fourfold table shown in Table 15.14 with fixed margins (12, 14, 5, and 21) is calculated
using Eq. (15.9).

5 21 12 14

26 1 4 11 10
0 183

! ! ! !

! ! ! ! !
.=

* Theoretically, Fisher’s exact test is appropriate when marginal tools are fixed. In the example in
Table 15.20, this means that before the initiation of the experiment, we decided to use 12 animals
on placebo and 14 animals on drug; a total of five carcinomas will be observed in both groups.
The latter result is clearly not under our control (although in some experiments, the marginal totals
can be controlled). There exists some controversy whether data, in which two independent groups
are to be compared (as in Table 15.19), where the margins are not fixed, are appropriate for
Fisher’s exact test. However, the test is commonly used to analyze such data.
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Table 15.20 Incidence of Carcinoma in Drug-and Placebo-Treated
Animals: Example 1

Number of animals with:

Carcinoma No carcinoma Total

Placebo 1 11 12
Drug 4 10 14

Total 5 21 26

Thus the probability of the results shown in Table 15.14 are not very unlikely. How-
ever, this is not the entire statistical test. In Fisher’s test, we compute the probability of the
observed configuration plus the probabilities of all less likely configurations (a cumulative
probability). If the sum of the observed configuration plus all less likely configurations
is less than � (0.05, for example), we conclude that the rows and columns (treatment and
carcinoma) are not independent; that is, the treatments differ with respect to the incidence
of carcinomas. If the sum of these probabilities exceeds � (0.05, for example), we accept
the null hypothesis of independence, concluding that the evidence is not sufficient to
conclude that the treatments differ. In the example (Table 15.20), the sum of probabilities
must exceed 0.183. (The probability of the observed table is 0.183). Therefore, there is
insufficient data to show conclusively that the incidence of carcinoma is greater in the
drug group compared to the placebo group.

To clarify this procedure further, we will work out an example in more detail based
on the data shown in Table 15.21. These data are similar to that in Table 15.20, except
that no carcinomas were observed in the placebo group and five were observed in the drug
group. Thus the marginal totals are the same in Tables 15.20 and 15.21. The probability of
Table 15.21 is calculated as before, using Eq. (15.9).

5 21 12 14

26 0 5 12 9
0 03043

! ! ! !

! ! ! ! !
.= 3

In order to assess the possible ‘‘statistical’’ significance of this table, we must compute
the probability of all less likely configurations as discussed above. What constitutes less
likely tables is not always obvious without some ‘‘trial and error’’ calculations. With
experience, good, educated guesses can be made as to what constitutes a less likely table.

Table 15.21 Incidence of Carcinoma in Drug- and Placebo-Treated Animals:
Example 2

Carcinoma present Carcinoma absent Total

Placebo 0 12 12
Drug 5 9 14

Total 5 21 26
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Table 15.22 Some “Unlikely” Tables with Margins Identical to Table 15.21

Carcinoma Carcinoma Carcinoma Carcinoma
present absent Total present absent Total

Placebo 5 7 12 4 8 12
Drug 0 14 14 1 13 14

Total 5 21 26 5 21 26
Probability � 0.0120 Probability � 0.1054

If a configuration is mistakenly chosen with a higher probability than the observed table,
the calculation is discarded. Possible ‘‘less likely’’ tables are shown in Table 15.22 with
the probability of each table. The only table with a lower probability than the observed
table (Table 15.21) is the one with all five carcinomas appearing in the placebo group.

5 21 12 14

26 5 0 7 14
0 01204

! ! ! !

! ! ! ! !
.=

The sum of the probabilities of the observed table and all less likely (or equally likely)
tables is 0.03043 � 0.01204 � 0.0425. Therefore, Table 15.15 is ‘‘significant’’ at the
5% level (P � 0.05); the drug appears to result in an increased incidence of carcinomas.

Note that Fisher’s exact test requires that the probabilities of tables with fixed margins
be computed for all possible configurations. If we calculate all possible configurations,
the sum of the probabilities of the different tables would be equal to 1. Among all of
these probabilities will be the probability of the observed table, in addition to possible
probabilities equal to or smaller than that of the observed table. If the sum of these probabil-
ities is less than or equal to 0.05, for example, the treatments are said to be ‘‘significantly’’
different at the 5% level, in the context of the present example.

The computations are often very tedious. For cases where the computations are unduly
long and tedious, the use of computer programs or tables to determine significance points
in fourfold tables are recommended [5].

15.9.3 Fourfold Tables with Related Samples

The examples of 2 � 2 contingency tables previously discussed in this chapter and Chapter
5 have involved the comparison of proportions or frequencies in two or more independent
groups. A similar problem which occurs less frequently in pharmaceutical research is the
comparison of two groups where the observations are related, also known as matched
pairs. For example, Table 15.23 shows the results of two versions of an allergy test, A
and B, applied to 50 persons. The test reagents were applied at the same time at different
sites for each subject, and either a positive or negative reaction was observed. In this
design, the total sample size is specified in advance, but the marginal totals are not fixed.
We cannot anticipate the total positive and negative for test B in Table 15.23, for example.
In the previous example, the size of the two treatment groups can be fixed in advance.
Note that in this example each person is subjected to both treatments (allergy tests). In
the previous examples of fourfold tables, each person is subjected to a single treatment
and a dichotomous response is observed (e.g., cured or not cured).
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Table 15.23 Frequency of Positive and Negative Reactions to Two Allergy Tests
Applied to Two Sites in 50 Persons

Test B
Positive Negative Total

Test A Positive 23 9a 32
Negative 6a 12 18

Total 29 21 50

a Patients who were positive on one test and negative on the other test.

The objective of this experiment is contained in the question: ‘‘Does the proportion
of positive reactions for test A differ from that for test B?’’ (i.e., H0: Pa � Pb, where Pa

and Pb are the proportion of positive reactions in tests A and B, respectively). Note that
test A has 32 positive reactions (23 � 9), and test B has 29 positive reactions (23 � 6).
It can be shown that the statistical test for the equality of positive reactions for the two
tests is equivalent to the test for the equality of the counts in the diagonal cells designated
by an a in Table 15.23 (9 and 6) [6]. The counts (or proportions) in these two cells
represent the untied responses (positive A and negative B, and negative A and positive B,
9 and 6, respectively). The counts in the other two cells do not differentiate the two allergy
tests. For example, the upper left-hand cell shows the 23 patients who were positive on
both tests.

Under the null hypothesis that the probability of a positive reaction is equal for both
tests, the diagonal counts, 9 and 6, should be equal. The test of significance is a binomial
test, as in the sign test (Sec. 15.2). In the latter procedures, the observed proportion is
compared to 0.5, the expected proportion if both treatment groups have an equal probability
of being positive. The statistical test in this example makes use of the normal approximation
to the binomial distribution [Eq. (15.1)].

(15.1)Z
N

N
=

− −observed proportion 0 5 1 2

0 5 0 5

. /( )

( . )( . ) /

If Z is greater than 1.96, the difference is significant at the 5% level and we conclude that
the probability of a positive response is different for the comparative treatments. (As in
other examples where the normal approximation to the binomial is used, the sample size
should be sufficiently large, approximately 10 for this test.) The observed proportion in
the example in Table 15.23 is 9/15 � 0.60. N � 15, the number of united pairs. Therefore,

Z =
− −0.60 0 5 1 30

0 5 0 5 15

. /

( . )( . ) /
= 0.52

Since Z is not equal to or greater than 1.96, the difference is not significant at the 5%
level. The difference is not sufficiently large to conclude that the two tests differ with
regard to the frequency (proportion) of positive responses. This test is also known as
McNemar’s test.

The data shown in Table 15.23 can also answer a different question which requires
a different analysis. In the previous example, we inquired if the proportion of positive
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Table 15.24 Expected Values from Table 15.17 if Allergy Tests A and B Are
Independent

Test B

Positive Negative Total

Test A Positive 18.56 13.44 32
Negative 10.44 7.56 18

Total 29 21 50

reactions was different in the two tests. Another question that is often relevant to such
data is: ‘‘Are the allergy tests independent, that is, is the probability of a positive response
for test B independent of the outcome for test A?’’ This question implies that if A and B
are independent, there should be an equal proportion of positive results to test A in both
patients with a positive test to B and in patients with a negative test to B. Table 15.24
shows the expected results if, in fact, tests A and B are independent. Note that the expected
proportion of positive A’s in patients who had a positive test for B is 0.64, 18.56/29. This
is the same expected proportion of positive A’s as that for patients who had a negative
test for B, 13.44/21.

The test for independence is the same chi-square test as that used for the comparison
of proportions in two independent samples, although the question to be answered is differ-
ent (see Sec. 5.2.5). We apply Eq. (15.8):

(15.8)χ1
2

2

= −∑ ( )O E

E

where O is the observed count and E is the expected count. The expected values for the
chi-square test are shown in Table 15.24 (see Sec. 5.2.5 for calculation of expected values).
Applying Eq.; (15.8) to the data of Tables 15.23 and 15.24 (including the continuity
correction discussed in Sec. 5.2.5), we have

χ1
2

2 2 2 24

13 44

4

18 56

4

7 56

4

10 44
5 70= + + + =( )

.

( )

.

( )

.

( )

.
.

To obtain significance at the 5% level, a chi-square value of 3.84 is needed (Table IV.5).
Clearly, the test is significant and we conclude that the results of this test warrant rejection
of the null hypothesis (i.e., the results of tests A and B are dependent). This significant
result suggests that tests A and B are related; a positive test for A is associated with a
positive test for B; and a negative test for A is associated with a negative test for B.

15.9.4 Analysis of Combined Sets of 2  2 Tables

Two situations may arise in which the analysis of combined fourfold tables is needed.
Consider a clinical study in which two treatments are to be compared with regard to a
dichotomous variable where the data is collected from more than one center. Rather than
pooling all the data to form one combined table, the analysis is performed with the data
stratified by center. In a second example, a study may be performed at a single center,
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Table 15.25 Fourfold Table for Treatment and Placebo

Improvement

Treatment None Some or marked Total

Active 13 28 41
Placebo 29 14 43

Total 42 42 84

but there may be a variable within the center which needs further clarification with respect
to interpretation of the results. The data is then stratified by this variable. Koch and
Edwards [7] give an example of a clinical study at a single center comparing a test drug
and placebo in a study of arthritis. The outcome of the treatment is dichotomized into
either no improvement or (some or marked) improvement. The overall results are shown
in Table 15.25. Table 15.26 stratifies Table 15.25 into two groups, results for males and
females. The following discussion summarizes part of their presentation (for more detail,
see Ref. 7).

Note that males appear to be less responsive than females to both active drug and
placebo. If the distribution of males and females to treatment groups is unbalanced, the
experimental results can be biased.

The chi-square test for significance for the data of Table 15.25 is 10.7 with a correction
factor, and 12.3 without the correction factor. The Mantel–Haenszel method [8] tests for
significance, taking into account the sex-adjusted response (Table 15.26).

If treatments are equally effective, the expected value of n111 and n211 in Table 15.20
are:

E n m
n n

n

E n m
n n

n

( )
( )( )

( )
( )( )

111 111
11 1 1

1

211 211
21 2 1

2

= =

= =

+ +

+ +

The variances of n111 and n211 are:

Table 15.26 Table 15.25 with Two Subgroups

Improvement

Sex Treatment None Some or marked Total

Female Test drug n111 � 6 n112 � 21 n11� � 27
Female Placebo n121 � 19 n122 � 13 n12� � 32

Female total n1�1 � 25 n1�2 � 34 n1 � 59
Male Test drug n211 � 7 n212 � 7 n21� � 14
Male Placebo n221 � 10 n222 � 1 n22� � 11

Male total n2�1 � 17 n2�2 � 8 n2 � 25
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Var n n n n n n n( ) /[( )( )]
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(

111 11 12 1 1 1 2 1
2

1 1

27 32 25 34

= −

=

+ + + +

559 58
3 63748

1

2

211 21 22 2 1 2 2 2
2

2

) ( )
.

( ) /[( )( )]

=

= −

=

+ + + +Var n n n n n n n

(( )( )( )( )

( ) ( )
.

14 11 17 8

25 24
1 39627

2
=

The Mantel–Haenszel statistic is calculated as:

(15.9)
( / )(n n n p p

v

h h h h h
h

h
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=

=
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where h � 1, 2 and phi1 � (nhi1/nhi�) the proportion of patients in each sex and
treatment group who show no improvement.

p111 � 6/27
p211 � 7/14
p121 � 19/32
p221 � 10/11

For the data of Table 15.26, the calculation is:

= − + −[{( )( ) / }( / / ) {( )( ) / }( / / )}]27 32 59 6 27 19 32 14 11 25 7 14 10 11 22

3 63748 1 39627
12 59

. .
.

+
=QMH

QMH is distributed approximately as chi-square with 1 d.f. Therefore, the conclusion is
that after adjustment for sex differences, the treatments are significantly different (P �
0.05).

This analysis summarizes an elementary but common occurrence in the analysis of
clinical studies. For more detail of the application of the Mantel–Haenszel statistic, see
Refs. 6 and 7.

15.9.5 Randomized Blocks with Binomial Outcome

For data with a binomial outcome that is in the form of a randomized block, the following
test to compare treatments recommended by Cochran [16] may be used:
Compute:

Q � [c(c � 1) � (T 2
i ) � (c � 1) N2]/(cN � � (B 2

j )
c � number of treatments (columns)
Ti � total for treatment i
Bj � total for block j
N is the grand total.

For large samples, Q has an approximate chi-square distribution with c � 1 d.f.
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Table 15.27 Treatments with Binomial Outcome in
Randomized Blocksa

Treatment

Subject I II III Bj

1 1 1 0 2
2 0 0 0 0
3 1 0 1 2
4 1 0 1 2
5 0 1 1 2
6 1 0 1 2
7 1 0 0 1
8 1 0 0 1
9 1 0 1 2

10 1 0 0 1
Ti 8 2 5 15

a 1 � success, 0 � failure

Example: Ten subjects were treated with a topical product for a fungus infection.
Subjects were evaluated as cured (1) or not cured (0). See Table 15.27.

Q c c T c N cN B

Q

i j= − ∑ − − − ∑

= + + −

[ ( ) ( ) ( ) ]/( ( )

[ ( )( ) ( )

1 1

3 2 64 4 25 2 15

2 2 2

2 ]] /( ) /3 15 27 108 18 6× − = =

The tabled value of chi-square with 2 d.f. at the 5% level is 5.99. Therefore, we can
conclude that the differences are significant at the 0.05 level. (Treatment 1 is different
from Treatment 2.)

15.10 NON PARAMETRIC TOLERANCE INTERVAL

If the data set appears to be nonnormal, the usual tolerance interval calculation assuming
a normal distribution may be inappropriate (see Section 5.1). In this case, a nonparametric
tolerance interval can be constructed. The nonparametric interval can be considered con-
servative, and would be wider, on average, than that usually calculated assuming normality,
if the data truly are normal. The computation quantifies the intuition (18) that most future
observations would lie within the minimum and maximum of an observed sample from
the distribution. The calculation is as follows (18). Given a sample of size n from a
distribution, we can state the probability of the proportion of samples that are within the
minimum and maximum values observed. Let p � the proportion of samples within the
maximum and minimum. Let Q be the probability space covered by min, max; n is the
sample size.

P Q p n p n pn n( ) ( ) ( )> = − + −−1 11

P (Q 
 p) is the probability that the minimum and maximum values will cover a proportion
p of all values in the distribution.
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An example should clarify the calculation. Suppose that we assay 50 individual
tablets randomly chosen from a batch, with a minimum of 96% and a maximum of
103%. Furthermore, we have reason to believe that the data is not normally distributed.
We wish to compute a tolerance interval which will give a probability that p proportion
of the tablets assay between 96% and 103%. In this example, n � 50. Suppose we
wish to set the proportion of tablets within 96–103 to be 95%. We then calculate the
probability.

P Q p( ) ( . ) ( ) . .> = − + − =−1 50 0 95 50 1 0 95 0 7250 1 50

Therefore, we say that the probability is 0.72 (72%) that at least 95% of the tablets in the
batch are within 96–103%.

We might want to compare this result with the tolerance interval assuming a normal
distribution (Section 5.1). The average is 100.2% and the standard deviation of the 50
tablets is 2.5%. Referring to Table IV.19 in the appendix, a 75% probability tolerance
interval containing 95% of the tablets is:

100 2 2 138 0 025 100 2 5 3 94 9 105 5. / . . . / . . .+ − × = + − = −

That is, the probability is 75% that at least 95% of the tablets are between 94.9 and
105.5%.

KEY TERMS

ANCOVA Multinominal distribution
Attribute Nominal data
Categorical data Normal approximation
Confidence Interval Ordered data
Contingency table (R � C table) Ordinal data
Continuous Data Quade test
Distributions Rating scale
Efficiency Run
Fisher’s exact test Runs test
Friedman’s test Sensitive
Hypergeometric distribution Sign test
Independence Ties
Interval or ratio scale Tolerance interval
Kruskal—Wallis test Wilcoxon rank sum test
Mantell—Haenszel test Wilcoxon signed rank test
McNemar’s test

EXERCISES

1. Perform a t test to compare treatments for the data from Table 15.3. Compare the
results of this test to the nonparametric test presented in the text.

2. The following data were observed comparing two assays using 12 batches of
material:
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Batch Test A Test B

1 8.1 9.0
2 9.4 9.9
3 7.2 8.0
4 6.3 6.0
5 6.6 7.9
6 9.3 9.0
7 7.6 7.9
8 8.1 8.3
9 8.6 8.2

10 8.3 8.9
11 7.0 8.3
12 7.7 8.8

(a) Use the sign test to determine if the two tests are different.
(b) Compare the two tests (A and B) using the t test.

3. Use the Wilcoxon signed rank test to compare the two assay methods to determine
if the methods are significantly different for the data in Exercise Problem 2. Use
Table IV.13 and the Normal approximation.

4. Blood glucose uptake for corresponding halves of rat diaphragms for compounds
A and B are as follows (adapted from Ref. 2):

Rat

1 2 3 4 5 6 7 8 9

A 9 9.5 5.7 3.9 6.7 5 8.6 3 8
B 8 9.7 5.1 3.6 7.1 5 8.4 4.2 7.1

Use a nonparametric procedure to compare the two compounds.
5. Twenty patients were randomly allocated to two treatment groups, 10 patients per

group. The following data are the change in serum chloride after treatment.

Treatment A Treatment B

4.3 6.1
6.2 0.9
4.4 0.7
8.2 0.8
0.5 1.3
2.6 3.1
4.2 1.9
4.1 3.9
5.6 2.1
3.4 0.1

Test for treatment differences using a nonparametric test and a t test.
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6. Dissolution is compared for three experimental batches with the following results
(each point is the time in minutes to 50% dissolution for a single tablet):

Batch 1: 15, 18, 19, 21, 23, 26
Batch 2: 17, 18, 24, 20
Batch 3: 13, 10, 16, 11, 9

Is there a significant difference among batches?
7. A bioavailability study was conducted in which three products were compared: a

standard product and two new formulations, A and B. The peak blood concentra-
tions were as follows:

Subject Standard A B

1 14 12 17
2 12 18 9
3 11 17 8
4 17 15 14
5 20 16 16
6 16 12 13
7 14 11 10
8 16 16 10
9 18 17 19

10 15 10 8
11 22 15 15
12 14 13 14

Use Friedman’s test to determine if there is a difference among the three treatments.
8. In a test for pain relief, two drugs are compared where the outcome is 0, 1, or 2,

where 0 � no relief, 1 � partial relief, 2 � complete relief. With drug A, 50
had a score of 0, 50 scored 1, and 75 scored 2. With drug B, 20 had a score of
0, 60 scored 1, and 60 scored 2. Use a chi-square test to compare drugs A and
B. How would you interpret a significant effect?

9. The following fourfold table was constructed from data for inspection of 1000
tablets in quality control.
(a) Are ‘‘specks’’ and ‘‘capping’’ independent?
(b) Are the proportion of tablets specked and capped different in this batch of

tablets?

Capped

Yes No

Specked Yes 13 45
No 18 924
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**10. In a preclinical study the following incidence of tumors was observed in control
and treated animals.

Controls: 0 of 12 animals
Treated: 5 of 14 animals

Use Fisher’s exact test to determine if the incidence is significantly different in
the two groups. Compare the results to a chi-square test with continuity correction.

11. The following assay results were observed from sequential readings from a control
chart. Using the runs test, determine if these values conform to a ‘‘random’’
sequence. Use a two-sided test. What would be your conclusion if the test were
one-sided?
300.1, 300.5, 300.7, 308.2, 304.4, 303.9, 302.1, 303.1, 300.9, 303.4, 305.6, 306.2,
304.1, 306.1, 306.8, 301.3, 304.3, 301.9, 304.2, 302.6

12. Confirm that the corrected �2 is 7.0 by computing the correction for ties for the
analysis of the data in Table 15.6.

13. For the 3 � 2 table at the end of Section 15.9.1 (Table 15.18), compute the �2

value for the entire table and for the comparison of treatments B and C.
14. Analyze the following data, using the combined data from two centers. Use the

Mantel–Haenszel test.

Center I

Success Failure Total

Drug A 12 6 18
Drug B 9 9 18
Total 21 15 36

Center II

Success Failure Total

Drug A 14 3 17
Drug B 9 11 20
Total 23 14 37

Are the two treatments significantly different?
15. Compute the parametric two-way ANOVA and confidence intervals for the data

of Table 15.6, using a log transformation.
16. In Section 15.4.1, show that the comparison of treatment 1-treatment 2 for se-

quences 1 and sequence 2 is equal to twice the period effect (no carryover).
17. Compute the tests for sequence and period effects for Table 15.9; use Eq. 15.4.
18. Perform a two-way analysis of variance on the data of Table 15.11. Assuming no

** Optional, more advanced problems.
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interaction, what is the probability associated with the F test (tablet press MS/
error MS).

19. Perform a two-way ANOVA on ranks in Table 15.11. Show that Fisher’s LSD is
the same as the nonparametric multiple comparison.
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16

OPTIMIZATION TECHNIQUES AND
SCREENING DESIGNS**

The optimization of pharmaceutical formulations with regard to one or more attributes
has always been a subject of importance and attention for those engaged in formulation
research. Product formulation is often considered an art, the formulator’s experience and
creativity providing the ‘‘raw material’’ for the creation of a new product. Given the same
active ingredient and a description of the final marketed product, two different scientists
will very likely concoct different formulations. Certainly, human input is an essential
ingredient of the creative process. In addition to the art of formulation, techniques are
available that can aid the scientist’s choice of formulation components which will optimize
one or more product attributes. These techniques have been traditionally applied in the
chemical and food industries, for example, and in recent years have been applied success-
fully to pharmaceutical formulations. In this chapter we describe the application of factorial
designs (and modified factorials) and simplex lattice designs to formulation optimization.
When the effects of factors on a pharmaceutical process or response are unknown, the
use of screening designs to estimate factor effects may be indicated.

16.1 INTRODUCTION

The pharmaceutical scientist has the responsibility to choose and combine ingredients that
will result in a formulation whose attributes conform with certain prerequisite require-
ments. Often, the choice of the nature and quantities of additives (excipients) to be used
in a new formulation is based on experience, for example, similar products previously
prepared by the scientist or his or her colleagues. To break habits based on experience
and tradition is difficult. Although there is much to be said for the practical experience of
many years, we often become caught in the web of the past. The application of formulation
optimization techniques is relatively new to the practice of pharmacy. When used intelli-

** This is an advanced topic.
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gently, with common sense, these ‘‘statistical’’ methods will broaden the perspective of
the formulation process.

Although several optimization procedures are available to the pharmaceutical scientist,
a few frequently used methods will be presented in this chapter. The objective is to produce
a mathematical model that describes the responses. In general, the procedure consists of
preparing a series of formulations, varying the concentrations of the formulation ingredi-
ents in some systematic manner. These formulations are then evaluated according to one
or more attributes, such as hardness, dissolution, appearance, stability, taste, and so on.
Based on the results of these tests, a particular formulation (or series of formulations)
may be predicted to be optimal. The ‘‘proof of the pudding,’’ however, is actually to
prepare and evaluate the predicted optimal formulation.

If the formulation is optimized according to a single attribute, the optimization proce-
dure is relatively uncomplicated. To optimize on the basis of two or more attributes,
dissolution and hardness, for example, may not be possible. The formulation that is optimal
for one attribute very well may be different from the formulation needed to optimize other
attributes. In these cases, a compromise must be made, depending on the relative impor-
tance of each attribute. The final formulation, therefore, is suitably modified to attain an
acceptable performance of all relevant attributes, if possible. We will discuss the optimiza-
tion procedure based on a single attribute. More complex situations may require more
complex designs, and the advice of an experienced statistician is recommended in these
cases. Therefore, the use of the term, ‘‘optimization’’ may be a misnomer. An optimal
response may not be a single response, but a region of responses that satisfy the require-
ments of the formulation. Once such a region is defined, the desired response may be
defined using a range of factors.

In general, an advanced understanding of statistics is not necessary. One should be
familiar with the following concepts as described elsewhere in this book.

16.1.1 Planning Experiments

Common sense should prevail. Design and choice of variables are discussed later in this
chapter. In most cases, we have a reasonable idea of which variables are important, and
their effective ranges. But, we may be surprised. If everything were known, we would
not have to experiment. Also, we should be careful not to neglect potentially important
variables. Screening designs may be useful if little is known of the system

16.1.2 Variables

Variables may be considered as Independent and Dependent (X,Y). Dependent variables
(Y) are outcome variables (e.g., dissolution). Independent variables (X) are set in advance
(e.g., lubricant level). Variables can be continuous or discrete. The number of experiments
should be kept at a reasonable level. The more variables used, the more knowledge is
gained, but expense and time should be taken into consideration.

16.1.3 Variability or Experimental Error

It is important to have an idea about variability of response (Y) and/or ‘‘predicted re-
sponse.’’ Replication is typically needed to estimate variability, but this adds time and
cost to the study. Estimates of variance can be obtained from replication, from ANOVA
or from experience.
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16.1.4 Regression

For our purposes, regression is used to predict Responses, and/or to describe relationships.
Either simple linear or multiple regression may be used to obtain optimized systems. We
derive a response equation from the data (as described in this chapter), and predict a
response within the bounds of the fixed independent variables, X. Prediction outside of
the bounds of the independent variables are unreliable. Consider the following example.

Suppose that the theoretical response relationship (Y as a function of X1 and X2,
where we have two independent variables) is Y � 5 � 6 X1 � 7 X1

2 � 3 X2. We obtain
six values of Y as follows:

X1 X2 Y

1 1 21
2 1 48
1 2 24
2 2 57
3 1 89
1 3 45

Using multiple regression we obtain the following equation relating Y to the independent
variables.

Y X X X= − + + +7 7 2 7 11 41 1
2

2. .

This works well within the experimental space. But predictions outside are questionable.
For example, if X1 � 4 and X2 � 4

Predicted

Actual

=
=

179 4

153

.

16.2 OPTIMIZATION USING FACTORIAL DESIGNS

The basic principles of factorial designs have been presented in Chapter 9. In factorial
designs, levels of factors are independently varied, each factor at two or more levels. The
effects that can be attributed to the factors and their interactions are assessed with maximum
efficiency in factorial designs. Also, factorial designs allow for the estimation of the effects
of each factor and interaction, unconfounded by the other experimental factors. Thus, if
the effect of increasing stearic acid by 1 mg is to decrease the dissolution by 10%, in the
absence of interactions, this effect is independent of the levels of the other factors. This
is an important concept. If the levels of factors are allowed to vary haphazardly, as in an
undesigned experiment, the observed effect due to any factor is dependent on the levels
of the other varying factors. Generalities, or predictions, based on results of an undesigned
experiment will be less reliable than those which would be obtained in a designed experi-
ment, in particular, a factorial design. Screening designs use less runs, and estimate the
main effects of factors. The latter part of this chapter will introduce screening designs.
These designs are useful when a relatively large number of factors may affect the response
or process. From a regulatory viewpoint, the data derived from factorial designs can be
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useful to predict responses when confronted with formulation or manufacturing modifica-
tions.

The optimization procedure is facilitated by construction of an equation that describes
the experimental results as a function of the factor levels. A polynomial equation can be
constructed, in the case of a factorial design, where the coefficients in the equation are
related to the effects and interactions of the factors. For the present, we will restrict our
discussion to factorial designs with factors at only two levels, called 2n factorials, where
n is the number of factors (see Chapter 9). These designs are simplest and often are
adequate to achieve the experimental objectives. These designs estimate only linear effects.
That is, if there is a curved response as a function of factor levels or combination, such
effects will be missed. Sometimes, use of these smaller designs is imperative, for the sake
of economy. Increasing the number of factor levels dramatically increases the number of
formulations that are needed to complete the design. With a large number of factors, even
designs where factors are restricted to two levels may result in a very large number of
formulations to be prepared and tested. In such cases, fractional factorial designs may be
used. Some information is lost when using fractional factorial designs, but one-half, one-
fourth, or less of the formulations are needed compared to those needed to run a full
factorial design. A brief description of fractional factorial designs is presented in Sec. 9.5.
The theory and construction of these designs are presented in detail in The Design and
Analysis of Industrial Experiments, edited by O. L. Davies [1]. Also see Ref. 12 for an
example of optimization applied to an HPLC analytical method.

As noted above, the optimization procedure is facilitated by the fitting of an empirical
polynomial equation to the experimental results. The equation constructed from a 2n facto-
rial experiment is of the following form:

(16.1)
Y B B X B X B X B X X

B X X B X X B X X X

= + + + + +
+ + + +

0 1 1 2 2 3 3 12 1 2

13 1 3 23 2 3 123 1 2 3

…

… ++…

where Y is the measured response, Xi is the level (e.g., concentration) of the ith factor,
Bi, Bij, Bijk, … represent coefficients computed from the responses of the formulations in
the design, as will be described below. (B0 represents the intercept.)

For example, in an experiment with three factors, each at two levels, we have eight
formulations, a total of eight responses. The eight coefficients in Eq. (16.1) will be deter-
mined from the eight responses in such a way that each of the responses will be exactly
predicted by the polynomial equation. For the present, to illustrate this concept we will
look at the problem in reverse. Suppose that we already have an equation to predict the
experimental results derived from a factorial design as follows:

(16.2)
Y X X X X X X X

X X X X

= + + + − −
+ +

5 2 3 0 6 0 4

0 7 0 12
1 2 3 1 2 1 3

2 3 1 2

( ) ( ) . ( ) . ( )

. ( ) . ( XX3 )

From Eq. (16.2), we can reconstruct the original data from the 23 experiment. Suppose
that the levels (in mg) of the three factors in the design were as follows:

Low level High level

X1 � stearate 0 2
X2 � colloidal silica 0 1
X3 � drug 0 5
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Based on Eq. (16.2), the formulation with all factors at the low level will have a response
of five. All factors are equal to 0, and all terms containing X1, X2, or X3 are equal to 0.
If X1 is at the high level (2 mg), and X2, and X3 are at the low level (0), the predicted
response is Y � 5 � 2(X1) � 5 � 2(2) � 9. All other terms are equal to 0. If X1 and
X2 are at the high level, and X3 is at the low level, the response is

5 2 3 0 6 5 2 2 3 1 0 6 2) 1 10 81 2 1 2+ + − = + + − =( ) ( ) . ( ) ( ) ( ) . ( ( ) .X X X X

The results for all eight combinations (formulations) as predicted from Eq. (16.2) are
shown in (Table 16.1).

Table 16.1 shows the results of the factorial experiment which were used to construct
Eq. (16.2). The practical, more realistic problem is to construct the polynomial equation,
given the experimental results. To solve this problem, we find the solution to eight equa-
tions with eight unknowns [the unknowns are the eight coefficients in Eq. (16.2)]. For
example, in formulation 1 (Table 16.1),

X X X1 2 3 0= = =

Substituting X1 � X2 � X3 � 0 into the general equation [Eq. (16.1)] results in

Y B= 0 ( )all other terms are 0

Since the response (Y) for formulation 1 (where X1 � X2 � X3 � 0) is equal to 5,

Y B= =0 5

This is the simple solution for the first of the simultaneous equations.
In the second formulation, X1 � 2, X2 and X3 are equal to 0 and Eq. (16.1) reduces

to

(16.3)Y B B X= +0 1 1 (all other terms are 0)

The response, Y, for formulation 2 is 9 (Table 16.1). We can solve for B1, using Eq. (16.3)
(B0 � 5 and X1 � 2)

Table 16.1 Results of the 23 Factorial Experiment Which Led to the
Construction of the Polynomial Equation (16.2)

Factor level
Predicted

Formulation X1 X2 X3 response, Y

1 0 0 0 5
2 2 0 0 9
3 0 1 0 8
4 2 1 0 10.8
5 0 0 5 10
6 2 0 5 10
7 0 1 5 16.5
8 2 1 5 16.5
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9 5 2 21 1= + =B B( )

This procedure is continued, until we solve for all coefficients, Bi, Bij, Bijk, and so on.
In the example above, the solution for the coefficients for the polynomial equation

is very simple, because the low level of all factors is zero. In general, the solution would
be more difficult if the low level of all factors is not equal to zero. However, the general
solution for the polynomial coefficients is not difficult for 2n factorial designs, because
of the independence (orthogonality) inherent in factorial designs. The first step in the
solution is to code the levels of the factors so that the high level of each factor is �1,
and the low level of each factor is �1. This procedure requires a transformation of each
of the three variables, X1, X2, and X3 to X′1, X′2, and X′3, respectively, as follows:

For X1, let X′1 � X1 � 1. Note that when X1 � 2 (the high level), X′1 � �1, and
when X1 � 0 (the low level), X′1 � �1.

For X2, let X′2 � 2X2 � 1.
For X3, let X′3 � (2X3 � 5)/5.

In general, the formula for the transformation is

(16.4)
X − the average of the two levels

one-half the difference of tthe levels

After the transformation, the levels of the factors are as shown in Table 16.2 (see also
Chapter 9).

Table 16.2 also contains ‘‘transformed’’ values for the interactions, represented by
�1 or �1. These values are obtained by multiplying the values in the appropriate columns
of X1, X2, and X3. For example, in formulation 1, X1X2 is represented by �1, the product
of �1 for X1 and �1 for X2 [X1X2 � (�1)(�1) � �1]. X1X2X3 is represented by the
product of (�1)(�1)(�1) � �1, derived from the values in the columns headed by X1,
X2, and X3. (See also Chapter 9 to clarify this procedure.) The ‘‘total’’ column contains
only the value �1, and is used to calculate the intercept, B0.

The coefficients for the polynomial equation (16.1) are calculated as � XY/8
(� XY/2n, in general), where X is the value (�1 or �1) in the column appropriate for the
coefficient being calculated, and Y is the response. An example should make the calculation

Table 16.2 Transformed Levels of Factors Showing Signs to Be Used to Determine
Effects and Polynomial Coefficients

Formulation X1 X2 X3 X1X2 X1X3 X2X3 X1X2X3 Total Y

1a �1 �1 �1 �1 �1 �1 �1 �1 5
2 �1 �1 �1 �1 �1 �1 �1 �1 9
3 �1 �1 �1 �1 �1 �1 �1 �1 8
4 �1 �1 �1 �1 �1 �1 �1 �1 10.8
5 �1 �1 �1 �1 �1 �1 �1 �1 10
6 �1 �1 �1 �1 �1 �1 �1 �1 10
7 �1 �1 �1 �1 �1 �1 �1 �1 16.5
8 �1 �1 �1 �1 �1 �1 �1 �1 16.5

a Note that X1, X2, and X3 are at their low levels (0). Transformed values are �1, �1, and �1.
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clear. For the coefficient corresponding to X1 (B1), the calculation is performed as follows.
We multiply each value in the column headed X1 (�1 or �1) by the corresponding
response, Y. The sum of these products (� XY) divided by 8 (2n) is the coefficient, B1.

[( )( ) ( )( ) ( )( ) ( )( . ) ( )( ) ( )( )

( )

− + + + − + + + − + +

+ −

1 5 1 9 1 8 1 10 8 1 10 1 10

1 (( . ) ( )( . )]
.

.16 5 1 16 5
6 8

8
0 85+ + = =

The coefficient, B2, is calculated using the values (�1 or �1) in the second column, the
X2 column.

[( )( ) ( )( ) ( )( ) ( )( . ) ( )( )

( )( ) ( )

− + − + + + + + −

+ − + +

1 5 1 9 1 8 1 10 8 1 10

1 10 1 (( . ) ( )( . )
.

.16 5 1 16 5
17 8

8
2 225+ + = =

The coefficient for X1X2X3 is B123, and is calculated using the values in the column headed
by X1X2X3 as follows.

[( )( ) ( )( ) ( )( ) ( )( . ) ( )( )

( )( ) ( )

− + + + + + − + +

+ − + −

1 5 1 9 1 8 1 10 8 1 10

1 10 1 (( . ) ( )( . )]
.

.16 5 1 16 5
1 2

8
0 15+ + = =

All of the coefficients are calculated in this manner. B0 is the sum of all of the observations,
Y, divided by 8 (10.725).* (Note that all of the values in the ‘‘total’’ column are �1; this
column is used to obtain B0 in the same manner as the other coefficients.) The final
polynomial equation for predicting the response, Y, is

(16.5)
Y X X X

X X X X

= + + +
− −
10 725 0 85 2 225 2 525

0 15 0 85
1 2 3

1 2 1 3

. . ( ) . ( ) . ( )

. ( ) . ( )) . ( ) . ( )+ +1 025 0 152 3 1 2 3X X X X X

This equation looks entirely different from Eq. (16.2), which also predicts the responses
in this experiment. However, the two equations predict the same response. Equation (16.5)
uses the transformed levels of X1, X2, and X3 (�1 or �1), and Eq. (16.2) uses the actual,
observed, untransformed values. For example, if X1 and X2 are at their high levels, and
X3 is at the low level, we can solve for the response, Y, using Eq. (16.5) and the transformed
values, �1, �1, and �1 for X1, X2, and X3, respectively.

Y = + + + + + − − + +
− +
10 725 0 85 1 2 225 1 2 525 1 0 15 1 1

0 85 1

. . ( ) . ( ) . ( ) . ( )( )

. ( ))( ) . ( )( ) . ( ) ( ) .− + + − + + − =1 1 025 1 1 0 15 1 1 10 8( )+1

The response with X1 and X2 at the high level is 10.8, exactly equal to the value obtained
from Eq. (16.2), where X1, X2, and X3 are the actual levels, 2, 1, and 0 mg, respectively.

To reiterate, the reason for the transformation (also called coding) is to allow for
calculation of the coefficients in the polynomial equation.** The transformation of the
high and low factor levels to �1 and �1 also results in easy calculation of the variance
of the coefficients. Using the transformed levels, the variance of a coefficient is

* B0 � Ȳ.
** The coded values also result in orthogonality (independence) of effects.
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�2/8 [�2/� (X � X̄)2]. With an estimate of the variance, S2, each coefficient can be tested
for significance, using a t test. These tests are exactly equivalent to the testing of the
effects of the ANOVA of a factorial design as explained in Chapter 9. If, for example,
the X1X2 interaction were found to be nonsignificant in an ANOVA, the coefficient of
X1X2, �0.15 in this example, will also be non-significant. Usually, when constructing the
polynomial equation, only those terms which are statistically ‘‘significant’’ are retained.
In the experiment above, an estimate of the standard deviation was available from previous
similar experiments; s.d. � 0.32 with 16 d.f. Therefore, the coefficients B12 and B123

(0.15) are not significant.

t P= = >
0 15

0 32 8
1 3 0 05

.

. /
. ( . )

Omitting the ‘‘nonsignificant’’ B12 and B123 terms, the final equation is

(16.6)
Y X X X

X X X X

= + + +
− +
10 725 0 85 2 225 2 525

0 85 1 025
1 2 3

1 3 2

. . ( ) . ( ) . ( )

. ( ) . ( 33 )

An advantage of the transformation described above is that the omission of the two coeffi-
cients, B12 and B123, does not affect the values of the remaining coefficients, that is,
recalculation of the polynomial equation results in the same coefficients. This result would
not occur if Eq. (16.2) were used to describe the data. Equation (16.2) used the untrans-
formed factor levels and would necessitate extensive computations if some terms were
omitted, probably requiring use of a computer as a computing aid. Using the transformed
values ensures that the factors are orthoganol. This means that the estimates of the coefi-
cients are independent.

Having derived an equation (16.6) that describes the experimental system based on
the results of the experimental formulations, we consider this equation to approximately
predict the response within the experimental space. Figure 16.1 shows the space described
by this design. The prediction of the response, Y, at X1 � 1 mg, X2 � 1 mg, and X3 �
2.5 mg is 12.95 [Eq. (16.6)] (see Exercise Problem 1). How do we know that Eq. (16.6)
will be a good predictor for responses other than those included in the factorial design?
Without actually testing some ‘‘extra-design’’ formulations, we have no way of knowing
that the derived empirical equation will be adequate to predict the results of yet-to-be-
tested formulations. If the response is ‘‘well behaved,’’ the in-between points should be
able to be accurately predicted from the response equation.

Usually, it is a good idea to test at least one formulation, not included in the design,
as a check point. The observed results of the checkpoint formulation can then be compared
to the predicted value to test the equation. In our example, a formulation was prepared
with X1 � 1 mg, X2 � 0.5 mg, and X3 � 2.5 mg. The transformed values are equal to
zero for the three variables (see the transformation equation (16.4). Using Eq. (16.6), the
predicted response is 10.725 (only the intercept term is not equal to 0). The factor values
for the check point are the average of the low and high levels of the factors (X variables),
and lie in the center of the cube in Fig. 16.1. This is called a ‘‘Center Point.’’ The
actual observation made on this formulation was 10.5, very close to the predicted value.
Extrapolation of predicted results outside the factor space, as shown in Fig. 16.1, is not
recommended. A two-level design can make predictions only in a linear fashion, usually
a gross approximation. If curvature is present, the response may be misrepresented both
inside and outside the confines of the design.
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Figure 16.1 Factor space for experiment with factor levels shown in Table 16.1.

Once the polynomial-response equation has been established, an optimum formulation
(or a region of optimum formulations) can be found by various techniques. Sometimes,
inspection of the experimental results may be sufficient to choose the desired product. In
the example above, if large values of the response are desirable, Formulations 7 and 8 may
be chosen as ‘‘best’’ (Table 16.1). With the use of computers (programmable calculators
will often do), a ‘‘grid’’ method may be used to identify optimum regions, and response
surfaces may be depicted (see Fig. 16.2). The response surface is a geometrical representa-
tion of the response and the factor levels, similar to a contour map. For more than two
factors, response surfaces cannot be easily represented in two-dimensional space. However,
one can take slices of the surface, with all but two factors at fixed levels, as shown in Fig.
16.2. A computer can calculate the response, based on Eq. (16.1), at many combinations of
the factor levels. The formulation(s) whose response has optimal characteristics based on
the experimenter’s specifications can then be chosen. To illustrate the grid method, a very
rough grid with predicted responses based on Eq. (16.6) is shown in Table 16.3.

The experimental system analyzed above is a very simple example, but is a typical
approach to the optimization process. More sophisticated designs may be used, such as
the composite designs to be described below (Sec. 16.3), or fractional factorial designs.
The principles are the same. All of these designs have orthogonal properties to allow for
clear and simple estimation of the polynomial coefficients. For these designs, the magni-
tude of the coefficients is directly related to the magnitude of the response.

The polynomial coefficients may be calculated by techniques such as described here,
or by using a multiple regression computer program (see App. III). For two-level experi-
ments (2n factorials), the factor levels should be transformed so that the low level is equal
to �1 and the high level equal to �1, according to Eq. (16.4). (Experiments with factors at
more than two levels should be analyzed with the help of a statistician.) The transformation
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Figure 16.2 Response surface with drug (X3) constant (low level) [Eq. (16.6)].

considerably reduces the complexity of the computations, and aids in the interpretation
of the results. Each coefficient may be tested for significance discarding those coefficients
that are not significant, although there are no firm rules regarding this procedure. In
addition to the statistical criteria, scientific judgment may be used in making decisions
about the ‘‘significance’’ of the coefficients. In order to statistically test the coefficients
for significance, an estimate of the experimental error is required. This error estimate may
be obtained from previous experience, but is best estimated by replicating runs. Replica-
tion, however, may result in a large number of experiments, which could be very costly.
Replication, accomplished by performing duplicate assays on the same sample, for exam-
ple, is usually not sufficient. The best procedure for replication consists of preparing
each formulation or experiment in duplicate (or more), and randomizing the order of the
experiments, if all formulations cannot be prepared and tested simultaneously. Methods
are available to obtain an estimate of error from an unreplicated factorial experiment (e.g.,

Table 16.3 Grid Solutions for Responses (Y) Based on Eq. (16.6)

X1
a X2 X3 Y X1 X2 X3 Y X1 X2 X3 Y

�1 �1 �1 5.3 0 �1 �1 7 �1 �1 �1 8.7
�1 �1 0 7.65 0 �1 0 8.5 �1 �1 0 9.35
�1 �1 �1 10 0 �1 �1 10 �1 �1 �1 10
�1 0 �1 6.5 0 0 �1 8.2 �1 0 �1 9.9
�1 0 0 9.875 0 0 0 10.725 �1 0 0 11.575
�1 0 �1 13.25 0 0 �1 13.25 �1 0 �1 13.25
�1 �1 �1 7.7 0 �1 �1 9.4 �1 �1 �1 11.1
�1 �1 0 12.1 0 �1 0 12.95 �1 �1 0 13.8
�1 �1 �1 16.5 0 �1 �1 16.5 �1 �1 �1 16.5

a Transformed values.
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halfnormal plots [2,3], or from higher-order interactions as discussed in Chapter 9, but
these procedures will not be discussed here.

Replication (Sample Size)

We may only want to find optimum conditions, or we may want to know that effects are
real, and not just due to random error. In the latter case, we may want to perform statistical
tests (or confidence intervals). To determine the sample size for hypothesis tests, we may
use the approximate formula, N � 4(S2/delta2)(10), where N is the sample size for the
comparative groups (N � 4 for the 23 design), where alpha � 0.05 and beta � 0.8.
Usually a sample size between 10 and 20 should be sufficient.

Note that for two-level designs, the variance of an effect is 4S2/N, where N is the
number of runs.

Example:
A difference in response of 2.5 units is meaningful in a 23 experiment. The standard

deviation is expected to be 1.5. What size sample should we use?

N � 4(2.25/6.25)(10) � approximately 16

Extra (Center) Points

Often, it is useful to include an extra run as a ‘‘prediction’’ point, or to estimate curvature.
A center point should be equal to the average of the ‘‘run’’ points if there is no curvature.
If curvature is present, more runs will be needed to model the data.

The ANOVA for the following data set is shown below to illustrate the analysis of
replicated data.

LEVEL

Experiment A,B P D Resonse

1 (1) A 1 0.1 5,6
2 P B 1 0.1 7,11
3 D A 2 0.1 4,6
4 PD B 2 0.1 8,11
5 A A 1 0.2 12,12
6 PA B 1 0.2 16,21
7 DA A 2 0.2 11,12
8 PDA B 2 0.2 24,29
9 Checkpoint B 1.5 0.15 22

Analysis of Variance Table

Source Term DF Sum of Squares Mean Square F-Ratio Prob Level

P 1 162 162 40.50 0.000380*
D 1 5.555555 5.555555 1.39 0.277097
PD 1 10.88889 10.88889 2.72 0.142947
A: 1 304.2222 304.2222 76.06 0.000052*
AP 1 26.88889 26.88889 6.72 0.035802*
AD 1 5.555555 5.555555 1.39 0.277097
APD 1 5.555555 5.555555 1.39 0.277097
S 7 28 4
Total 14 456.9333

* p � 0.05
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In the absence of replication, there is no proper error term to test significance of the effects.
Sometimes we can use an estimate of error from previous experiments or pool the higher-
order interaction terms. If the runs are replicated, we would have a new term in the
ANOVA, residual or error. Then, we can perform F (or t) tests to test for significance.

We could also construct an equation to predict the response (assuming a linear re-
sponse with factors at two levels). This will be discussed later.

Fractional factorial designs use a fraction of the full factorials (e.g., 1⁄2, 1⁄4). The gain
is that we use less runs in the experiment. The loss is that we confound some effects. We
try to confound effects that we feel are not significant (or very small) with effects that
we wish to measure. In this example, the smallest fractional design is a 1⁄2 replicate, using
four of the eight runs. In four runs, we can only measure three effects. The logical choice
of effects to measure are A, P, and D. We assume that all interactions are negligible. If
our assumption is wrong, the measure of the main effects will be biased.

16.2.1 Optimization of a Combination Drug Product

The following example of a 22 factorial experiment is another illustration of the technique
of ‘‘optimization’’ using factorial designs. In this experiment, a combination drug product
was tested to obtain the dose of each drug which would result in an optimal response.
The product contained two drugs, A(X1) and B(X2). The experiment consists of formulating
combinations containing each drug at two dose levels. The doses for A were 5 mg and
10 mg; B was chosen at doses of 50 mg and 100 mg. These levels were carefully selected
to cover a range of doses which would include an appropriate dose to be chosen as the
prime candidate for the final marketed product. The full factorial consists of the four
experiments shown in Table 16.4

The product is a local anesthetic, and the response (Y) is the average time to anesthesia
for 12 patients per group. The high and low levels of drug A and drug B are transformed
to �1 and �1 [Eq. (16.4)]. For drug A, the transformation is

Potency
high level is 10; low level is 5)

− 7 5

2 5

.

.
(

For drug B, the transformation is

Potency
high level is 100; low level is 50)

− 75

25
(

The response equation has the form

Table 16.4 Factorial Design for the Drug Combination Study

Potency (mg) Potency (transformed)

Formulation A (X1) B (X2) A (X1) B (X2) AB (X1X2) Response, Y (min)

1 5 50 �1 �1 �1 9.7
2 10 50 �1 �1 �1 7.2
3 5 100 �1 �1 �1 8.4
4 10 100 �1 �1 �1 4.1
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Table 16.5 Predicted Values of Response to Anesthetic Combinations of Drugs A and
B Based on Eq. (16.8)

Dose of drug Aa

�1 �0.5 0 �0.5 �1

Dose of drug Ba �1 9.7 9.075 8.45 7.825 6.2
0 9.05 8.2 7.35 6.5 6.65

�1 8.4 7.325 6.25 5.17 4.1

a Coded values of drug potency.

(16.7)Y B B X B X B X X= + + +0 1 1 2 2 12 1 2( ) ( ) ( )( )

The coefficients are computed as described earlier in this section. For example, referring
to Table 16.4, B1 is:

Column A (X1) Y X1Y

�1 9.7 �9.7
�1 7.2 �7.2
�1 8.4 �8.4
�1 4.1 �4.1

�6.8/4 � �1.7

(B1 is the sum of X1Y /4 � �1.7.) The polynomial equation is calculated as

(16.8)Y X X X X= − − −7 35 1 7 1 1 0 451 2 1 2. . ( ) . ( ) . ( )

The response, Y, is the time to anesthesia. Formulation 4, which has the high levels
of both drugs, has the shortest time to anesthesia, and formulation 1 or 4 would be chosen
as optimal if either a long time or a short time to anesthesia is desired. However, an
intermediate time might be more desirable. For example, suppose that a time of 5 min is
the most desirable time based on considerations such as the administration of the product
and the type of conditions that are meant to be treated with the aid of the product. Table
16.5 is a rough grid of the predicted responses based on Eq. (16.8). Based on a time to
anesthesia of approximately 5 min, a formulation containing 0.5 of A and 1 of B would
be a candidate. Decoding the values result in a formulation containing 8.75 mg of A and
100 mg of B.

16.3 COMPOSITE DESIGNS TO ESTIMATE CURVATURE

In general, when looking for optimality, the response equation will be more reliable if it
contains terms that reflect curvature. Physical systems are less satisfactorily described by
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Figure 16.3 Figure showing linear response as a function of a single variable (factor).

empirical equations containing only linear terms. Figure 16.3 shows an example of a single
factor, X, at two levels. Clearly, to interpolate the response, Y, at values of X between the
low and high levels requires an assumption of linearity. These predictions would be very
much in error if the response is curved, as shown in Fig. 16.4.

In order to estimate curvature, more than two levels of the factor must be included
in the experiment. The presence of curvature would be reflected in the presence of terms
with a power greater than 1 (e.g., X 2

1) in the response equation. Such equations are known
as polynomials of order 2, and have the following form for a two-factor design:

(16.9)
Y B B X B X B X

B X B X X

= + + +

+ + +
0 1 1 11 1

2
2 2

22 2
2

12 1 2
…

Composite designs are effective designs to estimate second-order terms. These designs
have a number of desirable features. In addition to allowing an estimate of curvature,
composite designs give orthogonal estimates of the polynomial coefficients, and allow for
the possibility of proceding with the experiment in a stepwise fashion rather than perform-
ing the entire experiment at once. The theory underlying composite designs is beyond the

Figure 16.4 Figure showing curved response as a function of a single variable (factor).
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Table 16.6 Orthogonal Composite Design with Two Factors (32 Design)

Coded level

Formulation X1 X2 X1X2 X2
1 � 2/3 X2

2 � 2/3 Response, Y Predicted response

1 �1 �1 �1 �1/3 �1/3 9.7 9.3
2 �1 0 0 �1/3 �2/3 9.0 9.4
3 �1 �1 �1 �1/3 �1/3 8.4 8.4
4 0 �1 0 �2/3 �1/3 5.3 5.6
5 0 0 0 �2/3 �2/3 4.8 5.0
6 0 �1 0 �2/3 �1/3 3.8 3.3
7 �1 �1 �1 �1/3 �1/3 8.2 8.3
8 �1 0 0 �1/3 �2/3 7.5 6.9
9 �1 �1 �1 �1/3 �1/3 4.1 4.6

scope of this book. An excellent description of this design and optimization procedure
can be found in Chapter 11 of Ref. 1.

Although the following discussion is somewhat more advanced than the bulk of mate-
rial presented in this book, for those who are interested in this subject, an example of a
two-factor composite design will be presented to illustrate the technique. A two-factor
composite design is identical to a 32 factorial design, that is, two factors each at three
levels, a total of nine combinations (see Table 16.6).

In general, composite designs are not full factorials of the class 3n, where n is the
number of factors. These full factorial designs require a larger number of experiments.
For example, a 3n design with three factors requires 27 runs (27 formulations, for example),
33. With more than two factors, composite designs consist of the 2n design, plus extra-
design points. The extra points include a center point and 2n extra points, appropriately
chosen to maintain orthogonality of the design [1]. The two-factor composite design is
shown in Fig. 16.5.

The coded values �1, 0, and �1 in Table 16.6 for the factor levels represent three
equally spaced levels of each factor. The coded values in the column headed X1X2 are

Figure 16.5 Two-factor composite design (32 factorial).



521Optimization Techniques and Screening Designs

obtained by multiplying the corresponding values in the first two columns (X1, X2) as
previously described. The values in the columns X 2

1 � 2/3 and X 2
2 � 2/3 are derived so

that the product of corresponding values in any two columns of Table 16.6 sum to zero,
resulting in orthogonality (independence) of effects. The special orthogonality obtained
by transforming X 2

i to X 2
i � 2/3 allows for easy calculation of the coefficients and their

variances. With this transformation, Eq. (16.9) is modified to

(16.10)
Y B B X B X B X B X

B X X

= + + − + + −
+ +

0 1 1 11 1
2

2 2 22 2
2

12 1 2

2 3 2 3( / ) ( / )
…

The data in Table 16.6 consist of the four formulations from Table 16.4 plus five new
runs to complete the composite design. The doses of each drug (X1 and X2) were chosen
such that the three doses are at equally spaced intervals. Thus the third dose, in addition
to the two doses chosen for the 22 factorial, is 7.5 mg for X1 (A) and 75 mg for X2 (B).
The experiment consists of evaluating the nine combinations of doses, 5, 7.5, and 10 mg
for X1 (A) and 50, 75, and 100 mg for X2 (B). Note that the center point for the composite
design is the combination 7.5 mg and 75 mg of X1 and X2, respectively.

The results of the nine runs are shown in Table 16.6. The results are shown schemati-
cally in Fig. 16.6A. The plane at the bottom of the figure shows the combinations of X1

and X2. The vertical ‘‘sticks’’ are the responses at each combination of X1 and X2. We
will compute an equation of the form of Eq. (16.10) which represents a smooth curved
surface based on the experimental data. In general, the equation can be obtained through
the use of a multiple regression computer program.

The coefficients can also be calculated by ‘‘hand’’ (calculator) using the coded values
in Table 16.6. The sum of the products of the coded values times the responses divided
by the sum of the squared coded values in the column of interest gives the coefficient.
For example, the coefficient B11 in Eq. (16.10) is calculated as follows:

X�2
1 � X2

1 � 2/3 Y (X�2
1 )(Y)

�1/3 9.7 3.23
�1/3 9.0 3.00
�1/3 8.4 2.80
�2/3 5.3 �3.53
�2/3 4.8 �3.20
�2/3 3.8 �2.53
�1/3 8.2 2.73
�1/3 7.5 2.50
�1/3 4.1 1.37

� X�2
1 � 2 sum � 6.37

The sum of squared values in the (X 2
1 � 2/3) column is 2. Therefore, the coefficient, B11,

is 6.37/2 � 3.18. The intercept, B0, is the average of the nine responses, Ȳ, equal to 6.756.
The response equation is

(16.11)
Y X X X

X

= − + − −

− − −

6 756 1 22 3 18 2 3 1 15

0 52 2 3 0 7
1 1

2
2

2
2

. . ( ) . ( / ) . ( )

. ( / ) . (XX X1 2 )



522 Chapter 16

Note that Eq. (16.11) is not an exact fit to the experimental data, as was the case with
the polynomial fit described for factorial designs in Sec. 16.2. Had we included three
more terms representing various interactions, the equation would exactly fit the data.
Equation (16.11) is computed with the assumption that interactions are negligible. Because
of the larger number of experiments and the estimation of only six coefficients, we have
2 d.f. for error. Although such an error estimate is not very reliable, it does gives us some
information, albeit small. The response surface described by Eq. (16.11) is shown in Fig.
16.6B. If this equation does not adequately represent the experimental observations, more
terms may be needed in the polynomial equation [Eq. (16.9)] to improve the fit.

The contour plot (similar to contour maps) shown in Fig. 16.6B allows the selection
of combinations of X1 and X2 to satisfy given levels of the response. If a maximum response

Figure 16.6 Results of composite design experiment from Table 16.6 and response sur-
face computed from Eq. (16.11).
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is desired, the X1, X2 combinations are limited to a small area of the X1 � X2 space. If a
response of approximately 5 min is desired, various combinations of X1 and X2 will satisfy
the requirements. The ultimate choice will probably depend on other factors, as well, such
as cost, toxicity, and so on.

Use of factorial designs in tablet formulation optimization has been presented by
Schwartz et al. [4], Fonner et al. [5], and Lindberg et al. [6]. These papers discuss designs
somewhat more complex than that presented here. However, for those interested in pursu-
ing this topic further, these papers and the books The Design and Analysis of Industrial
Experiments [1] and Statistics for Experimenters [3] are recommended.

16.4 THE SIMPLEX LATTICE

Response surfaces and optimal regions for formulation characteristics are frequently ob-
tained from the application of simplex lattice designs. This class of designs is particularly
appropriate in formulation optimization procedures where the total quantity of the different
ingredients under consideration must be constant. Therefore, these are also called ‘‘Mixture
Designs.’’ For example, suppose that in a liquid formulation, the active ingredient and
solvent compose 90% of the product. The remaining 10% of the formulation consists of
preservatives, coloring agents, and a surfactant. We wish to prepare a formulation with a
certain optimal attribute(s) which is dependent on the relative concentrations of preserva-
tive, color, and surfactant. In order to determine optimal regions, we vary the concentrations
of these three ingredients in a systematic manner, with the restriction that the total concen-
tration of these ingredients is 10%. This approach differs from the previous procedures
(Secs. 16.2 and 16.3) in that a constraint is imposed on the total amount of the varying
ingredients. In this example, the total amount of the varying components is maintained at
10%. Given the concentration of two of the ingredients, the third ingredient is fixed where
in this example C � 10% � A � B.

Implementation of the simplex design consists of preparing various formulations con-
taining different combinations of the variable ingredients. The combinations are prepared
in a manner such that the experimental data can be used to predict the responses over the
simplex space* in a simple and efficient manner. The combinations (formulations) in a
simplex design are chosen to cover the space of interest in a symmetrical manner. The
experimental results are used to compute a polynomial (simplex) equation which can be
used to estimate the response surface. As is true with all optimization and so-called re-
sponse surface procedures, extrapolation to combinations outside the range included in
the experimental design is not recommended. The equation resulting from the experiment,
the simplex equation, is an empirical equation which approximately describes the response
pattern in the simplex space. There is no reason to believe that the equation has any
physical meaning, other than the fact that the complex response patterns resulting from
the varying formulations can often be approximated by simple polynomial equations.

Figure 16.7 representing a two-component system (A and B) is useful to help clarify
some concepts of simplex designs. One can consider components A and B to be two
solvents, which together comprise the entire solvent system of a drug product. We wish
to mix A and B in the correct proportion to optimize the solubility of the drug.

* The simplex space is the region enclosed by the various combinations of ingredients chosen for
the experiment. See Fig. 16.8, for example.
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Figure 16.7 Two-component solvent system used to illustrate the simplex approach to
optimization.

Figure 16.7 is familiar as a solubility phase diagram. This system can also be visualized
as an elementary simplex system. The constraint is that the concentrations of A and B
must add to 100%. This experiment consists of observing responses (solubility) at three
points, 100%A, 100%B, and a 50�50 mixture of A and B, an elementary simplex design.
According to Fig. 16.7, the solubilities of the drug at the three simplex points, 100% A,
100% B, and 50% A�50% B, are 10 mg/ml, 15 mg/ml, and 20 mg/ml, respectively. In
the simplex approach, we construct an equation of the form

(16.12)Y B A B B B A B= + +1 2 12( ) ( ) ( )( )

where Y is the response (solubility in this example), and (A) and (B) are the concentrations
(proportions) of A and B, respectively. The coefficients, B1, B2, and B12, are calculated
from the experimental observations. The response, Y, can then be predicted for all combina-
tions of A and B, where (A) � (B) � 1.0 (100%). (The proportion of each component is
usually indicated as a decimal rather than as a percentage.) The form of the simplex design
allows for easy calculation of the coefficients. In this example, the coefficients are simply
calculated as follows:

B1 � response at (A) equal to 1.0 (100%) � 10
B2 � response at (B) equal to 1.0 (100%) � 15
B12 � 4 (response at 0.5�0.5 mixture of A�B) � 2 (sum of responses at A � 1.0

and B � 1.0)
B12 � 4(20) � 2(10 � 15) � 30

The response equation is

(16.13)Y A B A B= + +10 15 30( ) ( ) ( )( )

The solution above for the three coefficients is a result of the solution of three simultaneous
equations:
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With A � 1.0 and B � 0, from Eq. (16.12), B*1 � 10
With A � 0 and B � 1.0, from Eq. (16.12), B2 � 15
With A � 0.5 and B � 0.5, from Eq. (16.12),

20 0 5 0 5 0 25 4 20 2 301 2 12 12 1 2= + + = − + =. . . ( ) ( )B B B B B Bor

We will see that in more complex simplex designs, the polynomial coefficients are, simi-
larly, easily calculated as linear combinations of experimental results.

Equation (16.13) exactly predicts the observed points: a fit of a polynomial with three
terms to three experimental points. We can always construct an equation with N coefficients
which will exactly pass through N points. For example, for the 50�50 mixture,

Y � 10(0.5) � 15(0.5) � 30(0.5)(0.5) � 20

The response equation predicts responses at extra-design points, those formulations not
included in the experiment but which lie within the simplex space, 100% A to 100% B
in this example. For example, what solubility would be predicted in a solvent system
containing 75% A and 25% B? (Note that A � B must equal 100%.) Applying Eq. (16.13),
we have

Y = + + =10 0 75 15 0 25 30 0 75 0 25 16 875( . ) ( . ) ( . )( . ) .

See also Fig. 16.7. The entire response may be sketched in by predicting solubilities along
the curve, as shown in the figure.

The primary experimental objective in experiments such as that described above may
be the determination of the solvent combination that results in maximum drug solubility.
The optimum solubility can be computed by calculating the predicted solubility at many
solvent combinations so as to clearly define the response over the solvent mixture contin-
uum. This may seem an indirect and tedious approach, but with the ready availability of
computers, this is often the most expeditious route. The maximum solubility is predicted
to occur at 41.67% A. In this simple example, the maximum can easily be calculated by
setting the first derivative of Eq. (16.13) equal to 0 (see Exercise Problem 6).

In general, the simplex design is usually applied to formulation problems in which a
mixture of three or more components is to be investigated. The design is conveniently
represented by regular-sided figures, which can be visualized for three- or four-component
systems. For more than four components, a single figure cannot be conveniently con-
structed, but can be theoretically conceived as an N-sided figure in (N � 1)-dimensional
space. For example, Fig. 16.8 shows the three-component system which is represented as
an equilateral triangle in two-dimensional space. A regular simplex design for a three-
component mixture system consists of six or seven formulations:

Three formulations, one each at each vertex, A, B, and C. These formulations represent
formulations with the pure components, A, B, and C, respectively.

Three formulations are prepared with 50�50 mixtures of each pair of components,
AB, AC, and BC.

A seventh formulation may be prepared with one-third of each component. This lies
in the center of the design.

An example of a simplex design for four components consisting of 15 formulations is
shown in Fig. 16.8. The 15 formulations consist of:

* The response, Y, with A equal to 1.0 (100%) is 10.
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Figure 16.8 Three-component simplex lattice design and four-component simplex lattice
design.

Four formulations each with 100% of each of the four pure components Six formula-
tions of 50�50 mixtures of component pairs (AB, AC, AD, BC, BD, and CD)

Four formulations consisting of one-third mixtures of combinations of three compo-
nents (ABC, ABD, ACD, BCD)

A mixture containing 25% of each of the four components (ABCD)

The simplex design is arranged so that the experimental space is well covered in a symmet-
rical fashion. In addition, the symmetrical spacing of the points allows for an easy computa-
tion of the response equation coefficients. The general equation for the response based
on a simplex design contains terms for pure components and all mixtures of components
as follows:

(16.14)
Y B A B B B C B A B B A C

B B C B
a b c ab ac

bc abc

= + + + + +
+ + +

( ) ( ) ( ) ( )( ) ( )( )

( )( )

…

… (( )( )( )A B C +…

where (A), (B), and (C) are the proportions of components A, B, and C, and (A) � (B)
� (C) � … is equal to 1.0.
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The subscripted B’s (e.g., Ba) are coefficients which can be easily calculated from
the responses, Y, or using a multiple regression computer program.

After the coefficients have been calculated, the response equation [Eq. (16.14)] may
be used to predict the response of combinations of the N components in the system. With
the aid of a computer, responses may be calculated over the simplex space, and contour
diagrams printed (see also Fig. 16.6). The contour plot is a graphic description of the
response surface resulting from data derived from experimental designs such as the sim-
plex. For the two-component system (Fig. 16.7), the response surface is simply the solubil-
ity curve. With three components, a three-dimensional figure would be necessary to show
the response surface. A contour plot is a means of illustrating the response on a two-
dimensional surface, as is familiar to those who have been exposed to contour maps. A
computer may be programmed to produce two-dimensional figures (commercial programs
are also available), which are slices through the three-dimensional figure for a three-
component system. The slices are taken at a constant concentration of one of the compo-
nents. In computer outputs, the regions of equal response are indicated by a common
symbol, such as a letter or a figure. An example of a contour plot was shown in Fig. 16.6.
The contour plot will be discussed further in the example that follows. Examination of
the contour plot(s) allows the experimenter to choose formulations which have predicted
responses of some specified magnitude.

When constructing an empirical response equation based on a limited number of
experimental observations, one should understand that predicted values based on the equa-
tion may be in error for several reasons. For example, the empirical equation (or model,
as it is often called) rarely exactly defines the experimental system. The equation is an
approximation to the system. To understand this important concept, note that the same
problem would exist if we had only two points in the experimental space. The empirical
equation derived from the two points could only relate the observations by a straight line.
In-between points could only be predicted on the basis of the straight-line relationship
(see Figs. 16.3 and 16.4).

If the true relationship of the X, Y variables were curved, the linear interpolation
would be in error. In the simplex design, we used a limited number of points to define a
relatively large region of response. Even if the model represented by the empirical equation
is a reasonable representation of the true surface, other sources of variation can contribute
to error in the prediction equation and predicted responses (e.g., error in measuring the
response). Thus, in these systems, we have at least two obvious sources of variability:
that due to the empirical model and that due to observational errors.
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How can we protect ourselves from inadvertantly proceeding with predictions when
the derived equation is indeed inaccurate? As insurance against such a possibility, it is a
good idea to run one or more extra-design points. These points are not used to estimate
the coefficients in the simplex equation [Eq. (16.14)] but will be used as checkpoints.
Once the simplex equation is derived, the result at the extra-design checkpoint(s) is pre-
dicted based on the equation, and its agreement with the observed value assessed. If the
agreement is close, we have increased faith in the predictive power of the response equation
(see Sec. 16.2). If we have an estimate of error from replication or other means, we may
wish to perform a statistical test to test the adequacy of the model (a statistician may be
consulted for this calculation).

The calculation of the simplex equation coefficients is easily accomplished using the
following formulas. These formulas are an extension of those discussed previously for
the two-component system as applied to a three-component system. The general formulas
for calculation of coefficients for an N-component system may be found in Ref. 6.

(16.15)
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The discussion above has been based on an experimental situation where the components
being varied in the simplex design comprise the entire mixture (100%). In pharmaceutical
formulations, a more common situation is one in which part of the formulation must
remain fixed (e.g., drug concentration in a tablet). The remaining components, which may
be varied, therefore do not make up 100% of the mixture. In addition, the lower limit for
the varying components is often not equal to 0. For example, some components must be
present in some minimal quantity in order that a marketable product can be manufactured.
This is known as a design with constraints. For tablets, some minimal amount of a lubricat-
ing agent may be necessary in order to obtain an acceptable product. These modifications
in the simplex design present no problem, however, because we can restrict the treatment
of the simplex to those components which are varied, and with suitable transformations,
treat the data in exactly the same way as described above. For example, if the components
to be varied make up 60% of the total formulation ingredients, we can appropriately
transform the actual percentages of these components so that the transformed percentages
total 100%. In a three-component mixture containing 20% of each of three components,
each component can be transformed to 33.3% (1/3) for purposes of the simplex analysis.
Transformations can also be made where the components have a lower limit greater than
0% and an upper limit less than 100%, as will be explained in the following worked
example.

The example presented below is an experiment in which a simplex design was used
to obtain a formulation with optimal properties. This example should clarify the concepts
and procedures described above. This experiment was prompted by problems with tablet
hardness for a large-volume marketed product. Although the reason for the problem was
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Table 16.7 Results of a Three-Component Simplex System for Tablet Hardness

Formulation components Transformed proportion

A B C A B C Average hardness, Y

55 10 10 1.0 0 0 6.1
10 55 10 0 1.0 0 7.5
10 10 55 0 0 1.0 5.3
32.5 32.5 10 0.5 0.5 0 6.6
32.5 10 32.5 0.5 0 0.5 6.4
10 32.5 32.5 0 0.5 0.5 6.9
25 25 25 0.33 0.33 0.33 7.3
32.5a 21.25 21.25 0.5 0.25 0.25 7.2

a Extra-design checkpoint.

not obvious, the pharmaceutical product development scientists felt that the cause could
be traced to three components of the tablets, which we will denote as ingredients A, B,
and C. Together, these components consisted of 25% of the original formulation, or 75
mg of the total tablet weight of 300 mg. A careful evaluation of the product ingredients
indicated that the three components had to be present in an amount equal to at least 10
mg each in order for the tablet to be satisfactorily compressed. Thus the recommended
simplex design to obtain a satisfactory tablet hardness consisted of varying the three
components with the constraint that the sum of the components must be 75 mg, and that
each component be present in an amount equal to at least 10 mg.

In order to apply the simplex equation to be derived from this experiment in a conven-
ient manner, the actual concentrations used should be transformed such that the minimum
concentration (10 mg) corresponds to 0% and the highest concentration corresponds to
100%.* In our example, the transformation is the same for all three components because
each component is subject to the same restrictions. The minimum quantity is 10 mg and
the maximum is 55 mg. (The other two components, each at 10 mg, make up the 20-mg
difference, a total of 75 mg.) The transformation is as follows:

(16.16)

Transformed proportion
Amount used minimum

maximum minimum
= −

−

= AAmount used 10

55 10

−
−

Thus a formulation prepared with a 50�50 mixture of components A and B would actually
contain 32.5 mg of A, 32.5 mg of B, and 10 mg of C. Note that from Eq. (16.16), if a
component is at a concentration of 32.5 mg, the transformed proportion is (32.5 � 10)/
(55 � 10) � 0.5. A formulation with ‘‘100%’’ A would actually contain 55 mg of A,
10 mg of B, and 10 mg of C.

The three-component simplex design was run with one checkpoint, as shown in Table
16.7. The hardness values represent the average hardness of 20 tablets taken at random

* If there are no constraints on the upper and lower limits, the highest concentration would ordinarily
be 100% and the lowest 0%.
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from the experimental batches. The simplex coefficients are computed as described previ-
ously [Eq. (16.15)], resulting in the following equation:

(16.17)
Y A B C

A B A C B C A

= + +
− + + +

6 1 7 5 5 3

0 8 2 8 2 0 15

. ( ) . ( ) . ( )

. ( )( ) . ( )( ) . ( )( ) ( )(( )( )B C

For example, the coefficient B123 is calculated as follows:

27 7 3 12 6 6 6 4 6 9 3 6 1 7 5 5 3 15( . ) ( . . . ) ( . . . )− + + + + + =

(A), (B), and (C) in Eq. (16.17) are the transformed proportions. The extra-design check-
point (the final formulation in Table 16.7) has a response of 7.2. The predicted value based
on Eq. (16.17) is 7.09, very close to the observed value, 7.2. This is some confirmation of
the adequacy of Eq. (16.17) as a predictor of tablet hardness. Figure 16.9 shows a contour
plot of the results of the experiment based on Eq. (16.17). Tablets with high hardness are
found in the region with relatively larger amounts of component B. If a tablet hardness
of 7 or more is satisfactory, the pharmaceutical scientist has a choice of formulations. The
final composition may then be dependent on other factors, such as cost or other tablet
properties.

The following example shows data (Table 16.8) and analysis from a replicated simplex
design that gives an estimate of experimental error. The design is a basic three-component
(A, B, and C) simplex design with a center point consisting of 1/3 of each of the three
components. This example is set up for a computer analysis. Note that the interaction term
coefficients are the product of the main effect coefficients. For example for Run �7, the
ABC interaction is 0.333 � 0.333 � 0.333 � 0.037. The computer analysis gives the

Figure 16.9 Contour plot of three-component simplex system (Table 16.7).
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Table 16.8 Example of a Replicated Simplex Design

Run A B C AB AC BC ABC Response

1 1 0 0 0 0 0 0 38
2 0 1 0 0 0 0 0 27
3 0 0 1 0 0 0 0 46
4 0.5 0.5 0 0.25 0 0 0 33
5 0.5 0 0.5 0 0.25 0 0 51
6 0 0.5 0.5 0 0 0.25 0 32
7 0.333 0.333 0.333 0.111 0.111 0.111 0.037 48
8 1 0 0 0 0 0 0 42
9 0 1 0 0 0 0 0 28

10 0 0 1 0 0 0 0 41
11 0.5 0.5 0 0.25 0 0 0 35
12 0.5 0 0.5 0 0.25 0 0 47
13 0 0.5 0.5 0 0 0.25 0 32
14 0.333 0.333 0.333 0.111 0.111 0.111 0.037 50

Independent Regression Lower Upper Standardized
variable coefficient Standard error 95% C.L. 95% C.L.

A 40 1.535299 36.36959 43.63041
B 27.5 1.535299 23.86959 31.13041
C 43.5 1.535299 39.86959 47.13041
AB 1 7.521398 �16.78528 18.78528
AC 29 7.521398 11.21472 46.78528
BC �14 7.521398 �31.78528 3.78528
ABC 277.1 52.90734 151.9937 402.2056

Analysis of Variance Section

Source DF Sum of squares Mean square Prob F-Ratio Level

Intercept 0 0 0
Model 7 22461 3208.714 680.6364 0.000000
Error 7 33 4.714286

regression coefficients for the response equation, and an ANOVA to estimate the experi-
mental error. The variance estimate is 4.71.
A check point was run at A � 0.25, B � 0.25, and C � 0.5 with a response of 46. The
model predicted 49.2.

In my experience, this approach gives excellent results.

16.5 SEQUENTIAL OPTIMIZATION

Sequential optimization was developed as a means to optimize a process in a stepwise
fashion. Evolutionary operation (EVOP) uses factorial type designs and usually requires
a large number of experiments [8]. A relatively simple approach to sequential optimization
is a stepwise application of the simplex procedure [9,10]. The procedure consists of first
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generating data from n � 1 experiments where n is the number of independent variables
or factors. Based on the n � 1 responses and predetermined rules, one result is eliminated
from the set and a new experiment is performed. A decision is made as a result of the
most recent experiment, generating another new experiment, and so on, eventually termi-
nating the design at an ‘‘optimal’’ response. Thus each new experiment leads the researcher
on a path towards an optimum. The procedure and rules are illustrated in the following
example. For further details and illustrations, the reader is encouraged to study Refs. 9–11.

16.5.1 An Example of Sequential Simplex Optimization

This example is based on the presentation by Shek et al. [11] using the simplex procedure
to optimize properties of a capsule formulation. They were interested in optimizing dissolu-
tion and compaction rates as a function of the factors (or variables) drug, disintegrant,
lubricant, and fill weight. In this synthetic example, we will look at a single response,
dissolution at 30 minutes, as a function of 3 variables: disintegrant, lubricant, and fill
weight.

We start with 4 experiments (we have 3 variables). There are no firm rules regarding
the design of these experiments, but principles of good experimental design should prevail.
For example, a 1/2 replicate of a 23 factorial design can be used for the initial 4 experiments.
This requires setting low (�) and high (�) levels for each factor; see Table 16.9.

Let W � vector of worst response
Let S � vector of second worst response
Let B � vector of best response
Let Rw � worst response
Let Rs � second worst response
Let Rb � best response
Let P � average vector after elimination of worst response among formulations under

consideration

Note that since Formula 2 shows the worst response (the longest dissolution time) P̄
is the average of experiments 1, 3, and 4 and is equal to (33.3, 0.87, 300). For example,
the first vector element refers to the average disintegrant � (�50 �0 �50)/3 � 33.3.
Procedure:

Step 1. Eliminate W, the vector of the worst response from the data set and compute
R [Eq. (16.18) below], the formulation for the new experiment.

(16.18)
R P P W= + −

+ − = −
( )

( . , . , ) ( , . , ) ( . , . , )33 3 0 87 300 33.3 1 33 200 66 6 0 46 500

Table 16.9 Initial Four Experiments for Simplex Experiment

Experiment Disintegrant Lubricant Fill weight Response

1 �(50)* �(0.2) �(100) 37
2 �(0) �(2.2) �(100) 58
3 �(0) �(0.2) �(400) 46
4 �(50) �(2.2) �(400) 40

* Parenthetical value is the amount of ingredient in the formulation.
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In this example, we need 66.6 of disintegrant, �0.46 of lubricant and a fill weight of
500. We will interpret this result after the rules are specified and we proceed with the
optimization.

If the response from experiment R, Rr, is better than the second-worst response, Rs,
but worse than the best response, retain Rr and proceed to Step 1, evaluating a new
formulation with the new set of 4 formulations.

If the response to Rr is better than the best response, proceed to Step 2.
If the response to Rr is worse than the second-worst response, go to Step 3.
If the response to Rr is worse than the worst response, go to Step 4.
Step 2. Compue E [Eq. (16.19) below] and evaluate Re.

(16.19)E P P W= + −2( )

If Rr is better than the response to E, Re, retain R. If Re is better than Rr, retain E.
Step 3. Compute Cr [Eq. (16.20) below] and evaluate the response to Cr, Rcr.

(16.20)C P P Wr = + −0 5. ( )

Retain Cr. However, if Rcr is worse than Rs (the next-to-worst response), then set Rw

� Rs and W � S. (This means that the worst response is set equal to the next-to-worst
response.) Set Rcr as the next to worst response, i.e., S � Cr and Rs � Rcr.

Step 4. Compute Cw [Eq. (16.21) below] and evaluate Rcw. Retain Cw. However, if
Rcw is worse than Rs (the next-to-worst response), then set Rcw � Rs and W � S. (this
means that the worst response is set equal to the next-to-worst response.) Set Rcw as the
next to worst response, i.e., S � Cw and Rs � Rcw.

Summary of Calculation of New Formulations
(16.18)

(16.19)

(16.20)

(16.21)

1

2 2
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r

Although this procedure may appear confusing, if one follows the example, the process
will be clarified.

We have already calculated the vector for the first new formulation using Step 1 above:
(66.6, �0.46, 500). The response to this formulation will replace the worst formulation, W,
which is formulation 2. Unfortunately, we cannot prepare this formulation because of the
negative quantity of lubricant. We will make a rule that in such impossible situations we
consider the response to this new formulation to be worse than the remaining formulations
under consideration (formulations 1, 3, and 4).

This sends us to Step 4 according to our rules. The formulations under consideration
are 1, 3, 4, and 5 in Table 16.10. According to Eq. (16.21)

Cw = − − −
=

( . , . , ) . ( . , . , )

( , . , )

33 3 0 87 300 0 5 33 3 1 33 200

50 0 20 400
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Table 16.10 Sequential Experiments in Optimization Process

Experiment Disintegrant Lubricant Fill weight Response

1 50 0.2 100 37
2 0 2.2 100 58 (W1)a

3 0 0.2 400 46 (W3)
4 50 2.2 400 40
5 66.6 �0.46 500 � (W2)
6 50 0.20 400 44 (W4)
7 100 1.54 200 42 (W6)
8 83.3 2.42 67 43 (W5)
9 58.4 0.75 316 36

10 8.5 0.07 416 41 (W7)
11 39 0.56 344 44 (W8)
12 56.2 0.8 308 35

a W1 means that this result was eliminated after the first evaluation.

The response, Rcw, to Cw is 44. According to Step 4 above, we retain this result. This is
shown as experiment 6 in Table 16.9. We now operate on experiments 1, 3, 4, and 6;
experiment 3 is the new worst result.

We go to Step 1 and compute our new formulation R from Eq. (16.18):

R = + − =( , . , ) ( , . , ) ( , . , )50 0 87 300 50 0 67 100 100 1 54 200

The response R, is 42 (represented by experiment 7 in Table 16.9). This is better than the
second worst response (44 for experiment 6) and we retain Rr as directed in Step 1 above.
We recompute R for the set of experiments 1, 4, 6, and 7:

R = + − =( . , . , ) ( . , . , ) ( . , . , )66 7 1 31 233 16 7 1 11 167 83 3 2 42 67

The response, Rr, is 43. This is worse than the second-to-worst response, 42.
Therefore we go to Step 3:

C P P W

C

r

r

= + −
= + − −
=

0 5

66 7 1 31 233 0 5 16 7 1 11 167

58 4

. ( )

( . , . , ) . ( . , . , )

( . ,, . , )0 75 316

The new response (experiment 9) is 36.
According to our rules, we go to Step 2:

E P P W

E

= + −
= + − −
=

2

69 5 1 05 272 2 30 5 0 49 72

8 5 0 07 41

( )

( . , . , ) ( . , . , )

( . , . , 66)

The response to E is 41. According to Step 2, we retain R in lieu of E because R gave
the better response. We compute a new R from Step 1:

R = + − −
=

( . , . , ) ( . , . , )

( , . , )

69 5 1 05 272 30 5 0 49 72

39 0 56 344
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The response is 44. Our new set of 4 experiments is numbers 1, 4, 9, and 11, with number
11 the worst.

We go to Step 4 and compute Cw because the value of R is worse than Rw:

Cw = − −
=

( . , . , ) . ( . , . , )

( . , . , )

69 5 1 05 272 0 5 30 5 0 49 72

54 2 0 8 308

The response was 35 (see experiment 12).
The experiments may continue as described above until repeated experiments do not

show improvement. We are searching for an optimal response in the presence of variability.
In the present case, a formula containing approximately 55 of disintegrant and 0.75 of
lubricant with a fill weight of 300 mg appeared to show minimal dissolution time; the
study was stopped after experiment 12.

As with other optimization procedures presented in this chapter, studying details in
the literature references is essential to understand the procedure and calculations [8–11].

16.6 Screening Designs

Usually, we know the factors that we wish to investigate, from our experience. However,
in new, unknown, situations, it is possible that we may consider a number of factors to
investigate, to see if any of these may affect the response or outcome. If there are only a
few such variables (or factors), we may wish to use a factorial or fractional factorial
design. If there are many potential factors of interest, screening designs are available that
use less runs, but do give us insight into effects of interest. The most popular of such
designs are the Plackett-Burman designs.

Screening designs may be useful if little is known of the system. In most cases, one
should have a reasonable idea of which variables are important, and their effective ranges.
But, we may be surprised. If everything were known, experimentation would not be beces-
sary. Also, one should be careful not to neglect potentially important variables.

Screening designs, in general, are fractional factorials of 2n designs that estimate main
effects, but not interactions. If results of such experiments point to specific factors, one
can follow up with more complete designs to evaluate specific interactions.

A twelve-run design is shown in Table 16.11. Note that the � and � signs refer to
the low and high levels of the factor, respectively. Thus, for example, Factor 1 in Run 1

Table 16.11 Twelve-Run Plackett-Burman Design

Run X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

1 � � � � � � � � � � �
2 � � � � � � � � � � �
3 � � � � � � � � � � �
4 � � � � � � � � � � �
5 � � � � � � � � � � �
6 � � � � � � � � � � �
7 � � � � � � � � � � �
8 � � � � � � � � � � �
9 � � � � � � � � � � �

10 � � � � � � � � � � �
11 � � � � � � � � � � �
12 � � � � � � � � � � �
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is at the high level. (See Chapter 9 for further explanation of terminology.) For other
designs, e.g., higher-order or more complex designs, a statistician should be consulted. In
general, variability cannot be estimated without replication (run the design in duplicate,
for example) or partial replication. This would increase the size and cost of the experiment.
As in other design considerations, the cost and time considerations must be weighed against
the information gained from expanded experiments. If less factors than runs are used, an
estimate of variability can be provided. This is shown in the following example.

An example of a 12-run Plackett-Burman design is shown in Table 16.12. This design
estimates the main effects of six variables. This leaves 5 d.f. for estimating the error. The
estimates based on columns 7–11, inclusive, are only used to compute the variability, and
are not related to the six factors in the experiment. An example of an experiment using
this design could be as follows. The effect of six variables on the dissolution of a tablet
is to be investigated. The six factors are (X1) hardness, (X2) Level of disintegrant, (X3)
time of mixing granulation, (X4) level of lubricant, (X5) type of coating, and (X6) tablet
press pressure. The response is the percent dissolution in 30 min. Each factor is set at a
low (�1) and a high (�1) level. (Note that ‘‘type of coating’’ is arbitrarily set at �1
and �1.)

The analysis is most easily accomplished using a multiple regression computer pro-
gram. When designating values for the model in the computer program, it is convenient
to input �1 for the low level and �1 for the high level. Table 16.13 shows an example
of relevant computer output.
Note that only main effects are estimated. The error term is comprised of the five columns
that were not assigned to factors (columns 7–11). If only five factors were investigated,
columns 6–11 would be used to estimate error with 6 degrees of freedom. The estimate
of error allows us to test the main effects for significance. This is a conservative test
because the error will be, if anything, estimated on the high side. That is, if any interactions
are present, the error estimate will be too high. This means that we may miss some
significant effects if interaction is present. In this example, X2 just misses significance,
and X3 and X5 are significant. Again, the six factors are (X1) hardness, (X2) Level of
disintegrant, (X3) time of mixing granulation, (X4) level of lubricant, (X5) type of coating,

Table 16.12 Example of Twelve-Run Plackett-Burman Design

Dissolution X1 X2 X3 X4 X5 X6 Error Error Error Error Error

75 1 1 �1 1 1 1 �1 �1 �1 1 �1
104 1 �1 1 1 1 �1 �1 �1 1 �1 1

57 �1 1 1 1 �1 �1 �1 1 �1 1 1
54 1 1 1 �1 �1 �1 1 �1 1 1 �1
46 1 1 �1 �1 �1 1 �1 1 1 �1 1
58 1 �1 �1 �1 1 �1 1 1 �1 1 1

3 �1 �1 �1 1 �1 1 1 �1 1 1 1
98 �1 �1 1 �1 1 1 �1 1 1 1 �1
80 �1 1 �1 1 1 �1 1 1 1 �1 �1
12 1 �1 1 1 �1 1 1 1 �1 �1 �1

100 �1 1 1 �1 1 1 1 �1 �1 �1 1
13 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1



537Optimization Techniques and Screening Designs

Table 16.13 Multiple Regression Computer Output of Data in Table 16.12

Independent Regression T-Value
variable coefficient (Ho: B�0) Prob. level Decision (5%)

Intercept 58.33 13.3748 0.000042 Reject Ho
X1 �0.167 �0.0382 0.970996 Accept Ho
X2 10.33 2.3692 0.064013 Accept Ho
X3 12.5 2.8660 0.035158 Reject Ho
X4 �3.167 �0.7261 0.500353 Accept Ho
X5 27.5 6.3052 0.001477 Reject Ho
X6 �2.667 �0.6114 0.567651 Accept Ho

Analysis of Variance

Source DF Sum of squares Mean square F-Ratio Prob. level

Intercept 1 40833.33 40833.33
Model 6 12437.33 2072.889 9.0810 0.014
Error 5 1141.33 228.267
Total 11 13578.67 1234.424

and (X6) tablet press pressure. Therefore, we might wish to consider the level of disinteg-
rant, time of mixing, and type of coating if we wish to modify the dissolution. The type
of coating seems to have the greatest effect.

KEY TERMS

Checkpoint Optimization
Coding Orthogonality
Composite designs Plackett–Burman
Contour plot Polynomial equation
Extra-design points Replication
Factorial designs Response equation
Fractional factorial designs Response surface
Grid Screening designs
Independence Sequential optimization
Model Simplex design
Model error Simplex space
Multiple regression Transformation

EXERCISES

1. Calculate the predicted response from Eq. (16.6) for
(a) X1 � 1 mg, X2 � 1 mg, X3 � 2.5 mg
(b) X1 � 2 mg, X2 � 1 mg, X3 � 4 mg
[Note that Eq. (16.6) uses coded values; see Eq. (16.4).] For example, the coded
value for X1 � 1 mg is 0 � (1 � 1)/1.
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2. Show that the transformed values of X1 � 1, X2 � 0.5, and X3 � 2.5 are all equal
to zero for the three variables in Exercise Problem 1.

3. Calculate the coefficients for the polynomial equation, (16.8). The coefficients are
calculated from the data in Table 16.4.

4. Show that decoded values of A and B equal to 0.5 and 1, respectively, are equal
to 8.75 mg of A and 100 mg of B, for the data of Table 16.4 and Eq. (16.8). Calculate
the expected response of this combination of A and B using Eq. (16.8).

5. A formulation was to be prepared to optimize dissolution time. (The formulation
with the dissolution time of approximately 15 min is ‘‘optimal.’’) Stearic acid and
mixing time were varied according to a 22 factorial design with the following results:

Stearic acid

0.25% 1%

Mixing time (min) 15 10 23
30 21 25

(a) Construct a polynomial response equation [see Eq. (16.8)].
(b) What concentration of stearic acid and mixing time would you choose for the

final product?
**6. Calculate the maximum solubility based on Eq. (16.13), using procedures of calcu-

lus. [Hint: Set the first derivative equal to 0 after substituting (1.00 � A) for B.]
7. A total of 100 mg of three components, stearic acid (A), starch (B), and DCP (C),

are to be added to a tablet formulation. Dissolution time was measured in a simplex
design with the following results:

100% A: 292.0 min
100% B: 5.6 min
100% C: 50.4 min
50% A, 50% B: 25.6 min
50% B, 50% C: 15.6 min
50% A, 50% C: 124.5 min
1/3A, 1/3B, and 1/3C: 37.0 min

(a) Compute the simplex equation coefficients.
(b) Give a combination with very fast dissolution.
(c) Give a combination that has a dissolution time of 90 min.
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GLOSSARY

a calculated intercept in regression
ANCOVA analysis of covariance
ANOVA analysis of variance
b calculated slope in regression
BMS between mean square
BSS between sum of squares
C. T. correction term
CI confidence interval
CV coefficient of variation; relative error; relative standard deviation
CXR column � row interaction
df degrees of freedom
E expected number in chi-square table
F F value for F distribution
Ha alternative hypothesis
Ho null hypothesis
ln natural log
LSD least significant difference
O observed number in chi-square table
p estimated proportion (binomial)
p (A) probability that event will occur
p (A|B) conditional probability of A given B
po true or hypothesized proportion
q probability of failure in binomial
R range
r calculated correlation coefficient
r (Dixon) computation for outlier analysis
r2 square of correlation coefficient
RSD relative standard deviation
S sample standard deviation
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S2 sample variance
S2y.x estimated variance from line fitting
t t value for t distribution
Tn test for outlier
� true standard deviation of distribution
w weight in weighted least squares
WSS within sum of squares
Xi ith observation
Z normal standard deviate
�2 chi square
� delta, true change or difference
N sample size
� sum of observations
� alpha level or error for null hypothesis; error of first kind
	 beta error (1-power)
� observed change or difference
� true mean of distribution
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SOME PROPERTIES OF THE VARIANCE

I.1 POOLING VARIANCES

In many statistical procedures, an estimate of the variance is obtained by ‘‘averaging’’ or
pooling the variances from more than one group of observations. The pooling of variances
is appropriate in cases where samples from separate groups or different experiments pro-
vide estimates of the same variance. Note that we do not pool or average standard devia-
tions. As we have previously noted, the sample variance, �(X � X̄)2/(N � 1) [Eq. (1.5)],
is an unbiased estimate of the true population variance. The standard deviation, estimated
from a sample, is a biased estimate of the true population standard deviation. On the
average, the sample standard deviation underestimates the population standard deviation.
Estimation and properties of the variance are important considerations in both theoretical
and applied statistics.

A common example of a procedure where variance estimates from different groups
are pooled is the two-sample independent-groups t test for comparison of means discussed
in Chapter 5. In this test, the average results of two treatments* (e.g., active drug versus
placebo; dissolution behavior of two tablet formulations) are compared. An estimate of
the variance of the observations is needed in order to compare the two treatment groups
statistically. An important assumption underlying this test is that the variances for each
group are equal. The variance is first calculated for each treatment group separately. The
variance is more precisely estimated from samples with a larger number of observations,
and the pooled variance from both treatment groups is the best estimate of the common
variance. For example, suppose that the following variances were observed in a compara-
tive experiment:

Placebo group: N � 25 and the variance (S2) � 10
Drug group: N � 20 and the variance (S2) � 15

* The word ‘‘treatment’’ in statistics does not necessarily mean treatment in the medical sense.
Treatments are conditions or combinations of conditions whose effects on an experimental outcome
are to be assessed.
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Although we assume that the true variance (the population variance) is the same for each
group, different variances are observed in the two groups. If the two groups truly have equal
variance, the difference in the observed variance is a consequence of random variation, due
in part to the particular samples which were chosen, and measurement errors. The pooling
procedure, in general, uses a weighted average, where the weights are equal to the degrees
of freedom [see Eq. (1.2)].

S Sp
2 2 24 10 19 15

24 19
12 21pooled = = +

+
=( )( ) ( )( )

.

The standard deviation is 3.49 (�12.21). The numbers 24 and 19 are the degrees of
freedom for the two groups. If variances are to be pooled from more than two groups,
the procedure is the same. Use a weighted average of the group variances, weighting the
variance in each group by its number of degrees of freedom.

I.2 COMPONENTS OF VARIANCE

Variability of observations usually arise from more than one source. Hence the variability
of observations can often be expressed as the sum of independent sources of error that
comprise the total variation. This notion is presented in more detail under the topic of
components of variance in Sec. 12.4.1. The variance of the average of assay results for
three tablets obtained by selecting a single tablet from each of three batches and assaying
each tablet is as follows: [variance due to mean potency differences among batches (i.e.,
the batch averages are not identical) � variance due to tablet differences within batches*
� variance due to drug assay]/3. Note that this is the variance of a mean of three results
(a total of three tablets have been assayed from the three batches). This accounts for the
number 3 in the denominator (S 2

x̄ � S2/N).
Similarly, the variability of individual cholesterol changes, derived from a group of

patients, such as shown in Table 1.1, is the sum of the components that contribute to the
overall variability: (a) biological variation as reflected in inherent differences between
patients, (b) the day-to-day variability within patients (a single person’s cholesterol varies
from day to day), and (c) the analytical error, among other sources of error.

I.3 VARIANCE OF LINEAR COMBINATIONS OF INDEPENDENT
VARIABLES

The variance of linear combinations of variables, where the variables are independent,
can be shown to be

(I.1)Variance variance variance( ) ( ) ( )mX nX m X n X1 2
2

1
2

2± = +

where m and n are constants. This important result can be used to derive the variance of
the mean of n independent observations, for example. Consider m observations of the
variable X. We can represent the observations as X1, X2, X3, …, Xm, The mean is

* Variation resulting from differences in tablet potency in a randomly chosen sample of tablets
which is due to the inherent variability of tablets (a result of the heterogeneity of the tableting
process) is also known as ‘‘sampling error.’’
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X

m

X X X X

m
i m∑ =

+ + + +1 2 3
…

The variance of each X is �2. Therefore, the variance of the mean is
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Equation (I.1) also demonstrates that the variance of the difference of two independent
observations is the sum of their variances. An example noted by Mandel [1] which illus-
trates this concept is the timing of a reaction. A stopwatch is started at the initiation of
the reaction and stopped at some end point. The time depends on both the initial and final
readings. If errors in the times are independent, the variance of t2 � t1, the difference
between final and initial readings, is the sum of the variances; that is, the error of the
difference of the two readings is larger than the error of either reading alone. Consider
another example where a procedure calls for 10 ml of solution to be removed from a
beaker containing 30 ml. Only 10-ml pipettes are available. The original 30 ml of solution
is prepared by pipetting three 10-ml portions into a beaker. A total of 10 ml is then
removed. The variance of the volume remaining in the solution is calculated as follows:

Variance( )P P P P P P P P1 2 3 4
2

1
2

2
2

3
2

4+ + − = + + +σ σ σ σ

where Pi (i � 1, 2, 3, 4) represents the four pipetting steps. If the variance of a pipetting
step is 0.01, the total variance of the remaining solution (with an expected volume of 20
mL) is (4)(0.01) � 0.04.

REFERENCE
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COMPARISON OF SLOPES AND TESTING
OF LINEARITY: DETERMINATION OF
RELATIVE POTENCY

A common problem in bioassay, or when comparing the potency of compounds such as
in drug screening programs, is the assessment of the relative potency of the comparative
drugs. The problems in this analysis consist of (a) obtaining a function of dose and response
which is linear, (b) testing the lines for each compound for parallelism (i.e., equality of
slopes), and (c) determining the relative potency. We will discuss some elementary con-
cepts for a comparison of two antiinflammatory compounds, a standard drug (St) and an
experimental compound (Ex). The experiment consists of measuring the reduction in vol-
ume after treatment of initially inflamed paws of two animals at each of three doses for
each compound. The results are shown in Table II.1 and plotted in Fig. II.1. The figure
shows that the plot of log dose versus response is approximately linear. A transformation
of dose and/ or response is often necessary to achieve linearity in dose–response relation-
ships. The response is usually considered to be a linear function of log dose (see Chapter
10). Transformations to obtain linearity are desirable because straight-line relationships
are more easily analyzed and interpreted than are more complex functions.

Table II.1 Results of the Experiment Comparing Potencies of
Two Compoundsa

Dose (mg)

Compound 5 15 45

Standard (St) 0.22 0.51 0.70
0.27 0.49 0.75

Experimental (Ex) 0.29 0.55 0.76
0.26 0.54 0.83

aData are relative reduction in paw volume from baseline value.
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Figure II.1 Plot of dose response data for anti-inflammatory study.

How does one determine if the data are represented by a linear function such as a
straight line? A known theoretical relationship between X and Y may be sufficient to
answer the question. From a statistical point of view, replicate measurements at fixed
values of X are needed to test for linearity. Replicate measurements of Y at a fixed X
represent S 2

Y only, a variance estimate which is independent of the functional form of X
and Y. If X and Y are truly related by a straight-line function, deviations of the observed
values of Y from the fitted line should be due only to the variability of Y. If the relationship
between X and Y is not a straight line, the variance as measured by the deviations of Y
from the fitted line will be increased due to ‘‘non-linearity’’ (see Fig. 7.4b). To test for
linearity, we compare the variance due to deviations of Y from the fitted line (deviations
from regression) to the variation due only to Y (the pooled error from the Y replicates,
the within mean square). The ‘‘deviations’’ mean square is the mean square due to devia-
tions of the averages of Y (at each X) from the fitted line. The statistical test is an F test
obtained from an analysis of variance. The concept of this test is illustrated in Fig. II.2.

To perform the test, a one-way ANOVA is first performed on the data (Table II.2),
duplicate determinations for three doses in the present example. The ANOVA is computed
for each of both the standard and experimental drugs. For example, the calculations for
the ANOVA for the standard drug follow:

Total SS

Between-doses SS

= −
( )

= − =

=

∑ ∑
Y

Y

N
2

2

1 674 1 4406 0 2334

0

. . .

.449 1 00 1 45

2
1 4406 0 2307

2 2 2+ + − =. .
. .

The within SS is the difference between the total SS and the between SS (see Sec. 8.1).



547Comparison of Slopes and Testing of Linearity

Figure II.2 ANOVA test for linearity.

The between-doses SS is the sum of two components: (a) the SS due to the slope
(regression SS) and (b) the SS due to deviations of the mean values (at each X) of Y from
the fitted line. The deviation SS has been discussed above and is shown in Fig. II.2. The
easiest way to compute the deviation SS is to divide the between-doses SS into its compo-
nents as follows. The ‘‘regression’’ SS has 1 degree of freedom and is defined as

(II.1)Regression sum of squares = −∑b X X2 2( )

This sum of squares, a result of the slope of the line, will be zero for a line of zero slope
(b � 0), and will be large for a line with a steep positive or negative slope. For the
standard drug, the regression sum of squares is calculated as follows (remember, we are
using log dose � X):

b

b X X

=
= − = =∑

0 503

0 503 0 9106 0 23042 2 2

.

( ) . ( . ) .

The deviation SS (sometimes called ‘‘lack of fit’’ SS) is equal to the between-doses SS
minus the regression SS. Therefore, the deviation SS �

0 2307 0 2304 0 0003. . .− =

The results of this calculation for both standard and experimental drugs are shown in
Table II.3.

The test for linearity is an F test (deviation MS)/(within MS). For the standard drug,
for example, the F ratio is 0.0003/0.0009 � 0.33, with 1 and 3 d.f., which is not significant
(within MS � 0.0009, Table II.2). There is no evidence for lack of linearity for both
lines.

Usually, in these assays, the deviation mean squares are pooled from both products
and compared to the pooled error (within MS), testing linearity of both lines simultane-
ously. The pooled deviation MS is (0.000433)/2 with 2 degrees of freedom. The pooled
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Table II.2 One-way ANOVA for Data from Standard and Experimental Drugs

Standard drug Experimental drug

Source d.f. SS MS d.f. SS MS

Between doses 2 0.2307 0.1154 2 0.27053 0.1353
Within (doses) 3 0.0027 0.0009 3 0.00295 0.00098
Total 5 0.2334 5 0.27348

within MS is 0.000942 with 6 degrees of freedom. The F test for linearity is 0.000217/
0.00094 � 0.23 (2 and 6 d.f.), which is clearly not significant. The pooling assumes that
the error for both drugs is the same, and that both drugs show a linear response versus
log dose.

Another assumption in the analysis of the parallel-line assay is that the two lines are
parallel. A test of parallelism is equivalent to a test of equality of slopes. The common
slope, calculated from all the data combined, is

b
XY X Y N

X X
=

− ( )
−

=
∑ ∑∑

∑ ( )
.

2
0 5240

The regression sum of squares due to the common slope is

b X X2 2 20 5240 1 8212 0 500( ) ( . ) ( . ) .− = =∑
The regression sum of squares of the common slope is subtracted from the pooled regres-
sion sum of squares for the two drugs to obtain the sum of squares attributed to lack of
parallelism of the lines. The pooled regression sum of squares is 0.2304 � 0.2704 �
0.5008. The sum of squares for ‘‘parallelism’’ is 0.0008 (0.5008 � 0.5000). The F test
has 1 and 6 d.f., using the pooled error term:

F1 6

0 0008

0 00094
0 851,

.

.
.= =

Table II.3 Regression and Deviations Sum of Squares for Standard and
Experimental Drugsa

Standard drug Experimental drug

Source d.f. SS d.f. SS

Regression 1 0.2304 1 0.2704
Deviations 1 0.0003 1 0.000133
Between doses 2 0.2307 2 0.270533

aDegrees of freedom for “regression” in the simple linear regression case is always equal to 1. Degrees
of freedom for “deviations” is equal to (number of doses – 2).
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Since the F value shows lack of significance at the 5% level, we conclude that the lines
appear to be parallel within ‘‘experimental error.’’

The test for parallelism for two lines can also be done by using a t test with the same
results as the F test. (For the case of two lines, the t is the square root of the F value.)
For the t test, we compare the two slopes, using the standard deviation of the difference
of the two slopes in the denominator of the t ratio. The slopes are 0.5030 and 0.5449 for the
standard and experimental drugs, respectively. The variances in both groups are assumed to
be equal.

(II.2)

t
b b

S X X X X

t

=
−

− + −





=
−

∑ ∑
1 2

2 2

1

2

2

1 1

0 5030 0 5449

0 00094 1

( ) ( )

. .

. (XX X X X− + −
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2

1

where �i (X � X̄)2 represents the sum of squares of the X’s for the respective groups.
[Note that the variance of a slope equals S2/� (X � X)2.]

Having satisfied ourselves that the assumptions of the assay have been met (i.e.,
particularly, linearity and parallelism), we can now estimate the relative potency. The
relative potency is the ratio of the comparative drugs which will give the same response.
If the lines are parallel, we can choose any response (Y) to estimate the relative potency;
the answer will be the same (see Fig. II.3).

One can show that the log of the relative potency (log R) is equal to

log logR
a a

b
e d= 





=
−experimental

standard

where ae and ad are the intercepts for the experimental drug and the standard drug, respec-
tively; b is the common slope (0.524, in our example); and (experimental/standard) is the
inverse ratio of doses that gives equal response. For the data of Table II.1,

Figure II.3 Relative potency estimation using parallel dose–response lines; doses equiv-
alent to log X1 and log X2 give the same response for products e and d, respectively.
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a a

R

d e= − = −

= − − − =

0 1262 0 0779

0 0779 0 1262

0 5240
0 092

. .

log
. ( . )

.
.

The relative potency is 1.24; that is, the experimental drug is 1.24 times as potent as the
standard. This means that 124 mg of the standard is needed to give the same response as
100 mg of the experimental drug, for example.

Confidence limits can be put on the relative potency based on Fieller’s theorem (simi-
lar to confidence limits for X at a given Y; see Chapter 7). The procedure is complicated,
and the interested reader is referred to the book by Finney, Statistical Methods in Biological
Assay [1], for details of the computations.

REFERENCE
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MULTIPLE REGRESSION

Multiple regression is a topic of utmost importance in statistics, analysis of variance being
a special case of the more general regression techniques. Multiple regression is an extension
of linear regression, in which we wish to relate a response, Y (dependent variable), to
more than one independent variable, Xi.

Linear regression: Y � A � BY
Multiple regression: Y � B0 � B1X1 � B2X2 �…

The independent variables, X1, X2, and so on, generally represent factors which we believe
influence the response. Usually, the purpose of multiple regression analysis is to quantitate
the relationship between Y and the Xi’s by means of an equation, the multiple regression
equation. For example, tablet dissolution may be measured as a function of several vari-
ables, such as level of disintegrant, lubricant, and drug. In this case, a multiple regression
equation would be useful to predict dissolution, at given levels of the independent variables.

(III.1)Y B B X B X B X= + + +0 1 1 2 2 3 3

where

Y � some measure of dissolution
Xi � ith independent variable
Bi � regression coefficient for the ith independent variable

Here, X1, X2, and X3 refer to the level of disintegrant, lubricant, and drug. B1, B2, and B3

are the coefficients relating the Xi to the response. These coefficients correspond to the
slope (B) in linear regression. B0 is the intercept. This equation cannot be simply depicted,
graphically, as in the linear regression case. With two independent variables (X1 and X2),
the response surface is a plane (Fig. III.1). With more than two independent variables, it
is not possible to graph the response in two dimensions.

Data suitable for multiple regression analysis can be obtained in different ways. Opti-
mal efficiency and interpretation are obtained by using data from ‘‘designed’’ experiments.
In designed experiments, the independent variables are carefully chosen and deliberately
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Figure III.1 Representation of the multiple regression equation response, Y � B0 �
B1X1 � B2X2, as a plane.

controlled at preassigned levels. For example, in the dissolution experiment noted above,
we may be able to fix the levels of disintegrant, lubricant, and drug according to a factorial
design (as described in Chapter 9). Table III.1 illustrates a 23 factorial design. These data
correspond to the eight combinations in the 23 design which can be used to construct a
multiple regression equation. The procedure for fitting data from a factorial design to a
regression equation is given in Sec. 16.2.

The form of the equation and the number of independent variables necessary to define
the response adequately depend on a knowledge of the system being investigated. In the
example above, there are three independent variables (factors), but interactions of factors
may also be needed to define the response. In multiple regression equations, interactions
may be represented by ‘‘cross-product’’ terms, such as (X1X2) or (X1X2X3). We usually
include only those terms in the equation which probably have a meaningful effect on the
response. Suppose, in our example, that the three factors and the lubricant X drug interac-
tion are related to the response, dissolution. We would include terms for X1, X2, X3, and
X2X3 in the model.

Table III.1 Factorial Design to Be Used as the Source for a Multiple Regression
Equation

Disintegrant Low Level Disintegrant High Level

Drug Drug

Low level High level Low level High level

Low levelLubricant
High level
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Y B B X B X B X B X X= + + + +0 1 1 2 2 3 3 23 2 3

Data for multiple regression fits are often obtained from undesigned experiments where
the levels of the independent variables are not controlled. This less desirable alternative
is often a consequence of convenience or cost considerations. Sometimes, the circum-
stances are such that we have no choice; we get the data in any way that we can. For
example, suppose that tableting pressure, temperature, and humidity all affect some particu-
lar quality of a finished tablet. Tablets may be conveniently selected for inspection during
the manufacturing process, at which time measurements of the pressure, temperature, and
humidity are made. After collecting a sufficient quantity of data, these variables may be
related to tablet quality using multiple regression techniques.

Y B B B B= + + +0 1 2 3( ( (tablet press pressure) temperature) humidity))

In this example, we have no control of the variables; their values are a matter of ‘‘happenst-
ance.’’ We take the values as they come. A significant disadvantage of making conclusions
based on data of this sort is that a correlation exists among the independent variables,
which can be eliminated (or controlled) in a designed experiment. The result of this
correlation is that the effects of the variables cannot be clearly separated. What we
attribute to one variable, temperature for example, has a component due to humidity
and pressure as well. With data derived from a designed experiment, such as the
factorial design noted above, the regression equation can be constructed so that the
effects of different factors and interactions are represented by the coefficients (Bi) and
are independent of other factors.

The computations to determine the coefficients in multiple regression analysis are
very tedious, and without the use of computers, analysis of undesigned experiments of
reasonable size are virtually impossible. Manipulations of large matrices are often per-
formed in the solution of these problems. Regression equations for orthogonal (designed)
factors are much easier to compute. However, with easy access to computers, hand analysis
should be done only as a learning tool to gain insight into the analytical process. We will
not discuss computational methods in the general multiple regression model. However,
because of the importance of multiple regression in optimization procedures discussed in
Chapter 16, some further introductory concepts will be presented here.

The technique of fitting a linear model to data consisting of N observations of a
response, Y, and one or more independent variables, Xi, is applicable when the number
of observations is equal to or greater than the number of parameters to be estimated (the
coefficients are the parameters in multiple regression). In simple linear regression, we
estimate two parameters in the usual case, the intercept and the slope. Given two X, Y
points, the line (slope and intercept) is unambigously fixed. With more than two points,
the best straight line is considered to be that line which minimizes the sum of the squared
deviations of the observed values from the fitted least squares line. Multiple regression
is just an extension of this procedure. If there are N parameters (coefficients) in the regres-
sion model, N observations will result in an exact fit to the model. For example, an equation
with six coefficients will be exactly fit to six appropriate experimental values (with certain
mathematical restrictions). With more than N observations, the coefficients, Bi, are calcu-
lated to minimize the squared deviations of the observations from the least squares regres-
sion fit (the same concept as in simple linear regression).
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The relationship of the independent variables and the dependent variable in the multi-
ple regression model must be linear in the coefficients, Bi, in order to obtain the regression
equation by the usual procedures [1]. The general form of the regression equation is given
by Eq. (III.1).

(III.1)Y B B X B X B X= + + +0 1 1 2 2 3 3

The Xi’s can be ‘‘nonlinear’’ functions such as X2, log X, or 10x. However, the coefficients,
Bi, cannot be in this nonlinear form. Thus

Y B X B X B X B X X B

Y B B X X

i

B

= + + +

= + +
1 1 2 2 3 1

2
4 1 2

0 1 1 1
2

is linear in 

is nott linear in Bi

The basic problems in multiple regression analysis are concerned with estimation of the
error and the coefficients (parameters) of the regression model. Statistical tests can then
be performed for the significance of the coefficient estimates.

When many independent variables are candidates to be entered into a regression
equation, one may wish to use only those variables that contribute ‘‘significantly’’ to the
relationship with the dependent variable. In designed experiments (e.g., factorial designs)
the significance of each factor can be determined using analysis of variance, or, equiva-
lently, by testing the regression coefficients for significance. In an undesigned experiment,
where the data come from ‘‘uncontrolled’’ combinations of the variables, the independent
variables will inevitably be more or less correlated. Thus, if dissolution is to be related
to tablet weight, drug content, and tablet hardness, based on production records, we are
obliged to fit an equation with the available data, and some correlation will exist between
drug content and weight, for example. This lack of independence presents special problems
when deciding which variables are relevant, contributing significantly to the regression
relationship. If two of the X variables, Xi and Xj, are highly correlated, inclusion of both
in the regression equation will be redundant. Therefore, there may be some X variables
which appear to contribute to the regression but which are correlated to other X variables.
We must then make a choice regarding their inclusion in the final regression equation.
Draper and Smith note: ‘‘There is no unique statistical procedure for doing this,’’ and
some degree of arbitrariness must be used in making choices [1]. Two methods used to
help make such decisions are made possible through the use of computers. One method
involves regression fits using all possible combinations of the independent variables (2k

regressions, where k is the number of independent variables). For two independent vari-
ables, X1 and X2, the four possible regressions are:

1. Y � B0

2. Y � B0 � B1X1

3. Y � B0 � B2X2

4. Y � B0 � B1X1 � B2X2
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The best equation may then be selected based on the fit and the number of variables
needed for the fit. The multiple correlation coefficient, R2, is a measure of the fit. R2 is
the sum of squares due to regression divided by the sum of squares without regression.
For example, if R2 is 0.85 when three variables are used to fit the regression equation,
and R2 is equal to 0.87 when six variables are used, we probably would be satisfied using
the equation with three variables, other things being equal. The inclusion of more variables
in the regression equation cannot result in a decrease of R2.

Another method of selecting variables to be included in the regression equation is
the popular stepwise procedure, which is considered a better method than the ‘‘all possible
regressions’’ approach. Independent variables (Xi) are entered into the equation, one at a
time, starting with the independent variable that is most highly correlated to the dependent
variable, Y. As each new variable is considered, its inclusion is based on a preassigned
statistical test related to its correlation with the dependent variable, as well as its correlation
to those independent variables already included in the regression equation.

Probably the biggest pitfall in multiple regression techniques lies in the interpretation
of the coefficients. Draper and Smith discuss this problem, and the answer is by no means
simple [1].

Interpretation of the meaning of the coefficients in multiple regression equations is
much more clear in a designed (orthogonal) experiment. As we have noted previously, in
a factorial experiment, the levels of the factors can be controlled, so that the effects of
the factors can be independently evaluated. Techniques to describe and optimize pharma-
ceutical systems by fitting experimental data to regression models using designed experi-
ments are discussed in Chapter 16.

An application of regression analysis to physical properties of finished tablets, with
compression pressure and various tablet components as independent variables can be found
in Ref. 2. In this paper, the authors considered five independent variables for inclusion
in the regression equation. They suggested the following equation as a predictor of dissolu-
tion:

Y X X X= − − +69 91 37 3 17 48 4 245 2 3. . . .

where

Y � dissolution
X5 � magnesium stearate level
X2 � compression pressure
X3 � starch disintegrant

Magnesium stearate and compression pressure decrease dissolution (negative coefficient).
Starch increases dissolution. The authors discuss possible mechanisms for these effects.

Multiple regression equations that relate variables such as those described above are
empirical relationships. We do not encounter real systems that can be described so simply,
theoretically. The multiple regression equation is a ‘‘model’’ of a real system which must
be recognized as being only an approximation of reality. How good an approximation the
equation is can be evaluated only by seeing how the equation performs as a predictor of
the response in new situations, where the levels of the independent variables are changed.
Also, particularly in undesigned systems, placing physical interpretation on the signs and
magnitude of the coefficients can be hazardous. As noted previously, the coefficients can
give insights into the mechanisms of a process, but great caution is needed before making
definitive judgments on this basis. Problems similar to those discussed for prediction in
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linear regression apply here as well. Error (variability) in the estimation of the coefficients,
extrapolating to areas outside the levels of the variables in the experiment, and the choice
of an incorrect model all adversely affect the reliability of the predicted value.

In addition to its use as a predictive equation, the regression equation may also be
used to help obtain combinations of ingredients that will give a desired (e.g., optimum)
response. This process is discussed in Chapters 9 and 16. For those readers who are
interested in a more advanced, in-depth discussion of regression, the excellent book by
Draper and Smith, Applied Regression Analysis, is recommended [1].
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TABLES

Table IV.1 Random Numbers

44 17 50 92 09 79 27 71 05 07 76 21 95 93 04
83 50 39 13 89 83 45 72 40 94 78 62 93 55 62
28 79 77 81 43 04 54 23 14 80 49 98 32 70 27
55 29 62 11 00 62 65 76 31 83 08 22 02 35 53
88 93 30 81 50 24 43 07 88 45 96 24 60 78 89
46 00 76 13 83 31 98 15 30 74 17 76 73 31 40
99 05 78 83 75 79 52 47 39 12 70 33 42 30 45
24 88 59 45 16 73 64 63 03 16 04 43 81 66 97
14 90 27 33 43 46 37 68 94 35 12 72 70 43 54
50 27 98 87 19 20 15 73 00 94 52 85 80 22 26
55 47 03 77 04 44 22 78 84 26 04 33 46 09 52
59 29 97 68 60 71 91 38 67 54 13 58 18 24 76
48 55 90 65 72 96 57 69 36 10 96 46 92 42 45
66 37 32 20 30 77 84 57 03 29 10 45 65 04 26
68 49 69 10 82 53 75 91 93 30 34 25 20 57 27
83 62 64 11 12 67 19 00 71 74 60 47 21 92 86
06 90 91 47 68 25 49 33 74 02 16 29 35 65 16
33 23 97 78 26 78 26 45 40 19 61 29 53 73 09
47 15 40 15 02 82 06 93 20 01 67 38 02 37 90
79 65 14 62 16 34 96 02 75 82 46 75 43 89 36
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Table IV.2 Cumulative Normal Distribution: 
Cumulative Area Under the Normal Distribution 
(Less Than or Equal to Z)

Z Area Z Area Z Area Z Area

�3.25 0.0006 �1.50 0.0668 0.25 0.5987 2.00 0.9772
�3.20 0.0007 �1.45 0.0735 0.30 0.6179 2.05 0.9798
�3.15 0.0008 �1.40 0.0808 0.35 0.6368 2.10 0.9821
�3.10 0.0010 �1.35 0.0885 0.40 0.6554 2.15 0.9842
�3.05 0.0011 �1.30 0.0968 0.45 0.6736 2.20 0.9861

�3.00 0.0013 �1.25 0.1056 0.50 0.6915 2.25 0.9878
�2.95 0.0016 �1.20 0.1151 0.55 0.7088 2.30 0.9893
�2.90 0.0019 �1.15 0.1251 0.60 0.7257 2.35 0.9906
�2.85 0.0022 �1.10 0.1357 0.65 0.7422 2.40 0.9918
�2.80 0.0026 �1.05 0.1469 0.70 0.7580 2.45 0.9929

�2.75 0.0030 �1.00 0.1587 0.75 0.7734 2.50 0.9938
�2.70 0.0035 �0.95 0.1711 0.80 0.7881 2.55 0.9946
�2.65 0.0040 �0.90 0.1841 0.85 0.8023 2.60 0.9953
�2.60 0.0047 �0.85 0.1977 0.90 0.8159 2.65 0.9960
�2.55 0.0054 �0.80 0.2119 0.95 0.8289 2.70 0.9965

�2.50 0.0062 �0.75 0.2266 1.00 0.8413 2.75 0.9970
�2.45 0.0071 �0.70 0.2420 1.05 0.8531 2.80 0.9974
�2.40 0.0082 �0.65 0.2578 1.10 0.8643 2.85 0.9978
�2.35 0.0094 �0.60 0.2743 1.15 0.8749 2.90 0.9981
�2.30 0.0107 �0.55 0.2912 1.20 0.8849 2.95 0.9984

�2.25 0.0122 �0.50 0.3085 1.25 0.8944 3.00 0.9987
�2.20 0.0139 �0.45 0.3264 1.30 0.9032 3.25 0.9994
�2.15 0.0158 �0.40 0.3446 1.35 0.9115
�2.10 0.0179 �0.35 0.3632 1.40 0.9192 Z Area
�2.05 0.0202 �0.30 0.3821 1.45 0.9265

�2.00 0.0228 �0.25 0.4013 1.50 0.9332
�1.95 0.0256 �0.20 0.4207 1.55 0.9394
�1.90 0.0287 �0.15 0.4404 1.60 0.9452
�1.85 0.0322 �0.10 0.4602 1.65 0.9505
�1.80 0.0359 �0.05 0.4801 1.70 0.9554

�1.75 0.0401 0 0.5000 1.75 0.9599
�1.70 0.0446 0.05 0.5199 1.80 0.9641
�1.65 0.0495 0.10 0.5398 1.85 0.9678
�1.60 0.0548 0.15 0.5596 1.90 0.9713
�1.55 0.0606 0.20 0.5793 1.95 0.9744

1.282 0.90
1.645 0.95
1.960 0.975
2.326 0.99
2.576 0.995
3.090 0.999
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Table IV.3 Individual Terms of the Binomial Distribution for N � 2 to 10 and P � 0.2,
0.5, and 0.7a

P � 0.2

N

X 2 3 4 5 6 7 8 9 10

0 0.64 0.512 0.410 0.328 0.262 0.210 0.168 0.134 0.107
1 0.32 0.384 0.410 0.410 0.393 0.367 0.336 0.302 0.268
2 0.04 0.096 0.154 0.205 0.246 0.275 0.294 0.302 0.302
3 0.008 0.026 0.051 0.082 0.115 0.147 0.176 0.201
4 0.002 0.006 0.015 0.029 0.046 0.066 0.088
5 * 0.002 0.004 0.009 0.017 0.026
6 * * 0.001 0.003 0.006
7 * * * 0.001
8 * * *
9 * *

10 *

P � 0.5

N

X 2 3 4 5 6 7 8 9 10

0 0.250 0.125 0.0625 0.031 0.016 0.008 0.004 0.002 0.001
1 0.500 0.375 0.250 0.156 0.094 0.055 0.031 0.018 0.010
2 0.250 0.375 0.375 0.313 0.234 0.164 0.109 0.070 0.044
3 0.125 0.250 0.313 0.313 0.273 0.219 0.164 0.117
4 0.0625 0.156 0.234 0.273 0.273 0.246 0.205
5 0.031 0.094 0.164 0.219 0.246 0.246
6 0.016 0.055 0.109 0.164 0.205
7 0.008 0.031 0.070 0.117
8 0.004 0.018 0.044
9 0.002 0.010

10 0.001

(Continued)
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Table IV.3 Continued

P � 0.7

N

X 2 3 4 5 6 7 8 9 10

0 0.090 0.027 0.008 0.002 0.001 * * * *
1 0.420 0.189 0.076 0.028 0.010 0.004 0.001 * *
2 0.490 0.441 0.265 0.132 0.060 0.025 0.010 0.004 0.001
3 0.343 0.412 0.309 0.185 0.097 0.047 0.021 0.009
4 0.240 0.360 0.324 0.227 0.136 0.074 0.037
5 0.168 0.303 0.318 0.254 0.172 0.103
6 0.118 0.247 0.296 0.267 0.200
7 0.082 0.198 0.267 0.267
8 0.058 0.156 0.233
9 0.040 0.121

10 0.028

*P � 0.0005.
aThese tables may be used for P � 0.8 and P � 0.3 as follows. Use the table with P � 0.2 to obtain terms for P
� 0.8; and use the table with P � 0.7 to obtain terms for P � 0.3. For example, for the probability of 5 (x� � 5)
successes in 8 trials (N � 8) for P � 0.8, look in the table for P � 0.2, N � 8, and X � N � X� � 8 � 5 � 3. This
is equal to 0.147.
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Table IV.4 t Distributions

Two-sided: 40% 20% 10% 5% 1%
One-sided: 20% 10% 5% 2.5% 0.5%
d.f.: t0.80 t0.90 t0.95 t0.975 t 0.995

1 1.38 3.08 6.31 12.71 63.66
2 1.06 1.89 2.92 4.30 9.92
3 0.98 1.64 2.35 3.18 5.84
4 0.94 1.53 2.13 2.78 4.60
5 0.92 1.48 2.02 2.57 4.03
6 0.91 1.44 1.94 2.45 3.71
7 0.90 1.42 1.89 2.36 3.50
8 0.89 1.40 1.86 2.31 3.36
9 0.88 1.38 1.83 2.26 3.25

10 0.88 1.37 1.81 2.23 3.17
11 0.88 1.36 1.80 2.20 3.11
12 0.87 1.36 1.78 2.18 3.05
13 0.87 1.35 1.77 2.16 3.01
14 0.87 1.35 1.76 2.14 2.98
15 0.87 1.34 1.75 2.13 2.95
16 0.86 1.34 1.75 2.12 2.92
17 0.86 1.33 1.74 2.11 2.90
18 0.86 1.33 1.73 2.10 2.88
19 0.86 1.33 1.73 2.09 2.86
20 0.86 1.33 1.72 2.09 2.85
25 0.86 1.32 1.71 2.06 2.79
30 0.85 1.31 1.70 2.04 2.75
40 0.85 1.30 1.68 2.02 2.70
60 0.85 1.30 1.67 2.00 2.66

120 0.85 1.29 1.66 1.98 2.62
∞ 0.84 1.282 1.645 1.96 2.576

Table IV.5 Short Table of Chi-Square Distributions

Degrees of freedom

Probability 1 2 3 4 5 6 7 8 9 10 15 20 30

0.99 6.63 9.21 11.3 13.3 15.1 16.8 18.5 20.1 21.7 23.2 30.6 37.6 50.9
0.975 5.02 7.38 9.35 11.1 12.8 14.45 16.0 17.5 19.0 20.5 27.5 34.2 47.0
0.95 3.84 5.99 7.81 9.49 11.1 12.6 14.1 15.5 16.9 18.3 25.0 31.4 43.8
0.90 2.71 4.61 6.25 7.78 9.24 10.6 12.0 13.4 14.7 16.0 22.3 28.4 40.3
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Table IV.6B Short Table of Upper 1% Values of the F Distribution

Degrees of Degrees of freedom in numerator
freedom in
denominator 1 2 3 4 5 7 10 15 20

2 98.49 99.00 99.17 99.25 99.30 99.36 99.39 99.44 99.45
3 34.12 30.82 29.46 28.71 28.24 27.67 27.23 26.87 26.69
4 21.20 18.00 16.69 15.98 15.52 14.98 14.54 14.19 14.02
5 16.26 13.27 12.06 11.39 10.97 10.45 10.05 9.72 9.55
6 13.74 10.92 9.78 9.15 8.75 8.26 7.87 7.56 7.40
8 11.26 8.65 7.59 7.01 6.63 6.19 5.82 5.52 5.36

10 10.04 7.56 6.55 5.99 5.64 5.21 4.85 4.56 4.41
15 8.68 6.36 5.42 4.89 4.56 4.14 3.80 3.52 3.36
20 8.10 5.85 4.94 4.43 4.10 3.70 3.37 3.09 2.94
30 7.56 5.39 4.51 4.02 3.70 3.30 2.98 2.70 2.55
40 7.31 5.18 4.31 3.83 3.51 3.12 2.80 2.52 2.37
60 7.08 4.98 4.13 3.65 3.34 2.95 2.63 2.39 2.20

100 6.90 4.82 3.98 3.51 3.20 2.82 2.51 2.22 2.06
∞ 6.63 4.60 3.78 3.32 3.02 2.64 2.32 2.04 1.87
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Table IV.7A Upper 5% Points in the Studentized Range

d.f.
Number of treatments, k

(error) 2 3 4 5 6 7 8 9 10 15 20

2 8.33 9.80 10.89 11.73 12.43 13.03 13.54 13.99 15.65 16.77
4 5.04 5.76 6.29 6.71 7.06 7.35 7.60 7.83 8.67 9.24
5 3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99 7.72 8.21
6 3.46 4.34 4.90 5.31 5.63 5.89 6.12 6.32 6.49 7.14 7.59
8 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92 6.48 6.87

10 3.15 3.88 4.33 4.66 4.91 5.12 5.30 5.46 5.60 6.12 6.47
12 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.40 5.88 6.21
14 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 5.72 6.03
16 3.00 3.65 4.05 4.34 4.56 4.74 4.90 5.03 5.15 5.59 5.90
18 2.97 3.61 4.00 4.28 4.49 4.67 4.83 4.96 5.07 5.50 5.79
20 2.95 3.58 3.96 4.24 4.45 4.62 4.77 4.90 5.01 5.43 5.71
24 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92 5.32 5.59
30 2.89 3.48 3.84 4.11 4.30 4.46 4.60 4.72 4.83 5.21 5.48
40 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.74 5.11 5.36
60 2.83 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65 5.00 5.24

120 2.80 3.36 3.69 3.92 4.10 4.24 4.36 4.47 4.56 4.90 5.13
∞ 2.77 3.32 3.63 3.86 4.03 4.17 4.29 4.39 4.47 4.80 5.01

Table IV.7B Values of t� for Dunnett’s Comparison of Several Treatments and a
Control (� � 0.05)

Number of treatments

d.f. 2 3 4 5 6 7

5 3.03 3.39 3.66 3.88 4.06 4.22
6 2.86 3.18 3.41 3.60 3.75 3.85
7 2.75 3.04 3.24 3.41 3.54 3.66
8 2.67 2.94 3.13 3.28 3.40 3.51
9 2.61 2.86 3.04 3.18 3.29 3.39

10 2.57 2.81 2.97 3.11 3.21 3.31
11 2.53 2.76 2.92 3.05 3.15 3.24
12 2.50 2.72 2.88 3.00 3.10 3.18
13 2.48 2.69 2.84 2.96 3.06 3.14
14 2.46 2.67 2.81 2.93 3.02 3.10
15 2.44 2.64 2.79 2.90 2.99 3.07
20 2.38 2.57 2.70 2.81 2.89 2.96
24 2.35 2.53 2.66 2.76 2.84 2.91
30 2.32 2.50 2.62 2.72 2.79 2.86
40 2.29 2.47 2.58 2.67 2.75 2.81
60 2.27 2.43 2.55 2.63 2.70 2.76

120 2.24 2.40 2.51 2.59 2.66 2.71
∞ 2.21 2.37 2.47 2.55 2.62 2.67
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Table IV.8 Dixon’s Criteria for Rejecting Outliers

Significance level

k 5% 1%

3 r10 � (X2 � X1)/(Xk � X1) if smallest value is suspected; 0.941 0.988
4 0.765 0.889
5 � (Xk � Xk � 1)/(Xk � X1) if largest value is suspected 0.642 0.780
6 0.560 0.698
7 0.507 0.637

8 r11 � (X2 � X1)/(Xk � 1 � X1) if smallest value is suspected; 0.554 0.683
9 0.512 0.635

10 � (Xk � Xk�1)/(Xk � X2) if largest value is suspected 0.477 0.597

11 r21 � (X3 � X1)/(Xk � 1 � X1) if smallest value is suspected; 0.576 0.679
12 0.546 0.642
13 � (Xk � Xk�2)/(Xk � X2) if largest value is suspected 0.521 0.615

14 r22 � (X3 � X1)/(Xk�2 � X1) if smallest value is suspected; 0.546 0.641
15 0.525 0.616
16 � (Xk � Xk�2)/(Xk � X3) if largest value is suspected 0.507 0.595
17 0.490 0.577
18 0.475 0.561
19 0.462 0.547
20 0.450 0.535
21 0.440 0.524
22 0.430 0.514
23 0.421 0.505
24 0.413 0.497
25 0.406 0.489
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Table IV.9 Critical Values
of T for a Two-Sided Test at
the 5% Level of Significance
(Test for Outliers)

Sample size T

3 1.155
4 1.481
5 1.715
6 1.887
7 2.020
8 2.126
9 2.215

10 2.290
11 2.355
12 2.412
13 2.462
14 2.507
15 2.549
16 2.585
17 2.620
18 2.651
19 2.681
20 2.709
25 2.822
30 2.908
35 2.979
40 3.036
50 3.128

100 3.383
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Table IV.10 Factors for Determining Upper and Lower 3� Limits for Mean (X̄) and
Range (R) Charts, and for Estimating � fromR̄

Factors for range chart

Sample size A: Factor DL for DU for
of subgroup, N forX̄ chart lower limit upper limit d2

2 1.88 0 3.27 1.128
3 1.02 0 2.57 1.693
4 0.73 0 2.28 2.059
5 0.58 0 2.11 2.326
6 0.48 0 2.00 2.534
7 0.42 0.08 1.92 2.704
8 0.37 0.14 1.86 2.847
9 0.34 0.18 1.82 2.970

10 0.31 0.22 1.78 3.078
15 0.22 0.35 1.65 3.472
20 0.18 0.41 1.59 3.735

Example: If X̄� 100 and R̄ (the average range) � 5, and N � 6, the upper and lower limits for the X̄ chart are

σ =
−
R

d2

X AR± = ± = ± =100 0 48 5 100 2 4 102 4 97 6. ( ) . ( . , . )

The upper limit for the range chart is DUR̄ � 2.0(5) � 10. The lower limit for the range
chart is DLR̄ � 0(5) � 0.

For samples of size 

If

4
2 059

5
5

2 059
2 43

,
.

,
.

.

σ

σ

=

= =

R

R =
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Table IV.11 Number of Correct Guesses
Needed for Significance in the Triangle Test

Correct guesses for significance

Panel size 5% Level 1% Level

6 5 6
7 5 6
8 6 7
9 6 7

10 7 8
11 7 8
12 8 9
13 8 9
14 9 10
15 9 10
16 9 11
17 10 11
18 10 12
19 11 12
20 11 13
21 12 13
22 12 14
23 12 14
24 13 15

Table IV.12 Number of Positive or Negative
Signs Needed for Significance for the Sign Test

Number of positive or negative
signs for significancea

Sample size 5% Level 1% Level

6 6 —
7 7 —
8 8 8
9 8 9

10 9 10
11 10 11
12 10 11
13 11 12
14 12 13
15 12 13
16 13 14
17 13 15
18 14 15
19 15 16
20 15 17

aThis is a two-sided test. Choose positive or negative signs,
whichever is larger.
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Table IV.13 Values Leading to Significance for the
Wilcoxon Signed Rank Test (Two-Sided Test)

Sample size, N 5% Levela 1% Level

6 0 —
7 2 —
8 3 0
9 5 1

10 8 3
11 10 5
12 13 7
13 17 10
14 21 13
15 25 16
16 30 19
17 35 23
18 40 28
19 46 32
20 52 37

aIf the smaller rank sum is less than or equal to the table value, the
comparative groups are different at the indicated level of significance.

Table IV.14 Critical Values for Number of Runs at the 5% Level of Significance

Sample Two-sided test One-sided test
size, N Lower numbera Upper number Lower number

10 2 9 3
12 3 10 3
14 3 12 4
16 4 13 5
18 5 14 6
20 6 15 6
22 7 16 7
24 7 18 8
26 8 19 9
28 9 20 10
30 10 21 11
32 11 22 11
34 11 24 12
36 12 25 13
38 13 26 14
40 14 27 15

aIf the number of runs is less than or equal to the lower number or greater than or equal to the upper value,
the sequence is considered nonrandom at the 5% level of significance. The sample size (N) is the number
of values above and below the median. For odd-size samples where one value is the median, use the next
smaller sample size for the critical values.
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Table IV.15 Probability of Getting at
Least One Run of Given Size for N Samples

N 5% Level 1% Level

10 5 —
20 7 8
30 8 9
40 9 10
50 10 11

Table IV.16 Critical Values for Wilcoxon Rank Sum Testa (� � 0.05)

Size of Size of smaller sample (M)
larger
sample M � 3 4 5 6 7 8 9

M 5, 16 11, 25 18, 37 26, 52 37, 68 49, 87 63, 108
M � 1 6, 18 12, 28 19, 41 28, 56 39, 73 51, 93 66, 114
M � 2 6, 21 12, 32 20, 45 29, 61 41, 78 54, 98 68, 121
M � 3 7, 23 13, 35 21, 49 31, 65 43, 83 56, 104 71, 127
M � 4 7, 26 14, 38 22, 53 32, 70 45, 88 58, 110 74, 133
M � 5 8, 28 15, 41 24, 56 34, 74 46, 94 61, 115 77, 139
M � 6 8, 31 16, 44 25, 60 36, 78 48, 99 63, 121 79, 146
M � 7 9, 33 17, 47 26, 64 37, 83 50, 104 65, 127 82, 152
M � 8 10, 35 17, 51 27, 68 39, 87 52, 109 68, 132 85, 158
M � 9 10, 38 18, 54 29, 71 41, 91 54, 114 70, 138 88, 164
M � 10 11, 40 19, 57 30, 75 42, 96 56, 119 72, 144 90, 171
M � 15 13, 53 24, 72 36, 94 50, 118 66, 144 84, 172 104, 202
M � 20 16, 65 28, 88 42, 113 58, 140 76, 169 96, 200 118, 223
M � 25 18, 78 32, 104 48, 132 66, 162 86, 194 108, 228 132, 264

aFrom Wilcoxon, F. and Wilcox, R. A., Some Rapid Approximate Statistical Procedures, Lederle Laboratories,
1964.
If rank sum of smaller sample is equal to or lower than smaller numbers in table or equal to or larger than larger
number, groups are significantly different at 0.05 level.
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Table IV.17 Critical Difference for Significance (� � 0.05) Comparing All
Possible Paris of Treatments for Nonparametric One-Way ANOVAa

N (for each
Number of treatments

treatment) 3 4 5 6 7

3 15 23 30 37 45
4 24 35 46 57 69
5 33 48 63 79 96
6 43 63 83 104 125
7 54 79 105 131 158
8 66 96 128 160 192
9 79 115 152 190 229

10 92 134 178 223 268
11 106 155 205 257 309
12 121 176 233 292 352
13 136 199 263 329 397
14 152 222 294 368 444
15 169 246 326 408 492
16 186 271 359 449 542
17 203 296 393 492 593
18 221 323 428 536 646
19 240 350 464 581 700
20 259 378 501 627 756
21 278 406 538 674 814
22 298 435 577 723 872
23 319 465 617 773 932
24 340 496 657 824 994
25 361 527 699 875 1056

aFrom Wilcoxon, F. and Wilcox, R. A., Some Rapid Approximate Statistical Procedures, Lederle
Laboratories, 1964.
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Table IV.18 Critical Differences for Significance (� � 0.05) Comparing All
Possible Pairs of Treatments for Nonparametric Two-Way ANOVAa

N (for each
Number of treatments

treatment) 3 4 5 6 7

3 6 8 10 13 15
4 7 10 12 15 18
5 8 11 14 17 20
6 9 12 15 18 22
7 9 13 16 20 24
8 10 14 17 21 25
9 10 14 18 23 27

10 11 15 19 24 28
11 11 16 20 25 30
12 12 16 21 26 31
13 12 17 22 27 32
14 13 18 23 28 34
15 13 18 24 29 35
16 13 19 24 30 36
17 14 19 25 31 37
18 14 20 26 32 38
19 14 20 27 33 39
20 15 21 27 34 40
21 15 21 28 35 41
22 16 22 29 35 42
23 16 22 29 36 43
24 16 23 30 37 44
25 17 23 31 38 45

aFrom Wilcoxon, F. and Wilcox, R. A., Some Rapid Approximate Statistical Procedures, Lederle
Laboratories, 1964.
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Table IV.19 Factors for Two-Sided Tolerance Limits for Normal Distributions*

� � 0.75 � � 0.90
P P

n 0.75 0.90 0.95 0.99 0.999 0.75 0.90 0.95 0.99 0.999

2 4.498 6.301 7.414 9.531 11.920 11.407 15.978 18.800 24.167 30.227
3 2.501 3.538 4.187 5.431 6.844 4.132 5.847 6.919 8.974 11.309
4 2.035 2.892 3.431 4.471 5.657 2.932 4.166 4.943 6.440 8.149
5 1.825 2.599 3.088 4.033 5.117 2.454 3.494 4.152 5.423 6.879
6 1.704 2.429 2.889 3.779 4.802 2.196 3.131 3.723 4.870 6.188
7 1.624 2.318 2.757 3.611 4.593 2.034 2.902 3.452 4.521 5.750
8 1.568 2.238 2.663 3.491 4.444 1.921 2.743 3.264 4.278 5.446
9 1.525 2.178 2.593 3.400 4.330 1.839 2.626 3.125 4.098 5.220

10 1.492 2.131 2.537 3.328 4.241 1.775 2.535 3.018 3.959 5.046
11 1.465 2.093 2.493 3.271 4.169 1.724 2.463 2.933 3.849 4.906
12 1.443 2.062 2.456 3.223 4.110 1.683 2.404 2.863 3.758 4.792
13 1.425 2.036 2.424 3.183 4.059 1.648 2.355 2.805 3.682 4.697
14 1.409 2.013 2.398 3.148 4.016 1.619 2.314 2.756 3.618 4.615
15 1.395 1.994 2.375 3.118 3.979 1.594 2.278 2.713 3.562 4.545
16 1.383 1.977 2.355 3.092 3.946 1.572 2.246 2.676 3.514 4.484
17 1.372 1.962 2.337 3.069 3.917 1.552 2.219 2.643 3.471 4.430
18 1.363 1.948 2.321 3.048 3.891 1.535 2.194 2.614 3.433 4.382
19 1.355 1.936 2.307 3.030 3.867 1.520 2.172 2.588 3.399 4.339
20 1.347 1.925 2.294 3.013 3.846 1.506 2.152 2.564 3.368 4.300
21 1.340 1.915 2.282 2.998 3.827 1.493 2.135 2.543 3.340 4.264
22 1.334 1.906 2.271 2.984 3.809 1.482 2.118 2.524 3.315 4.232
23 1.328 1.898 2.261 2.971 3.793 1.471 2.103 2.506 3.292 4.203
24 1.322 1.891 2.252 2.959 3.778 1.462 2.089 2.489 3.270 4.176
25 1.317 1.883 2.244 2.948 3.764 1.453 2.077 2.474 3.251 4.151
26 1.313 1.877 2.236 2.938 3.751 1.444 2.065 2.460 3.232 4.127
27 1.309 1.871 2.229 2.929 3.740 1.437 2.054 2.447 3.215 4.106
30 1.297 1.855 2.210 2.904 3.708 1.417 2.025 2.413 3.170 4.049
35 1.283 1.834 2.185 2.871 3.667 1.390 1.988 2.368 3.112 3.974
40 1.271 1.818 2.166 2.846 3.635 1.370 1.959 2.334 3.066 3.917
45 1.262 1.805 2.150 2.826 3.609 1.354 1.935 2.306 3.030 3.871
50 1.255 1.794 2.138 2.809 3.588 1.340 1.916 2.284 3.001 3.833
55 1.249 1.785 2.127 2.795 3.571 1.329 1.901 2.265 2.976 3.801
60 1.243 1.778 2.118 2.784 3.556 1.320 1.887 2.248 2.955 3.774
65 1.239 1.771 2.110 2.773 3.543 1.312 1.875 2.235 2.937 3.751
70 1.235 1.765 2.104 2.764 3.531 1.304 1.865 2.222 2.920 3.730
75 1.231 1.760 2.098 2.757 3.521 1.298 1.856 2.211 2.906 3.712
80 1.228 1.756 2.092 2.749 3.512 1.292 1.848 2.202 2.894 3.696
85 1.225 1.752 2.087 2.743 3.504 1.287 1.841 2.193 2.882 3.682
90 1.223 1.748 2.083 2.737 3.497 1.283 1.834 2.185 2.872 3.669
95 1.220 1.745 2.079 2.732 3.490 1.278 1.828 2.178 2.863 3.657

100 1.218 1.742 2.075 2.727 3.484 1.275 1.822 2.172 2.854 3.646
110 1.214 1.736 2.069 2.719 3.473 1.268 1.813 2.160 2.839 3.626
120 1.211 1.732 2.063 2.712 3.464 1.262 1.804 2.150 2.826 3.610
130 1.208 1.728 2.059 2.705 3.456 1.257 1.797 2.141 2.814 3.595
140 1.206 1.724 2.054 2.700 3.449 1.252 1.791 2.134 2.804 3.582

(Continued)
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Table IV.19 Continued

� � 0.75 � � 0.90
P P

n 0.75 0.90 0.95 0.99 0.999 0.75 0.90 0.95 0.99 0.999

150 1.204 1.721 2.051 2.695 3.443 1.248 1.785 2.127 2.795 3.571
160 1.202 1.718 2.047 2.691 3.437 1.245 1.780 2.121 2.787 3.561
170 1.200 1.716 2.044 2.687 3.432 1.242 1.775 2.116 2.780 3.552
180 1.198 1.713 2.042 2.683 3.427 1.239 1.771 2.111 2.774 3.543
190 1.197 1.711 2.039 2.680 3.423 1.236 1.767 2.106 2.768 3.536
200 1.195 1.709 2.037 2.677 3.419 1.234 1.764 2.102 2.762 3.529
250 1.190 1.702 2.028 2.665 3.404 1.224 1.750 2.085 2.740 3.501
300 1.186 1.696 2.021 2.656 3.393 1.217 1.740 2.073 2.725 3.481
400 1.181 1.688 2.012 2.644 3.378 1.207 1.726 2.057 2.703 3.453
500 1.177 1.683 2.006 2.636 3.368 1.201 1.717 2.046 2.689 3.434
600 1.175 1.680 2.002 2.631 3.360 1.196 1.710 2.038 2.678 3.421
700 1.173 1.677 1.998 2.626 3.355 1.192 1.705 2.032 2.670 3.411
800 1.171 1.675 1.996 2.623 3.350 1.189 1.701 2.027 2.663 3.402
900 1.170 1.673 1.993 2.620 3.347 1.187 1.697 2.023 2.658 3.396

1000 1.169 1.671 1.992 2.617 3.344 1.185 1.695 2.019 2.654 3.390

� � 0.95 � � 0.99
P P

n 0.75 0.90 0.95 0.99 0.999 0.75 0.90 0.95 0.99 0.999

∞ 1.150 1.645 1.960 2.576 3.291 1.150 1.645 1.960 2.576 3.291
2 22.858 32.019 37.647 48.430 60.573 114.363 160.193 188.491 242.300 303.054
3 5.922 8.380 9.916 12.861 16.208 13.378 18.930 22.401 29.055 36.616
4 3.779 5.369 6.370 8.299 10.502 6.614 9.398 11.150 14.527 18.383
5 3.002 4.275 5.079 6.634 8.415 4.643 6.612 7.855 10.260 13.015
6 2.604 3.712 4.414 5.775 7.337 3.743 5.337 6.345 8.301 10.548
7 2.361 3.369 4.007 5.248 6.676 3.233 4.613 5.488 7.187 9.142
8 2.197 3.136 3.732 4.891 6.226 2.905 4.147 4.936 6.468 8.234
9 2.078 2.967 3.532 4.631 5.899 2.677 3.822 4.550 5.966 7.600

10 1.987 2.839 3.379 4.433 5.649 2.508 3.582 4.265 5.594 7.129
11 1.916 2.737 3.259 4.277 5.452 2.378 3.397 4.045 5.308 6.766
12 1.858 2.655 3.162 4.150 5.291 2.274 3.250 3.870 5.079 6.477
13 1.810 2.587 3.081 4.044 5.158 2.190 3.130 3.727 4.893 6.240
14 1.770 2.529 3.012 3.955 5.045 2.120 3.029 3.608 4.737 6.043
15 1.735 2.480 2.954 3.878 4.949 2.060 2.945 3.507 4.605 5.876
16 1.705 2.437 2.903 3.812 4.865 2.009 2.872 3.421 4.492 5.732
17 1.679 2.400 2.858 3.754 4.791 1.965 2.808 3.345 4.393 5.607
18 1.655 2.366 2.819 3.702 4.725 1.926 2.753 3.279 4.307 5.497
19 1.635 2.337 2.784 3.656 4.667 1.891 2.703 3.221 4.230 5.399
20 1.616 2.310 2.752 3.615 4.614 1.860 2.659 3.168 4.161 5.312
21 1.599 2.286 2.723 3.577 4.567 1.833 2.620 3.121 4.100 5.234
22 1.584 2.264 2.697 3.543 4.523 1.808 2.584 3.078 4.044 5.163
23 1.570 2.244 2.673 3.512 4.484 1.785 2.551 3.040 3.993 5.098
24 1.557 2.225 2.651 3.483 4.447 1.764 2.522 3.004 3.947 5.039
25 1.545 2.208 2.631 3.457 4.413 1.745 2.494 2.972 3.904 4.985
26 1.534 2.193 2.612 3.432 4.382 1.727 2.469 2.941 3.865 4.935
27 1.523 2.178 2.595 3.409 4.353 1.711 2.446 2.914 3.828 4.888

(Continued)
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Table IV.19 Continued

� � 0.95 � � 0.99
P P

n 0.75 0.90 0.95 0.99 0.999 0.75 0.90 0.95 0.99 0.999

30 1.497 2.140 2.549 3.350 4.278 1.668 2.385 2.841 3.733 4.768
35 1.462 2.090 2.490 3.272 4.179 1.613 2.306 2.748 3.611 4.611
40 1.435 2.052 2.445 3.213 4.104 1.571 2.247 2.677 3.518 3.493
45 1.414 2.021 2.408 3.165 4.042 1.539 2.200 2.621 3.444 3.399
50 1.396 1.996 2.379 3.126 3.993 1.512 2.162 2.576 3.385 4.323
55 1.382 1.976 2.354 3.094 3.951 1.490 2.130 2.538 3.335 4.260
60 1.369 1.958 2.333 3.066 3.916 1.471 2.103 2.506 3.293 4.206
65 1.359 1.943 2.315 3.042 3.886 1.455 2.080 2.478 3.257 4.160
70 1.349 1.929 2.299 3.021 3.859 1.440 2.060 2.454 3.225 4.120
75 1.341 1.917 2.285 3.002 3.835 1.428 2.042 2.433 3.197 4.084
80 1.334 1.907 2.272 2.986 3.814 1.417 2.026 2.414 3.173 4.053
85 1.327 1.897 2.261 2.971 3.795 1.407 2.012 2.397 3.150 4.024
90 1.321 1.889 2.251 2.958 3.778 1.398 1.999 2.382 3.130 3.999
95 1.315 1.881 2.241 2.945 3.763 1.390 1.987 2.368 3.112 3.976

100 1.311 1.874 2.233 2.934 3.748 1.383 1.977 2.355 3.096 3.954
110 1.302 1.861 2.218 2.915 3.723 1.369 1.958 2.333 3.066 3.917
120 1.294 1.850 2.205 2.898 3.702 1.358 1.942 2.314 3.041 3.885
130 1.288 1.941 2.194 2.883 3.683 1.349 1.928 2.298 3.019 3.857
140 1.282 1.833 2.184 2.870 3.666 1.340 1.916 2.283 3.000 3.833
150 1.277 1.825 2.175 2.859 3.652 1.332 1.905 2.270 2.983 3.811
160 1.272 1.819 2.167 2.848 3.638 1.326 1.896 2.259 2.968 3.792
170 1.268 1.813 2.160 2.839 3.527 1.320 1.887 2.248 2.955 3.774
180 1.264 1.808 2.154 2.831 3.616 1.314 1.879 2.239 2.942 3.759
190 1.261 1.803 2.148 2.823 3.606 1.309 1.872 2.230 2.931 3.744
200 1.258 1.798 2.143 2.816 3.597 1.304 1.865 2.222 2.921 3.731
250 1.245 1.780 2.121 2.788 3.561 1.286 1.839 2.191 2.880 3.678
300 1.236 1.767 2.106 2.767 3.535 1.273 1.820 2.169 2.850 3.641
400 1.223 1.749 2.084 2.739 3.499 1.255 1.794 2.138 2.809 3.589
500 1.215 1.737 2.070 2.721 3.475 1.243 1.777 2.117 2.783 3.555
600 1.209 1.729 2.060 2.707 3.458 1.234 1.764 2.102 2.763 3.530
700 1.204 1.722 2.052 2.697 3.445 1.227 1.755 2.091 2.748 3.511
800 1.201 1.717 2.046 2.688 3.434 1.222 1.747 2.082 2.736 3.495
900 1.198 1.712 2.040 2.682 3.426 1.218 1.741 2.075 2.726 3.483

1000 1.195 1.709 2.036 2.676 3.418 1.214 1.736 2.068 2.718 3.472
∞ 1.150 1.645 1.960 2.576 3.291 1.150 1.645 1.960 2.576 3.291

*Factors t’ such that the probability is � that at least a proportion P of the distribution will be included between X̄ 	 t’s
whereX̄ and s are estimates of the mean and the standard deviation computed from a sample size of n.
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Table IV.20 Test for Outliers (Upper Band for Critical Values for Studentized
Residual)

(� � .10)

q

n 1 2 3 4 5 6 8 10 15 25

5 1.87
6 2.00 1.89
7 2.10 2.02 1.90
8 2.18 2.12 2.03 1.91
9 2.24 2.20 2.13 2.05 1.92

10 2.30 2.26 2.21 2.15 2.06 1.92
12 2.39 2.37 2.33 2.29 2.24 2.17 1.93
14 2.47 2.45 2.42 2.39 2.36 2.32 2.19 1.94
16 2.53 2.51 2.50 2.47 2.45 2.42 2.34 2.20
18 2.58 2.57 2.56 2.54 2.52 2.50 2.44 2.35
20 2.63 2.62 2.61 2.59 2.58 2.56 2.52 2.46 2.11
25 2.72 2.72 2.71 2.70 2.69 2.68 2.66 2.63 2.50
30 2.80 2.79 2.79 2.78 2.77 2.77 2.75 2.73 2.66 2.13
35 2.86 2.85 2.85 2.85 2.84 2.84 2.82 2.81 2.77 2.55
40 2.91 2.91 2.90 2.90 2.90 2.89 2.88 2.87 2.84 2.72
45 2.95 2.95 2.95 2.95 2.94 2.94 2.93 2.93 2.90 2.82
50 2.99 2.99 2.99 2.99 2.98 2.98 2.97 2.95 2.89
60 3.06 3.06 3.05 3.05 3.05 3.05 3.05 3.04 3.03 3.00
70 3.11 3.11 3.11 3.11 3.11 3.11 3.10 3.10 3.09 3.07
80 3.16 3.16 3.16 3.15 3.15 3.15 3.15 3.15 3.14 3.12
90 3.20 3.20 3.19 3.19 3.19 3.19 3.19 3.19 3.18 3.17

100 3.23 3.23 3.23 3.23 3.23 3.23 3.23 3.22 3.22 3.21

(� � .05)

q

n 1 2 3 4 5 6 8 10 15 25

5 1.92
6 2.07 1.93
7 2.19 2.08 1.94
8 2.28 2.20 2.10 1.94
9 2.35 2.29 2.21 2.10 1.95

10 2.42 2.37 2.31 2.22 2.11 1.95
12 2.52 2.49 2.45 2.39 2.33 2.24 1.96
14 2.61 2.58 2.55 2.51 2.47 2.41 2.25 1.96
16 2.68 2.66 2.63 2.60 2.57 2.53 2.43 2.26
18 2.73 2.72 2.70 2.68 2.65 2.62 2.55 2.44
20 2.78 2.77 2.76 2.74 2.72 2.70 2.64 2.57 2.15
25 2.89 2.88 2.87 2.86 2.84 2.83 2.80 2.76 2.60
30 2.96 2.96 2.95 2.94 2.93 2.93 2.90 2.88 2.79 2.17
35 3.03 3.02 3.02 3.01 3.00 3.00 2.98 2.97 2.91 2.64
40 3.08 3.08 3.07 3.07 3.06 3.06 3.05 3.03 3.00 2.84
45 3.13 3.12 3.12 3.12 3.11 3.11 3.10 3.09 3.06 2.96

(continued)
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Table IV.20 Continued

(� � .05)

q

n 1 2 3 4 5 6 8 10 15 25

50 3.17 3.16 3.16 3.16 3.15 3.15 3.14 3.14 3.11 3.04
60 3.23 3.23 3.23 3.23 3.22 3.22 3.22 3.21 3.20 3.15
70 3.29 3.29 3.28 3.28 3.28 3.28 3.27 3.27 3.26 3.23
80 3.33 3.33 3.33 3.33 3.33 3.33 3.32 3.32 3.31 3.29
90 3.37 3.37 3.37 3.37 3.37 3.37 3.36 3.36 3.36 3.34

100 3.41 3.41 3.40 3.40 3.40 3.40 3.40 3.40 3.39 3.38

(� � .01)

q

n 1 2 3 4 5 6 8 10 15 25

5 1.98
6 2.17 1.98
7 2.32 2.17 1.98
8 2.44 2.32 2.18 1.98
9 2.54 2.44 2.33 2.18 1.99

10 2.62 2.55 2.45 2.33 2.18 1.99
12 2.76 2.70 2.64 2.56 2.46 2.34 1.99
14 2.86 2.82 2.78 2.72 2.65 2.57 2.35 1.99
16 2.95 2.92 2.88 2.84 2.79 2.73 2.58 2.35
18 3.02 3.00 2.97 2.94 2.90 2.85 2.75 2.59
20 3.08 3.06 3.04 3.01 2.98 2.95 2.87 2.76 2.20
25 3.21 3.19 3.18 3.16 3.14 3.12 3.07 3.01 2.78
30 3.30 3.29 3.28 3.26 3.25 3.24 3.21 3.17 3.04 2.21
35 3.37 3.36 3.35 3.34 3.34 3.33 3.30 3.28 3.19 2.81
40 3.43 3.42 3.42 3.41 3.40 3.40 3.38 3.36 3.30 3.05
45 3.48 3.47 3.47 3.46 3.46 3.45 3.44 3.43 3.38 3.23
50 3.52 3.52 3.51 3.51 3.51 3.50 3.49 3.48 3.45 3.34
60 3.60 3.59 3.59 3.59 3.58 3.58 3.57 3.56 3.54 3.48
70 3.65 3.65 3.65 3.65 3.64 3.64 3.64 3.63 3.61 3.57
80 3.70 3.70 3.70 3.70 3.69 3.69 3.69 3.68 3.67 3.64
90 3.74 3.74 3.74 3.74 3.74 3.74 3.73 3.73 3.72 3.70

100 3.78 3.78 3.78 3.77 3.77 3.77 3.77 3.77 3.76 3.74

n � number of observations
q � number of independent variables (including count for intercept if fitted)
Source: Lund, Technometrics 17(4), Nov. 1975.
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OUTLIER TESTS AND CHEMICAL ASSAYS

V.1 INTRODUCTION

In a recent landmark decision resulting from a trial involving the Federal Government
and Barr Laboratories, Judge Wolin made many judgments based on his constant probing
and the testimony of expert witnesses [1]. Remarkably, most of what he had to say was
clear, correct and to the point, despite his sparse background in the subject material. Much
of the Decision related to testing drug products during their production when failing results
(out of specification) were observed. A summary of the Decision is available from the
FDA [2]. A previous paper by this author [3] presented some alternatives to retesting
when a single out of specification result was observed for which no obvious cause was
apparent, a situation which is common in my experience. This paper discusses some issues
related to the elimination of an out of specification (OOS) result with no obvious cause,
based on an outlier test. The Judge, in his Decision, stated that tests for outliers which
can be used to exclude an aberrant observation are not appropriate for chemical tests. His
reasoning was that the USP includes tests for outliers, but presents these tests only in the
context of biological assays, which tend to be very variable. This, he suggests, is appropri-
ate because of the large variability of these kinds of procedures. Judge Wolin further
suggests in his Decision that such outlier analyses should not be used for chemical assays,
because if they were appropriate, the USP would have recommended the procedure for
chemical assays. Thus, the judgement is that, by default, outlier tests for chemical assays
should not be used. All of this raises several questions, including (a) Was it the USP’s
intention to exclude outlier tests for chemical assays? (b) Was this an oversight or was it
intentional? (c) Does the USP not discuss outlier tests for chemical assays because the
issue is complex with many possible alternatives?

I do not believe that it was Judge Wolin’s intention that his Decision should result
in non-scientifically based procedures by pharmaceutical firms. I also believe that he
would be disturbed if his Decision and FDA’s interpretation of his Decision would lead
to increased costs because good judgment was cast aside in lieu of fear of a ‘‘483 citation.’’
For example, one firm discarded a batch of product because a single content uniformity
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value failed, despite the fact that 100 individual repeat assays all yielded results between
85 and 115%. Another firm assayed the blend for a capsule product more than 50 times
using single dose unit samples during a validation study (because the recommended 3
dosage units was not feasible), with one value being at 119%. All other values were
between 90 and 110%. For fear of a ‘‘483’’, the company was reluctant to release the
batch. They would have been equally fearful, had the OOS value been 111%, because
they interpreted the Decision to impose limits of 90 to 110% for 3 dosage unit weight
assays at the blend stage. The final product passed with all content uniformity values
between 90 and 110% and an RSD of 2%. Would this firm have been better off performing
an absolute minimum number of assays to validate the batch in order to decrease the
probability of a failing assay, or to proceed as they did to ensure a thorough validation
with increased risk of failure? Once more, I cannot believe that it was Judge Wolin’s
intention to impose such irrational hardships on the industry. Thus, part of the incentive
for this paper (and one previously published. Ref. 2) is to propose some rational alternatives
in the spirit of the Judge’s Decision.

V.2 CAN OUTLIER TESTS BE JUSTIFIED?

In fact, the outlier problem remains perplexing, whether applied to questions of fundamen-
tal science or problems of more direct practical application. Stories abound in the history
of science about how a single outlier, discarded, was eventually found to have contained
important information. Similarly, anecdotes exist about outliers not discarded obscuring
the truth. Thus, scientists understand that there is no one answer to the problem, and that
there are risks associated with making decisions about how to handle outlying observations.
Although the question of how to deal with apparent outliers resulting from chemical assays
cannot be resolved easily, the use of outlier tests is ubiquitous in both practical laboratory
SOPs as well as the chemical and statistical literature. Pages could be filled with references
on this subject, including many from scientists associated with the National Bureau of
Standards, for example, the prominent statisticians, Drs. Youden [4] and Mandell [5]. Dr.
Youden [4] commented that the experimenter is better equipped to detect outliers than
the statistician when a small number of values (e.g., 3) are observed. In fact, with only 3
observations, a value must appear to be extremely divergent before it could be considered
an outlier. Thus, he suggests that the experienced experimenter probably would be less
conservative than the statistician in finding an observation suspect (the statistical test may
be considered conservative in the decision to reject an outlier). Natrella [6] discusses this
problem, noting that ‘‘There have been many criteria proposed for guiding the rejection
of observations.’’ She also states that ‘‘no available criteria are superior to the judgement
of an experienced investigator …’’ She gives several statistical procedures for identifying
outliers.

It is obvious that there is both theoretical and practical interest in this problem. Again,
scientific judgement appears dominant in approaching such problems. Judgement can be
defined to be a result of education, knowledge, experience and common sense. All of
these must come into play, and we can be 100% sure that there will never be unanimous
agreement on controversial issues. However, because many statistical and chemical trea-
tises discuss the outlier problem, I do not believe that its use can be dismissed out of
hand, only because the USP lacks a specific recommendation. Other often used references
and documents (OAOC, etc), including some that are government sponsored, recommend
use of outlier tests, when appropriate, for all kinds of data, in particular chemical assays.
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Virtually every well meaning, knowledgeable scientist would probably entertain the possi-
bility of excluding an outlying value from a set of experimental data. One could give an
example of a single assay showing zero drug content, an extreme case, in which it would
be absurd not to follow up with further testing, even if no cause for the ‘‘erroneous’’
result could be found. Similarly, if 3 assays were performed on a relatively homogeneous
blend such as a 20 tablet composite, with results of 99, 101 and 0, the null assay would
have to be considered suspect. Of course, most situations that might provoke use of an
outlier test are less extreme, and probably would need the application of judgement. Cer-
tainly, excessive use of outlier tests would suggest some persistant problem that needs to
be resolved, unrelated to the assay. Perhaps, there exists a compromise that could satisfy
both the conservative (never apply an outlier test) and more liberal (always apply an outlier
test and discard the outlying value if present) critic?

V.3 WHY IS THERE NOT A USP TEST FOR OUTLIERS FOR
CHEMICAL ASSAYS?

The answer as to why outlier tests are not specifically recommended for chemical assays
in the USP is not entirely clear, but I can conjure up a possible scenario. Because of the
variability of biological assays, to obtain a more precise estimate of drug content, replicate
assays are frequently employed. This is a good scientific approach. The average of replicate
assays always give a better estimate of the true average drug content than a single assay.
For very variable assays, a single result may fail because of the large assay variability,
not related to the true drug content. For chemical assays, the assay variability is usually
relatively small, and a single assay may give a good estimate of the true drug content of
the batch. On the other hand, chemical assays with large variability should use replicate
assays, with the average result representing the true drug content. Thus, the USP may not
want to commit to any specific assay scheduling.

The USP does not comment on the number of assays to be performed, and, in particu-
lar, does not suggest multiple assays on a single ‘‘homogeneous’’ portion of material,
such as a composite mixture or solution. The number of assays to be performed would
appear to be a matter of jugement, each laboratory using its own criteria. This seems
reasonable and appropriate. Clearly, in any event, if a single assay or duplicate assays
(with no previous estimate of the standard deviation) are performed, outlier tests cannot
be applied. At least three assays are needed for an independent application of an outlier
test. Thus, the USP cannot apply outlier tests to chemical assays unless at least three
assays are performed. In my experience, only one or two assays are routinely performed
for the chemical analysis of composite material. Therefore, for the USP to have an outlier
test for chemical assays, at least three assays must be performed. As previously noted,
the USP makes no such recommendation. In fact, if a firm is considering multiple assays
on a composite, for example, and no provision is made for an outlier test, a decision to
perform a single assay would probably cause the least problems, and would be the most
prudent from an economic point of view. The more assays that are performed on good
material, the greater the chance that at least one of the assays will fail. Yet, from a scientific
viewpoint, performing multiple assays and using the average result as a measure of the
batch parameter is clearly superior to a single assay. This important point is discussed in
more detail later and is also exemplified by the multiple assays performed in a validation
batch noted earlier.
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V.4 SOME COMMENTS ON THE NATURE OF OUTLIERS AND
OUTLIER TESTS, AND OTHER INCONSISTENCIES IN THE
DECISION THAT OUTLIER TESTS BE USED FOR BIOLOGICAL
ASSAYS BUT NOT FOR CHEMICAL ASSAYS

When performing multiple assays on a single source of material, such as a relatively
homogeneous mix or a solution, there is a reasonable probability that one of the replicates
may be deviant due to chance or due to an outright error. Whether or not a cause for the
deviant assay is documented, the USP suggests (for biological assays) the value may be
excluded if an outlier test confirms that the observation is deviant at the 4% level (the
chance that the value will be incorrectly excluded is less than 1 in 25). The USP makes
it clear that outlier tests should be used sparingly, when unavoidable. Certainly, the situa-
tion that is ‘‘unavoidable’’ is open to interpretation or judgement. It would appear to me
that one situation which might fit the USP’s definition is where inclusion of the outlier
would cause the batch to fail and no cause can be found for the outlying value following
a suitable investigation. Since such general statements need some interpretation, one would
want to know the relevant batch history as well as other measures of the batch performance
as part of the justification for performing an outlier test and discarding the outlying result.
According to my experience, exclusion of biological assay results based on the outlier
test is rarely questioned. This situation should be considered carefully in light of the
potential 100% exclusion of outlier tests for chemical assays under all circumstances.

What is the nature of an outlier test? Very important in any such test is an assumption
about the underlying distribution of the population data, the distribution of analytical
results that might arise from the analysis of a sample, in our context. If we consider the
assay results to have an approximate normal distribution, then the outlier test recommended
in the USP is appropriate. We probably would be not too far wrong using this assumption
for the analytical results derived from a single homogeneous sample. The outlier test
recommended in the USP compares the ranges of values in order to assess if the extreme
value is far enough removed to be considered discordant relative to the rest of the data.
The assumption is that the data are normally distributed and if the probability that the
extreme value comes from the distribution is less than 1 in 25, then the value may be
considered discordant. It is extremely important to understand that this test is not dependent
on the absolute variability of data, but rather on the distance of the suspected outlier from
the rest of the data relative to the dispersion of the remaining data. Thus, this test will
reject an outlier with the same probability no matter what the variance of the data. The
following example may clarify this concept. In a microbiological assay, the following 3
values were obtained for potency based on three replicate assays: 52.3, 99.9, 101.9. The
USP outlier test would be just satisfied, i.e., we could exclude the outlier, 52.3. Note that
for 3 assays, the outlier must be very far (and obviously) removed from the other two
values in order to be discarded. In a chemical assay, the following three values were
observed, 86.14, 97.64, 97.87. Again, the value of 86.14 is found to be an outlier. The
higher precision of the chemical assay as suggested by the two values close together allows
a less distant outlier to be detected. Note that if two of three assays are identical (which
may occur if rounding results in identical assays), the third result will always be an outlier.
The important point to remember is that the probability of incorrectly eliminating the
outlier is less than 1 in 25 for both of these examples. Thus, the risk of incorrectly eliminat-
ing an outlier is not dependent on the underlying variability of the normal distribution
associated with the assay data.
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As suggested previously, if a testing recommendation is not scientifically sound, less
valid testing situations will be used to satisfy the recommendations in lieu of more valid
approaches. The exclusion of outlier testing for chemical assays may promote less good
testing procedures, in my opinion.

V.5 WHAT IS THE PURPOSE OF PERFORMING REPLICATE ASSAYS
AND WHEN IS AVERAGING APPROPRIATE?

Although the Barr Decision suggests that averaging is not correct in some circumstances,
averaging is appropriate in the situation where multiple assays are used to obtain a better
estimate of the true parameter (which is the case for biological assays as well as chemical
assays). The reason for performing multiple assays is not to detect nonuniformity, but
rather to obtain a better estimate of a parameter, the true drug content. The more assays
performed the better the estimate based on the average. This would apply to any assay,
but would be more important for variable assays. For chemical assays which are usually
(but not always) more precise than biological assays, a single assay may be sufficient to
get a good estimate of the drug content. An important consideration is that the average
result is what is needed in this circumstance. Still, as noted above, a single assay among
the replicates that is found to be out of specification may suggest further testing, depending
on circumstances (e.g., as noted in the Decision, assays of 91, 91 and 89). It would appear
perfectly reasonable to me that if replicate chemical assays (3 or more) are to be performed
on a sample (a priori as specified in an SOP), that the same considerations be given to
outliers in this situation as is given to biological assays. (Due to its far-ranging implications,
perhaps the USP can look further into this very important question.)

The more difficult question to answer is how to apply outlier tests when retesting or
resampling is considered to be appropriate. This has been addressed briefly in a previous
publication (3), but I will pursue this further here.

V.6 IN WHAT SITUATIONS MIGHT OUTLIER TESTS BE
APPLICABLE?

V.6.1 Homogeneous Sample (Solution or Composite Powder)

When performing replicate assays on the same portion of material, the average result is
typically used as representing the batch parameter. However, although not specifically
recommended in official documents, if one of the replicate values is outside of official
specifications (whether an outlier or not), a prudent manufacturer may decide to perform
further analyses [3]. In particular, in my opinion, if replicate assays (at least 3) are per-
formed based on SOPs, an outlier test is appropriate. Another application of outlier analysis
may occur when a single assay fails and no cause is found. In this case, I recommend
further sampling as discussed in the previous paper (3). If the further assays indicate that
the original result is an outlier, then it may be discarded in the calculation of the average.
The calculation of the number of samples to be reassayed is also discussed in Reference
2. For example, consider the following hypothetical scenario. The original assay is 75%
from a composite which should have a mean of 100%. Three new samples are assayed
from the same composite with results of 98, 99 and 100%. The lower limit for passing is
93%. Would you accept or reject this test? (The value of 75% tests as an outlier). If the
original out of specification result does not meet the outlier criterion, then scientific judge-
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ment is needed. If the average passes including the outlier, a prudent manufacturer will
examine other batch records and batch history to aid in a decision. For example, with no
evidence of batch failure, a passing average in this example may be considered to represent
the batch. The same considerations may apply if the average does not pass when the
original result is included. If the original result was 75% and three reassays were 93, 96
and 105%, the 75% value would not be a significant outlier. Considerable judgement
would be required here. Should the batch be rejected based only on this evidence? Is
further testing appropriate? According to the Court, a product should not be tested into
compliance, certainly a reasonable and prudent decision. On the other hand, the hypotheti-
cal situation presented here begs for further testing, in my opinion. I would hesitate to
make any specific recommendations for this case, but further information about the product
would be needed to come to any decision. Again, to establish inflexible rules for every
situation does not seem to be a good substitute for scientific judgement. That is not to
say that reasonable guidelines are not needed and are not important. For a further discus-
sion, see Reference 3.

V.6.2. Outlier Tests for Destructive Testing

A particularly difficult situation for the application of outlier tests is testing where the
sample, once analyzed, is no longer available. This situation is most prevalent in the
context of Quality Control testing of content uniformity and dissolution results. Similar
situations may arise in stability testing. Another controversial area in which this problem
has been extensively discussed is in bioequivalence testing, where the outlying subject is
either not available or has changed since the original observation. Another situation which
may be included here is when a large sample of homogeneous material presented for
analysis continues to fail after multiple testing, and the possibility exists (but undocu-
mented) that the sample does not truly represent the batch, perhaps due to mishandling
or an error in preparation. In these cases, further testing may be indicated, and this has
been discussed in Reference 3. Because we cannot retest the original material, we can
never be certain whether the original analysis is correct. In particular, if the result is a
failure, we will never know the truth unless an obvious cause is discovered. This would
be the case in content uniformity (CU) testing where a single value outside the range of
75–125% is observed. This single value would almost certainly be tested as an outlier. If
not, the batch would be suspect. Before discussing this situation, we might try to gain
some insight into the nature of the CU test. The CU test does not say that out of specification
values do not exist in the batch. For example, if 0.1% (1/1000) of the tablets in a batch
were outside 75%–125%, assuming a normal distribution, about 94% of the tablets would
be between 85–115% and about 6% between 75–85% and 115–125%. The chances of
finding one of these out of specification tablets in a random sample of 10 is about 1 in a
100, a very small probability. Yet, 1 in every 1000 tablets is out of specification. The
probability that the CU test would pass based on the first 10 tablets is 
0.88. The probabil-
ity that the CU test would pass based on the second tier testing is 
0.94. Therefore, the
CU test is not very discriminating in finding out of specification tablets. We would have
to have at least 1% of the tablets out of specification (less than 75% or greater than 125%)
before the CU test would have a good chance (about 50–50) of failing. Thus, the CU test
can be considered as a screening test, but relatively non-discriminating in finding tablets
out of specification if there are less than 1% in the batch. If we observe a tablet outside
75–125%, which tests as an outlier with no obvious cause, should the batch be rejected?



584 Appendix V

There is no way of knowing with certainty whether the value is real or due to some
malfunction during the assay, or if real was only a chance observation of an event that has
very small probability. I propose that in such situations, following a failure investigation, if
appropriate, that a sufficient number of tablets be assayed to give high assurance that the
proportion of out of specification tablets in the batch is small. Remembering that we
cannot ever know with certainty that such tablets do not exist in the batch and that the
CU test does not discriminate against a small percentage of such tablets, this seems a
prudent approach. This problem has also been addressed in the previous publication where
in most cases (small RSD and average potency near 100%) with a sufficient number of
passing reassays, we can have high confidence that more than 99.9% of the tablets are
within 85–115% (3). It would seem to me that such a probability statement is stronger
and carries more information than the usual USP test with regard to tablet uniformity. As
suggested in the decision (1) resampling should be conducted using the original sample
if possible. Thus, in the case of content uniformity testing or a composite sample (which
continually fails), the new samples should be taken from the larger sample of product
submitted for analysis by Quality Control Personnel. For example, if the content uniformity
test is conducted on tablets taken from a bottle of 1000 tablets submitted by QC, the
resampling should be from the remaining tablets.

The approach to demonstrating the validity of data presented here is only one way
of coping with a difficult problem. However, any method that is backed by scientific
reasoning and common sense should certainly be an improvement over arbitrary ap-
proaches. In a sense, the application of this kind of reasoning to such methods may be
compared to the application of probability and statistical reasoning substantiating or defin-
ing findings in criminal court decisions.
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SHOULD A SINGLE UNEXPLAINED FAILING
ASSAY BE REASON TO REJECT A BATCH?

The problem of what to do with data that appear to be erroneous, but for which no cause
is apparent, has puzzled scientists for as long as data have been collected and evaluated.
These data can be characterized as outliers, not appearing to be of the same kind as other
data collected under the same circumstances. One might suppose that situations exist where
such outliers can be considered absurd, e.g., nobody with any knowledge of the process
could conceive that such a value could exist. For example, if an automatic device for
weighing individual tablets would record a zero, we would be ‘‘certain’’ that the result
was not due to a weightless tablet, but rather due to some malfunction of the process.
However, in the great majority of cases, the cause for an outlying result cannot be ascer-
tained. In the case of scientific experiments for research purposes, the outlier appears
among other experimental results, and the scientist can freely hypothesize reasons and
explanations for its presence. Thus, the scientist can make a case for exclusion or inclusion
of the outlier, and discuss reasons, implications, etc., with impunity. The future will demon-
strate the correctness of his evaluation and judgement; ‘‘Time will tell.’’ In a regulatory
environment, time is of the essence. We cannot wait for time to prove a hypothesis about
an outlying observation, correct or not. Usually, a decision must be made quickly. Although
there is no absolute right or wrong way to proceed, ‘‘judgement’’ seems to be a key word.
Under a given set of circumstances, what is to be done with the ‘‘outlier’’ is not easy to
answer. These problems were at the heart of a recent litigation involving the Federal
Government (FDA) and a generic company (Barr Labs, Inc.) (1) that involved testing of
solid dosage forms or products for reconstitution. Much of the government’s case against
Barr related to the passing of batches in which a single failing or outlying assay was
observed. The government suggested that if a single assay was not within specifications,
in the face of all other tests performed on the batch, the product should be rejected. This
‘‘outlying’’ result or test failure could occur as a result of in-process testing or final product
testing, either situation resulting in the rejection of the batch. This was the point of much
of the trial proceedings, with a willing judge looking for the truth. In fact, there is no
truth. What is to be done is a matter of judgement and common sense, grounded in
experience, knowledge, and scientific know-how. Nevertheless, it is certainly possible that
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two knowledgeable and intelligent experts might disagree on what to do in any given
situation. Good judgement does not necessarily lead to a single universal truth. Thus, the
procedures recommended in this paper represent my judgement and experience.

In my opinion, a single outlying or failing result among many test results accumulated
during the manufacture of a batch of product does not necessarily mean that the batch is
unacceptable. In fact, I would think quite the contrary, that if all measures of batch quality
other than the ‘‘outlier’’ suggests that the batch is acceptable, indeed the batch probably
represents an acceptable product. In any event, the decision as how to proceed should
consider other measurements observed during production as well as the product history.
If a product has a history of problems, then failing results must be taken very seriously,
and the onus of quality falls heavily on the product. On the other hand, if the product has
a history of good quality, the outlier may not be due to the product, but rather due to a
human or equipment malfunction. Thus, the data should be taken in context. Data available
for the batch under consideration and past batches consist of, for example, raw material
and blend assays during production, dissolution, content uniformity, final product assay,
weight variation, hardness, thickness and friability. Nevertheless, judgement is difficult
to document, and who is to say what person has the qualities to make the correct decision.
We can only hope to make a decision that is sensible under the circumstances, knowing
that all circumstances differ.

As stated in the ‘‘Opinion’’ [3], ‘‘The goal is to distinguish between an anomaly and
a reason to reject the batch.’’ If a single assay fails, and all other evidence indicates
‘‘quality’’, the manufacturer has the responsibility to demonstrate that the failing result
does not represent the product. If the data were observed in a scientific experiment, the
researcher could hypothesize reasons for accepting the bulk of the evidence, with possible
justifications for the aberrant result, as noted previously. No harm is done. In a manufactur-
ing environment where GMPs dictate procedures, explanations, no matter how rational or
scientifically rigorous, are useless, if a judgement is made by an FDA inspector that the
result impugns the quality of the product. There is no unanimity concerning the procedure
of evaluating an outlier. This small paper discusses approaches in a few commonly encoun-
tered situations in the presence of a failing result or outlier. The discussion presupposes
that a cause for the aberrant data is not apparent. Clearly, if a cause can be identified,
e.g., analyst mistake, instrument malfunction, or sample preparation error, then a
reassay on the same or a new sample (as appropriate) according to the original
procedure, would be a reasonable procedure to follow.

CASE 1.

The original material from which the failing result or outlier was observed is still available
and is (relatively) homogeneous. For example, this would occur in the case of an assay
of a blend composite or the assay of a composite of 20 tablets for the final product assay.
We assume relatively good homogeneity. The same situation would apply for the assay
of a solution when some sample is still available after the assay.

CASE 1A.

A single assay is reported and fails, e.g., outside the 90–110% release limits. No cause
can be determined. How many re-assays are necessary to discredit (or verify) the original
assay and ensure the integrity of the batch? The Court’s ‘‘Opinion’’ [3] suggests that 7
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of 8 passing results may possibly suffice. The recommendation is subjective, although not
altogether unreasonable. The number of samples to be retested may be quantified in an
objective way, but the final decision still requires ‘‘judgement.’’ Although the following
analysis could apply to any of the situations described above, I will use the example of
a final composite assay for tablets (a homogeneous mix of 20 tablets) to illustrate one
possible approach. Thus, when failing or aberrant data with no obvious cause are observed,
a reasonable sample size for re-assay could be calculated as follows:

Estimate the true batch average and RSD from other data compiled during the batch
testing, in particular content uniformity (CU). (We assume that CU data has passed. If
not, a failure investigation is warranted.) Assay a sufficient number of new samples so
that the 99% confidence interval for the average result, calculated from the available assays
on the composite sample, is within specifications. In order to make the calculation for the
number of samples to be re-assayed, we need to estimate both assay and tablet variability.
We can either assume that assay variability is considerably larger than tablet variability
(use the RSD from CU); or estimate assay and tablet content variability separately from
other available data (previous lots, assay data, etc.) in order to make a more realistic
estimate. Bolton has discussed how this may be done in a previous publication [4]. For
simplicity, estimate the average tablet content and RSD from the CU data. Note that the
RSD estimated from the CU data will be an overestimate of the RSD for the composite
(S2[CU] � S2[assay] � S2[tablet uniformity]; S2[composite] � S2[assay] � S2[tablet
uniformity/20]), so that the sample size for the reassay will be overestimated, a maximum
estimate. (We assume that assay variance is large compared to tablet variance.) The confi-
dence interval depends on the sample size and d.f., and we can estimate a sample size
iteratively. Use Table 1 for the estimate of number of samples to be re-assayed from the
composite (or original sample) as a function of mean potency and RSD. Use a slightly
larger sample if in doubt. This table is based on a one-sided confidence interval. Typically,
we are concerned about an out-of-specification result which is either too low or too high.
Note that the numbers in Table 1 are based on the sample having the mean and RSD
shown in the table. Therefore, the a priori estimate of the sample mean and RSD should
be made with care. If in doubt, choose a sample somewhat larger than given in the table.

Table VI.1 Estimate of Approximate Number of Samples to Be
Re-assayed Based on Estimate of Mean and RSD for One-Sided
99% Confidence Limit (See Text)

Mean Potency (%)

RSD (%) 94 96 98 100a

1 4 3 3 3
2 5 4 3 3
3 7 5 4 4
4 9 6 5 4
5 12 7 6 5
6 16 9 7 6

aFor estimates greater than 100%, use the 98% column for 102%, etc.
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On the other hand, if estimates of RSD are made from CU data, the estimate is apt to be
too large, and this would tend to make the choice of sample size conservative.

An example should make this clear: Specifications for an active ingredient are
90–110%. A single assay of 89% is observed on a composite sample of 20 tablets. From
CU data, the average result is 97% with RSD � 4. From Table 1, N 	 6. If RSD is 3
in this example, N 	 5.

The number of re-assayed samples is sensible. If the average is close to 100% and
the RSD is small, only a few samples need to be reanalyzed. If the RSD is large and the
average is close to the limits, a larger sample is necessary. Note that if the sample size,
mean potency, and RSD match the values in Table 1, the one-sided 99% CI will be
within specifications (90–110). Finally, one may want to know if the original ‘‘outlier’’
or failing result should be included in the calculation of the average and standard deviation.
I would recommend applying the USP test for outliers (Dixon’s test) [5] to make a decision
as to whether the original outlying observation should be included (See Note 1 on Court
Opinion at the end of this paper.) For example, if the original assay is 85%, but we believe
that the average potency should be 98% with RSD of 2%, we would assay (at least) 3
more samples from the same composite (from Table 1). If the observed re-assay values
are 96%, 98%, and 99%, the original assay of 85% is an outlier (Dixon test), and only
the 3 re-assay values are used in the calculation. The mean is 97.7% and the RSD is
1.55%. The 99% (one-sided) CI is 97.7–6.23 � 91.47, which is within the 90–110%
limits, and passes. A sample size of 4 or more would give a ‘‘comfort’’ zone.

Note that the Court recommendation of 7 of 8 passing results could be overly conserva-
tive in some cases, but less than adequate in other cases. In fact, with moderate variation,
8 samples would be a good number if the average observed potency is close to the specifica-
tion limits. If the observed potency is close to 100% with moderate variability, less samples
are needed.

Also, one might be concerned that if more than one assay fails, the product may still
pass (i.e., the average is within limits and the 99% CI is within limits.) This would seem
to be a most unlikely occurrence, because the inclusion of a failing result would increase
the variance considerably if the rest of the values were well within the specification limits.
For example, the six assays, 88, 89, 97, 98, 97, and 101%, have an average of 95% and
a s.d. of 5.25. The confidence limit would be below 90%.

CASE 1B.

Replicate assays are performed and the average of the assays is within limits, but one
assay fails. No cause can be found. For example, three assays of a homogeneous blend
show results of 88%, 95%, and 98%. The average is within 90–110%, but one assay is
out of limits. One could accept the batch based on the average result (93.7%), but prudence
may dictate further testing. We would like to establish a reasonable retesting procedure.
Based on the discussion above, it would seem reasonable to assay new samples according
to Table 1 based on an estimate of the average and RSD. This estimate should be made
based on all information available, e.g., CU results, not only the results of the assays in
question. One could further determine that the passing assays be part of the retesting if
there is evidence that one of the values is in error, e.g. based on other batch data. Thus,
in this case, if a sample of size 4 is called for, only two samples could be tested and
combined with the remaining data (2 passing values). Thus, judgement is critical. But,
the rationale for retesting should be recorded and made clear. The procedure could be part
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of SOPs for retesting. For example, in this example, CU data may have shown an average
of 98% and an RSD of 3%. In the current example, the value of 88% appears to be an
outlier and the retesting plan would be based on the CU data. On the other hand, if the
CU data showed an average of 94% and an RSD of 4%, one might believe that the 88%
value may be a legitimate value to be included in the average. In this case, the RSD of
the 3 original assays may be factored into the decision of how much retesting is to be
done. Consider the following example to help clarify this decision making process.

Two assays are performed on a composite sample (2 portions of the same composite),
with assay results of 90% and 98%. Note that, in the absence of an outright analytical
error, differences in results of such replicates can be, at first, attributed to assay variability.
The variability (RSD) of such duplicates based on retrospective data (accumulated from
past lots, e.g., from control charts) is determined to be 2%. This suggests that the difference
between the two assays (8%) is excessive and probably due to an analytical error. Also,
the CU data shows an average of 97% and an RSD of 3.5%. From Table 1, a sample of
size 5 is recommended. Include the 98% observation, but not the 90% value, as one of
the 5 samples. (Of course, there is nothing wrong with taking a conservative approach
and reassaying 6 new samples.) Note again that one is penalized (more samples to be
assayed) when a product is either very variable, not close to 100% in potency, or both.

CASE 2.

The material from which the failing result or outlier was observed is no longer available.
This could occur, for example, for single tablet assays where the test is destructive, or for
assays where stability is an issue, and a repeat assay on the same material may not be
indicative of the original assayed material. This situation may also occur if repeated testing
of a sample shows failure, but where the failure is not necessarily indicative of the quality
of the product. An example of this latter situation is repeated failures on a single composite,
where the failures could be possibly attributed to an error in preparation of the composite.
The process of testing further samples is termed ‘‘resampling’’ (as opposed to ‘‘retesting’’
in the Opinion).

CASE 2A.

Specific examples of the situation described in CASE 2 above may be considered for the
cases of dissolution and content uniformity. In these cases, the original material is not
present, and multiple units have been assayed. Outliers may be observed more frequently
in these cases because of the multiplicity of assays. Clearly, the more assays performed,
the greater the probability of an analytical ‘‘error’’ causing an outlier, or the higher the
probability of including an occasional aberrant tablet among those items assayed. For
example, one could reasonably argue that in a large batch of tablets or capsules, there is
a high probability that the batch contains one or more unusually low and/or high potency
units. The chances that such aberrant units will be contained in the sample tested (from
6 to 30 units, for example) are very small if only a few of these outliers exist in the batch.
Thus, if an outlying value is observed without any obvious cause, we have no way of
knowing the true situation. A very conservative view would be to throw out the batch,
no matter if all other tests are within specifications (the ‘‘FDA’’ position in the Barr Case).
From a practical (cost) and scientific point of view, throwing out the batch based on such
an event seems severe. If we decide that further testing should be done to assess the true
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nature of the batch, in terms of doing the right thing, we want to be ‘‘sure’’ that the
observed outlier is not representative of the batch. Of course, we can never be 100% sure.
The degree of assurance should be high and would be difficult to quantify. However, it
seems fair to say that if there were any sense that the failure could represent a public
health hazard, the desired degree of assurance should be greater.

At the present time, there is no unanimity on what is to be done. For example, in a
content uniformity test, a single failing result of 70% is observed for a tablet assay. In
one instance, at least, I know that a firm assayed 100 additional tablets (all of which were
between 85 and 115%), and nevertheless, the batch was rejected (The reason for the
excessive testing was to meet GMP requirements, according to one defensive (my opinion)
interpretation of a failure investigation.)

The question is how much more testing should be done to give a given degree of
assurance. To come upon such a number, we need a measure of the ‘‘degree of assurance.’’
One reasonable measure is to have assurance that the great majority of units (tablets) are
within 85–115%. For example, we may want 99% assurance that 99% of the tablets are
within 85–115%. From my point of view, such a conclusion would be satisfactory for
most products. For very potent products, we may want to have 99% assurance that 99.9%
of the tablets are within 85–115%. If we assume that the tablet drug content is normally
distributed, tolerance intervals can be calculated based on assay results. I would propose
that further testing be done in cases of a failing result caused by a single outlier (where
no cause can be found), and the mean (% of label) and RSD calculated from the re-assays.

In this example (CU), all re-assays should be within 85–115%, with the exception
that not more than 1 (3 in the case of capsules) in every 30 could be within 75–125%,
as defined for content uniformity limits in the USP (6). If one or more items among the
new values assay outside 75–125%, a full investigation is warranted and indicated. With
an estimate of the mean (%) and RSD from the assayed samples, the tolerance interval
can be calculated, i.e., we can say with 99% assurance that p percent of the tablets are
within some upper and lower limit. Tables 2A and 2B show some possible scenarios of
extended testing in these situations. The number of tablets (capsules) to be reassayed are
given for 95% and 99% tolerance probabilities. Note that in all these cases, there is very
high assurance that practically 100% of the tablets will be within 75–125% of label. This

Table VI.2A Minimum Number of Tablets Needed for Various Observed Values of
Mean Potency and RSD for Product to Be Acceptable (99% Tolerance Interval)

Mean Potency

RSD 95% 96% 97% 98% 99% 100%

1% 6 (7) 5 (6) 5 (6) 5 (6) 5 (5) 4 (5)
2% 13 (25) 11 (18) 9 (15) 8 (12) 8 (11) 7 (10)
3% 60 (�1000) 35 (250) 22 (90) 18 (50) 15 (35) 13 (25)
4% Fails 700 (Fails) 140 (Fails) 70 (Fails) 45 (800) 30 (190)
5% Fails Fails Fails Fails 500 (Fails) 140 (Fails)
6% Fails Fails Fails Fails Fails Fails

99% assurance that 99% of tablets within 85–115% (99% assurance that 99.9% of tablets within 85–115% for
potent drugs)
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Table VI.2B Minimum Number of Tablets Needed for Various Observed Values of
Mean Potency and RSD for Product to Be Acceptable (95% Tolerance Interval)

Mean Potency

RSD 95% 96% 97% 98% 99% 100%

1% 3 (4) 3 (3) 3 (3) 2 (3) 2 (3) 2 (3)
2% 8 (15) 7 (11) 6 (9) 6 (8) 5 (7) 5 (6)
3% 35 (�1000) 19 (140) 14 (50) 11 (30) 9 (19) 8 (15)
4% Fails 400 (Fails) 80 (Fails) 35 (� 1000) 24 (400) 18 (100)
5% Fails Fails Fails Fails 250 (Fails) 80 (Fails)
6% Fails Fails Fails Fails Fails Fails

95% assurance that 99% of tablets within 85–115% (95% assurance that 99.9% of tablets within 85–115% for
potent drugs)

plan certainly seems reasonable. Products with a large RSD (e.g., 5%) must be very close
to 100% in order to have any chance of passing. If such products contain potent drugs (a
matter of judgement), then a product that shows 5% RSD cannot pass if an outlier is
observed (a full failure investigation is indicated.) Thus, the product must exhibit moderate
or low variability and be close to 100% in order to give assurance that the product is
acceptable. As noted previously, one must understand that the average result and RSD
are not known until the assays are completed (The RSD and mean potency are determined
from the assay results). These values should be estimated in advance in order to determine
the sample size needed for reassay. These values can be estimated from the batch assays
(Use the passing content uniformity data or past batch data for this estimate.) Clearly, the
failing value, the suspected faulty result, should not be included in sample size calculations.
If unsure about the number of samples to be reassayed, one should estimate conservatively,
i.e., a larger number of reassays.

For example, a CU test showed 9 passing results (85%–115%) and one value less
than 75%. The 9 passing values showed a mean of 97% with an RSD of 3%. According
to Table 2A, 22 more tablets are assayed. If the average of these 22 tablets is close to
97% with RSD approximately equal to 3%, we would have 99% confidence that 99% of
the tablets are between 85% and 115%. If the number of tablets to be reassayed based on
Table 2A is less than 20, reassay at least 20 according to USP CU test specifications (4)
if the outlier occurred during the first stage of CU testing. If the outlier (�75% or 
125%)
occurred during the second stage of testing (a total of 30 tablets have been tested), then
the numbers in Table 2A can be used directly as is.

An important point to be emphasized once more is that the sample sizes in Tables
2A and 2B will give the indicated tolerance interval if the observed mean and RSD are
as indicated in the table. The values of the mean and RSD are not known until the assays
are completed. Thus, the numbers in Tables 2A and 2B are based on a good guess of the
expected mean and RSD. A conservative approach would use larger sample sizes than
indicated to protect against a bad estimate or chance outcomes. How many more samples
to use is strictly a matter of judgement and cost considerations.

A similar table can be constructed for dissolution. This is generally one-sided, in that
low values result in failures. For example if the lower limit is 80% dissolution in 30
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minutes, the number of retests should result in 95% assurance that 99% of the tablets have
a dissolution above 80% in 30 minutes.

One potential cause for product failure is the observation of a large RSD in the CU
test. If a product passes based on the individual observations, but fails the RSD test, the
individual observations should be evaluated for possible outliers. If a single outler is
observed as a possible cause, reassay using the sample size given in Tables 2A and 2B.
If the removal of a single value still results in a failing RSD, a full batch investigation is
warranted. For example, suppose that 10 tablets are assayed and 9 have results between
101% and 103%, one value is at 109%, and one value is 86%. Suppose the calculated
RSD is greater than 6% (a failure). A reasonable approach would be to reassay, assuming
that the 86% value was an outlier. The remaining 9 values have an average result of 103%
and RSD of 2.5%. From Table 2A, about 15 to 20 tablets would be reassayed. In this
example, if the tablets were evenly spread from 85% to 115%, it is possible that elimination
of a single tablet would not bring the RSD within specifications. In this case a full investiga-
tion would be required. In my experience, this situation would be very unlikely to occur.

CASE 2B.

Another somewhat different example would be a situation where a single assay fails (or
is borderline) and the original sample is no longer available or has been compromised.
Again, no cause for the result is obvious, and we cannot differentiate between a true failing
result or an analytical error. We need high assurance that the original value does not
represent the batch. We could follow the previous example, and estimate the resampling
size from Tables 2A and 2B. However, in these situations, often the material available
may be limited. For example, with stability samples, insufficient material may be available
for reassay. Another situation which may be considered similar is the case where a compos-
ite sample shows consistent failing results and no cause is obvious. The result may have
been caused by faulty preparation of the composite. In both of these cases, new samples
need to be prepared to verify the integrity of the batch (or stability). In these situations,
repeat assay on a new single sample (new composite of 20 tablets or new bottle of liquid
product) would not be sufficient to assure product quality. One conceivable approach to
this problem, if material is lacking, is to take sufficient samples according to Table 1, so
the results would give a 99% confidence interval for the true potency. The new sample,
in this example, would consist of new composites (each individual sample is a 20 tablet
composite) or new bottles of liquid on stability (if available). Consider the following
example: A composite assay shows 80% potency after 4 assays. Evidence from CU and
other batch data, suggest that there is an analytical or preparation error. Note that the
composite is an average of at least 20 random tablets, and this low observed value is
almost surely not due to lack of mixing (heterogeneous mix). The average potency appears
to be about 99% with an RSD of 2% based on other available data. Table 1 indicates that
3 new samples should be taken. Three new composites of 20 tablets each are prepared
and assayed, and a 99% confidence interval calculated (one-sided). If the confidence limit
is contained in the release specifications, the product is considered to be acceptable. If
this were a liquid product (which continues to fail upon reassay), we would need to sample
3 new bottles. (If 3 stability samples are not available, one might consider sampling from
the field.)
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CONCLUSION

In my opinion, a single failing or outlying test result (with no documentable cause) is not
sufficient to fail a batch of product if other test results for the batch indicate no problems.
In these cases, a sufficient amount of further testing should be performed so that the
product quality can be assured with high probability. This paper proposes one way of
approaching the question of ‘‘what is a sufficient number of samples to reassay?’’

Notes on the Court’s Opinion

1. The Opinion (7) suggests that the fact that the outlier test in the USP is directed
toward biological assays, and no mention is made of chemical assays, means that the test
is not applicable to chemical assays. It is unfortunate that this inference is made. Perhaps
the USP, inadvertently, is at fault, for lack of further explanation when describing the test.
In addition, the Opinion further states the reason for the omission of chemical assays with
regard to testing for outliers is due to the ‘‘innate variability of microbiological assays’’,
‘‘… subject to the whims of microorganisms.’’ In fact, the legitimacy of tests for outliers
is not dependent on inherent variability in the sense that the variability is taken into account
in the test. Thus, an assay with large variability, such as a microbiological assay, would
have to show considerable divergence due to the suspected outlier for the value to be
rejected. Because of lower variability, testing for an outlier in a chemical assay might
reject a less distant observation. Also, there are surely some chemical assays that are more
variable than some biological assays. Thus, the use of an outlier test should not be judged
based on the variability of the observation, but, rather on other criteria, e.g., the nature
of the distribution of results or, perhaps, on philosophical grounds.

2. On pages 74–75 of the Opinion (8), the following statement appears: ‘‘Unless a
firm with certainty establishes grounds to reject the tablet falling outside the 75 to 125
range, the batch should not be released.’’ There is no way to be 100% certain (certainty)
in this situation (or any situation for that matter). If the tablet is no longer available for
assay and no cause for the outlying result can be found, one can never resurrect the original
scenario with any confidence. I believe that if we replace the words, ‘‘with certainty’’,
with ‘‘with a high degree of assurance’’, that the methods proposed in this paper fulfill
the latter definition.
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Appendix VII

WHEN IS IT APPROPRIATE TO AVERAGE
AND ITS RELATIONSHIP TO THE BARR
DECISION

BACKGROUND: ASSAY AND CONTENT UNIFORMITY TESTS

Analytical procedures to determine the drug content of pharmaceutical dosage forms are
of two kinds. One is to estimate the true average drug content of the product (e.g., mg/
tablet or mg/ml), and the other is to determine the uniformity of the product,i.e, to assess
the degree to which different dosage units may differ. For true solutions, the question of
uniformity is mute, because solutions are homogeneous by definition (In certain cases, it
may be desirable to check uniformity for large volumes of solutions to ensure dissolution
and adequate mixing prior to transfer). For solid dosage forms, uniformity is determined
by assaying different portions of the powdered blend at the initial stages of the process,
and individual finished tablets at the final stage. For assessing uniformity, there are no
‘‘official’’ regulations for conformance for blends. The finished product content uniformity
test is defined in the USP. Release limits for blend testing for uniformity is at the discretion
of the Pharmaceutical firm, and should have a scientific as well as practical basis. The
subject of blend testing was an important issue in the Barr Trial and Judge Wolin’s Decision
(1). In particular, Judge Wolin condemned the averaging of different samples of powdered
blend when the purpose of the test was to determine uniformity. This is obvious to the
pharmaceutical scientist. Not that it is wrong to average the results (we are always inter-
ested in the average), but we do not want to obscure the variability by mixing heterogeneous
samples and then reporting only an average, when the purpose of the test is to assess that
variability. Therefore, procedures for assessing and reporting variability are clear, although
the regulations for blend testing and interpretation of data are not ‘‘official’’ and need
scientific judgement (A further dilemma here is that some pharmaceutical firms do not
perform blend testing on some products, at their discretion.)

AVERAGING REPLICATES FROM A HOMOGENEOUS SAMPLE

The problem that I want to present here is: When is averaging appropriate and correct,
and how do we deal with the individual values that make up the average in these circum-
stances? This can be simplified by limiting this question to one particular situation:

594
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AVERAGING IS APPROPRIATE AND CORRECT WHEN MULTIPLE
ASSAYS ARE PERFORMED ON THE SAME SAMPLE, OR ON

REPLICATE SAMPLES FROM THE SAME HOMOGENOUS
MIX, FOR PURPOSES OF DETERMINING

THE TRUE AVERAGE CONTENT.

I do not believe that any knowledgeable scientist would argue or contradict this. It is a
scientific, statistical fact that the average of multiple assays on the same material will give
a better estimate of the true content than single assays (the more assays, the better the
estimate). Thus, a pharmaceutical firm would better fulfill its obligation of supplying
conforming material to the public by performing multiple assays. Nevertheless, the number
of assays performed for purposes of estimating the true drug content is not fixed by law,
and many companies perform a single assay, whereas other companies may perform 3 or
more assays. In fact, the manner in which the replicates are performed may differ among
companies. For example, a replicate assay may be defined as coming from replicate analy-
ses of the same final solution prepared from a single portion of material, such as replicate
HPLC injections from the same solution. The variability among the replicate readings in
this case represents instrumental variability rather than product variability. If we are dealing
with a solution or a homogenized composite of 20 tablets, there are other sources of
variability that are not accounted for in such a replicate scheme. In particular, the variability
arising from the sample preparation for analysis is neglected in the former scheme because
only one sample has been analyzed. Sample preparation variability would include weighing
variability as well as variability during the various steps of preparing the product for the
analysis. Therefore, the average of replicates using different sample preparations will give
a better estimate of the true drug content than the same number of replicate analyses on
the same sample. The latter gives a good estimate of a single sample, whereas the former
better estimates the batch. Again, this is a scientific, statistical fact. We can define the
variability of such an assay measurement as the sum of independent variances:

Variance (assay) variance(I) variance(P) variance(O)

where I

= + +
== = =instrumental, P preparation and O other sources of variattion

The variance of the average of 3 replicates where the replicates are multiple injections
from the same sample is:

[variance(I)]/3 variance(O) variance(P)+ +

The variance of the average of 3 replicates where the replicates are multiple preparations
from the same sample is:

[variance(I) variance(O) variance(P)]/3+ +

Therefore, given a choice, to obtain a more precise estimate of the average drug content
of a batch, assaying multiple preparations from the same homogeneous sample is a more
desirable procedure than assaying multiple injections from a single preparation. This would
apply for both solutions and homogeneous powders. Thus, there is little doubt as to what
constitutes a better testing procedure for estimating drug content:

USE MORE INDEPENDENT SAMPLES!

Again, there are no official regulations on how many samples to use. Assaying a single
sample may be acceptable in this respect.
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HOW DO WE DEAL WITH SINGLE OOS RESULTS WHEN THE
AVERAGE CONFORMS?

What, then, is the problem? The problem is that there is confusion as to how to handle
the individual observations that make up the average in certain situations. There should
be no argument as to when it is appropriate to average. As emphasized throughout this
discussion, averaging multiple observations is appropriate when the purpose is to estimate
the average drug content. If all of the individual observations fall within release limits,
there is no ambiguity. The question is, ‘‘What do we do if one of the individual observations
falls outside of the release limits?’’

Although not explicitly stated, official limits are absolute. A product either does or
does not pass. The official limits for drug content, as stated in the USP, for example, are
based on the average drug content. Clearly, some individual units may lie outside these
limits as defined in the content uniformity test. From a legal point of view, it appears that
if the measure of the average content falls within limits, the product is acceptable. Thus,
an average result of 90.5 based on a single assay or duplicates of 89.5 and 91.5, is within
limits. On the other hand, such a result suggests that the true average may be below 90
with substantial probability. A prudent manufacturer would want more assurance that the
product is truly within specifications. In-House limits such as 95–105 are constructed to
give such assurance. These limits are usually computed so that there is high assurance
that the product truly meets official specifications if an analytical result falls within these
limits. The In-House specifications are not legal limits, but, rather, are computed, conserva-
tive limits to ensure that the legal limits will be met. The construction of such limits should
include all sources of variability including analytical error. Thus, a single assay of 95.5%
should be sufficient to release the product if the in-house limits are computed correctly.
In this situation, there is no question about the decision, the product passes or does not
pass. Suppose, that a company wants to improve this assessment of lot performance by
performing triplicate assays in this same situation. Because the single assay is close to
the In-House limit, repeat assays are apt to give values below 95. For example, triplicate
assays may give values of 94.5, 95.5 and 96.5, with an average of 95.5. In this case, the
average result is definitive and the single value below 95 should not invalidate the average.
Otherwise, we would be saying that a single assay of 95.5 is a better indicator of batch
quality than triplicate assays that average 95.5. Clearly, this is contradictory to scientific
and statistical fact. If we act otherwise, we would be defeating the intent and purpose of
scientific Q.C. analytical techniques.

How do we account for the fact that an average may fall within limits, but a single
assay may fall outside the limits (without obvious cause)? It is a well known statistical
fact that the more observations we make, the greater the likelihood of seeing extreme
observations because of inherent variability in the observations. The variability has a
probability distribution, say approximately normal. Every observation has some probability
of falling outside the release limits due to extreme errors (variability) that can occur during
an analysis. These extreme observations are apt to happen from time to time, by chance.
If we are unlucky enough to see such an observation, is this irrevocable? Does this mean
the batch is not good? The answer requires scientific judgement. In the absence of a
definitive mistake, examination of batch records and product history, as well as the nature
of the assay and release limits should lead to either acceptance of the batch or further
testing (according to SOPs). Further testing should help to assess the true nature of the
data, i.e., to differentiate a failure from an anomalous result.



597When Is It Appropriate to Average

Unfortunately, Judge Wolin, in his decision (Barr Decision), excluded outlier tests
from chemical assays (this ruling is controversial and will almost certainly be modified
in the near future). But, even if a single failing value is not an outlier, is this cause for
rejection, when the average is the objective of the test? Certainly, some scientific judgement
is needed here. Otherwise, we will be throwing out much good material at the expense
of the manufacturer and taxpayer, and we will be condoning non-scientific, suboptimal
testing techniques. If, in fact, there is no give or compromise in this dilemma, companies
will do an absolute minimal amount of testing to reduce the probability of out-of-specifica-
tion (OOS) results.

So the question remains as to how to handle this perplexing problem, ‘‘What do we
do about a single OOS result among replicates that are meant to be averaged?’’ I do not
believe that there can be a single inflexible rule. Scientific judgement and common sense
are needed. I will give a couple of examples.

Example 1. The official limits for a product are 90–110. In-House limits are set at
95–105. The In-House limits are based on the variability of the product, i.e., the manufac-
turer believes that based on the variability inherent in measuring the drug content of the
product (perhaps including assay error, stability, uniformity, etc.) that the average content
when the product is released based on a 20 tablet composite should be between 95–105.
Thus, the manufacturer is prepared to release the product if the average composite assay
is 95–105. Triplicate analyses yield results of 99, 98 and 94.5, an average of 97.17, which
passes. However, one assay is below 95 (note the triple jeopardy incurred by the triplicate
determinations). Should this product be released? Note that the release limits of 95–105
are based on inherent variability of the product, including its measurement. On this basis,
the product should pass, because it is the average in which we are interested. If there is
any doubt, I would want to look at other product characteristics and batch history. Certainly,
if there were no suggestion of a problem based on other relevant data, release of this batch
would be indicated. Another scientific contradiction here concerns In-House Limits which
apparently are not subject to regulations. Firms that use In-House Limits for release,
certainly a better and more conservative approach to releasing material than using the
absolute official limits, may be penalized for using a more scientific approach to drug
testing. Also, I believe that there is a qualitative difference for single OOS results when
applying ‘‘Official’’ and ‘‘In-House’’ release limits. ‘‘Official’’ limits are irrevocable, set
by ‘‘law’’ without a truly scientific basis. An average of 89.9 for a product with official
limits of 90–110 cannot be released! In-House limits are set by individual companies
based on scientific ‘‘know-how’’ and have built-in allowances for variability. Thus a
single replicate falling slightly below the ‘‘Official’’ limit should probably be treated with
greater concern than the single value outside in-house limits but within official limits as
observed in this example.

Example 2. Consider the situation where the Official release limits are 95–105 and
the 3 assays are 96.5, 95.5 and 94.5. The average is 95.5 which passes. All other data is
conforming. In this case, although it still may be argued convincingly that the product
passes, I would suggest additional testing. I believe that this is appropriate even if no
cause can be found for the low result. This question was raised in the Barr trial, in which
results of 89, 89, 92 were contemplated for a product with release limits of 90–110
(Paragraph 49, Barr Decision). Further testing was recommended by the witness, and the
judge seemed to be satisfied with this approach. The real problem here, is not the problem
of averaging, or retesting, but of ‘‘retesting into compliance.’’ Clearly, the latter approach
is not satisfactory, and should be addressed in SOPs. The SOP should recommend the
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number of retests to be performed when there is reasonable doubt about the quality of the
batch as suggested in this example.

DISCUSSION

Because of the lack of specific regulations concerning averaging of data, scientific judge-
ment and common sense should prevail. Certainly, situations exist where averages are the
optimal way of treating and reporting data. In particular, replicate measures based on a
homogeneous sample are meant to be averaged. Procedures for averaging data and retesting
should be contained in the company’s SOPs.

The question of what to do if a single OOS result is observed is addressed to some
extent in the Barr Decision. A single OOS result which cannot be attributed to the process or
to an operator error, as opposed to a laboratory error, is not labeled as a failure. According to
Inspector Mulligan of the FDA (Barr Decision, paragraph 21), an OOS result overcome
by retesting is not a failure. ‘‘The inability to identify an error’s cause with confidence
affects retesting procedures, see paragraph 38–39 …’’ (Barr Decision paragraph 28).
Paragraphs 38 and 39 suggest that retesting is part of the failure investigation. ‘‘A retest
is similarly acceptable when review of the analyst’s work is inconclusive.’’ Thus, retesting
is not disallowed when the retests are used to isolate the cause or nature of the outlying
result. The amount of retesting should be sufficient to differentiate an anomaly and a
reason to reject a batch (Paragraph 39). Thus, according to the decision, retesting may be
done with discretion (based on SOPs) to help identify a cause for OOS results.

An important consideration is that good testing procedures should not be penalized.
As noted in the examples above, a single OOS result contained in an average that passes
specifications should not be reason to reject a batch in general without further testing.
Otherwise, firms will be forced into performing single assays to reduce the risk of failure.
This is based on the fact that the penalty for an OOS result would be the same for both
(a) one of several assays OOS or (b) a single assay OOS. Biological assays are often
based on the average of triplicates, in which the average result is the basis for release,
regardless of the individual values. In principal, chemical assays should be treated in a
similar manner, with scientific judgement always in mind.

REFERENCE

1. Barr Decision, Civil Action No. 92–1744, OPINION, United States District Court for the District
of New Jersey, Judge Alfred M. Wolin, February, 1993.
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EXCEL WORKBOOKS AND SAS PROGRAMS

Microsoft Excel provides a powerful package to solve many statistical problems. The
following Workbooks are provided as examples of how this package can be used to solve
problems presented in this book. It is hoped that the reader will be able to apply the
principles illustrated in these examples to the real-life statistical problems that he or she
encounters. It is anticipated that the reader has some familiarity with Excel and the basic
mathematical functions available in Excel. The reader should also be familiar with the
basic methods to copy and paste values and formulas from one cell or group of cells to
another.

Many of the examples use Excel’s built-in statistical modules. These are available in
the Statistical Analysis ToolPak add-in. If this feature is activated in your installation of
Excel, you will see it by choosing Tools in the main menu of Excel. If you find the Data
Analysis option, the add-in is activated. If not, choose Tools and then select Add-Ins.
From the choice of Add-ins, select both the Analysis ToolPak and the Analysis ToolPak-
VBA options. This will install the package.

In the following examples, sequences of Excel commands will be presented to accom-
plish the data analyses. The Main Menu bar, in the following illustration, is just below
the Microsoft Excel heading. It has the headings of File, Edit, View, Insert, Format, Tools,
Data, Window and Help.
The command sequence:

Main Menu Tools Data Analysis Descriptive Statistics→ →

Refers to the steps:

1. Choose Tools from the Main Menu
2. Select Data Analysis under the Tools menu
3. Move the highlight down to Descriptive Statistics
4. Click OK

The first example is based on the Serum Cholesterol Changes for 156 Patients shown in
Table 1.1. Workbook 1.1 shows how to perform descriptive analyses of the data and how
to obtain a cumulative frequency distribution.
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A B C D E F G

1 Change Change Point Change Rank Percent

2 17 125 55 1 100.00%

3 �12 Mean �10.6218 91 46 2 99.30%

4 25 Standard Error 2.216327 60 40 3 98.70%

5 �37 Median �9.5 105 39 4 98.00%

6 �29 Mode 17 109 38 5 97.40%

7 �39 Standard Deviation 27.68191 50 35 6 96.10%

8 �22 Sample Variance 766.2883 88 35 6 96.10%

9 0 Kurtosis �0.16183 11 34 8 94.80%

10 �22 Skewness �0.28357 126 34 8 94.80%

11 �63 Range 152 18 33 10 94.10%

12 34 Minimum �97 97 27 11 93.50%

13 �31 Maximum 55 113 26 12 92.90%

14 �64 Sum �1657 3 25 13 92.20%

15 �12 Count 156 37 24 14 90.90%

16 �49 92 24 14 90.90%

17 5 98 23 16 90.30%

Workbook 1.1 Descriptive Analyses and Cumulative Frequency Distribution
(partial workbook shown)

Commands in Analyses
Cells A1 – A157 Enter ‘‘Change’’, then in A2-A157 the 156 change

values from Table 1.1.
Main Menu Tools → Data Analysis → Descriptive Statistics
Dialog Box

Input Range: Highlight or enter A1:A157
Grouped By: Click on Columns option
Labels in First Row: Click on this option
Output Range Click on Column B or enter B1
Summary Statistics Click on this option
OK Click to calculate

Main Menu Tools → Data Analysis → Rank and Percentile
Dialog Box

Input Range: Highlight or enter A1:A157
Grouped By: Click on Columns option
Labels in First Row: Click on this option
Output Range Click on Column D or enter D1
OK Click to Calculate

Notes on Analyses Interpretation:
Columns C lists the value of the sample statistic referenced in Column B
The statistic ‘‘Mode’’ (most frequent value) is not a unique value in this data set.
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A B C D E F G H I

1 90 92 93 94 95 96 97 98 99

2 92 94 96 97 98 99

3 94 97 98 99

4 94 97 98 99

5 94 97 98 99

6 97 98 99

7 97 98 99

8 98 99

9 98

10 98

Workbook 1.4 Entry of Tablet Potencies When Frequency Distribution Is Given
(partial worksheet shown)

Column D lists the observation number, in Column A, for the Change value in Column
E

Column F lists the rank (highest to lowest) for the Change value shown in Column
E

Column G lists the cumulative frequency percentile for the Change value in column
E

The next example creates a histogram and a cumulative frequency plot from the tablet
potency values presented in Table 1.4.
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Each Xi value is entered into a separate worksheet column, the number of replicate entries
of a value is given by its frequency, Wi, in Table 1.4. Entering a value once and then
copying it through the range of desired cells simplifies the process.

The Xi values in each column are then copied to a new worksheet to create a single
column of all 100 tablet potencies, as shown in the following partial worksheet.

A

1 Potency

2 90

3 92

4 92

5 93

6 94

7 94

8 94

9 94

10 94

11 95

12 96

13 96

14 97

15 97

16 97

17 97

18 97

19 97

20 97

Descriptive analyses can now be conducted on the values in Column A of this second
worksheet (e.g. creation of histogram and cumulative % plots).

Commands in Analyses
Main Menu Bar Tools → Data Analysis → Histogram
Dialog Box

Input Range: Highlight or enter A1:A101
Labels Click on this option
Output Click on New Worksheet Ply
Cumulative Percentage Click on this option
Chart Output Click on this option
OK Click to plot histogram

Click on Histogram
Main Menu Bar Chart → Location
Dialog Box

As New Sheet: Click on this option and enter ‘‘Histogram’’ in box
to right
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Click on cumulative
percentage line: Format symbol and colors as desired

Click on y-axis Format scale, font, number as desired
Click on histogram Bars Format color, patterns, fill effects as desired

Note: If it were necessary to format the x-axis (Bin) values, this is done by changing the
format of the Bin values column in the worksheet containing these values.

Next the tablet assay results shown in Table 5.1 are used to demonstrate construction
of a 95% confidence interval for the sample mean under the assumption that the data are
normally distributed. The mean, �, and the standard deviation, �, for the population are
unknown and must be estimated from the data. As such, the t-distribution is used to obtain
the confidence interval limits.

A B C D E F

1 Potency n Mean S alpha Confidence

2 101.8 10 103.0 2.22 0.05 0.95

3 102.6

4 99.8 df t-value Cl Lower Cl Upper

5 104.9 9 2.26 101.41 104.59

6 103.8

7 104.5

8 100.7

9 106.3

10 100.6

11 105.0

12

13

Workbook 5.1 Confidence Interval When Mean and Sigma Are Unknown

Commands in Analysis (commands for up to 100 entries in column A):
Cells in Column A Enter tablet potency results from Table 5.1
Cell B2 � COUNT(A2:A101) Total number of potency values
Cell B5 � B2–1 Degrees of freedom (df) � n-1
Cell C2 � AVERAGE(A2:A101) Arithmetic mean of potency

values
Cell D2 � STDEV(A2:A101) Sample standard deviation for

values
Cell E2 Enter alpha level 0.05 for 95% CI, 0.10 for 90%

CI, etc.
Cell F2 � 1-E2 Confidence Interval coverage
Cell C5 �TINV(E2,B5) Critical t-value for alpha & df
Cell D5 � C2-C5*D2/SQRT(B2) 95% Confidence Interval lower

limit



605Appendix VIII

Cell E5 �C2�C5*D2/SQRT(B2) 95% Confidence Interval upper
limit

The following uses the percent dissolution values of Table 5.9 to demonstrate how to use
Excel’s built in statistical tools to conduct an independent sample t-test.

A B C D E

1 FORM A FORM B t-Test: Two-Sample Assuming Equal Variances

2 68 74

3 84 71 FORM A FORM B

4 81 79 Mean 77.1 71.4

5 85 63 Variance 33.43333333 48.71111111

6 75 80 Observations 10 10

7 69 61 Pooled Variance 41.07222222

8 80 69 Hypothesized Mean Diff 0

9 76 72 Df 18

10 79 80 t Stat 1.988775482

11 74 65 P(T��t) one-tail 0.031073458

12 t Critical one-tail 1.734063062

13 P(T��t) two-tail 0.062146917

14 t Critical two-tail 2.100923666

Workbook 5.9 Two Independent Sample t-Test

Commands in Analyses
Columns A & B Enter Form A and Form B values from Table 5.9
Main Menu Bar Tools → Data Analysis → t-Test: Two-Sample

Assuming Equal Variances
Dialog Box
Variable 1 Range: Highlight or enter A1:A11
Variable 2 Range: Highlight or enter B1:B11
Hypothesized Mean Diff: Enter the null hypothesis difference between

means, 0
Labels: Click on this option
Alpha: Enter desired alpha level for t-Test, 0.05
Output Range Highlight cell C1 or enter C1.
OK Click to perform calculations.

Results appear in Columns C-E.

The next workbook performs the analysis for a paired sample t-test as shown in Table
5.11. The comparison of the Areas under the blood-level curve calculated for six animals
dosed in a bioavailability study with both a new drug formulation (A) and the marketed
formulation (B) is easily performed using Excel’s built-in statistical program.
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A B C D E F G

1 Animal FORM A FORM B Ratio Expected

2 1 136 166 0.82 1

3 2 168 184 0.91 1

4 3 160 193 0.83 1

5 4 94 105 0.90 1

6 5 200 198 1.01 1

7 6 174 197 0.88 1

8

9 t-Test: Paired Two Sample for Means t-Test: Paired Two Sample
for Means

10

11 FORM A FORM B Ratio Expected

12 Mean 155.33333 173.83333 Mean 0.891654 1

13 Variance 1332.2667 1278.1667 Variance 0.004747 0

14 Observations 6 6 Observations 6 6

15 Pearson 0.9354224 Pearson #DIV/0!
Correlation Correlation

16 Hypothesized 0 Hypothesized 0
Mean Mean
Difference Difference

17 Df 5 df 5

18 t Stat �3.484781 t Stat �3.85212

19 P(T��t) 0.0087842 P(T��t) 0.005988
one-tail one-tail

20 t Critical 2.0150492 t Critical 2.015049
one-tail one-tail

21 P(T��t) 0.0175684 P(T��t) 0.011975
two-tail two-tail

22 t Critical 2.5705776 t Critical 2.570578
two-tail two-tail

Workbook 5.11 Paired Sample t-Test

Commands in Analyses
Columns A, B, C & D Enter values from Table 5.11.
Column E Enter value of 1 for each entry in Column D (for

analysis of ratios)
Main Menu Bar Tools → Data Analysis → t-Test: Paired Two-

Sample for Means
Dialog Box

Variable 1 Range: Highlight or enter B1:B7
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Variable 2 Range: Highlight or enter C1:C7
Hypothesized Diff: Enter the null hypothesis difference between

means, 0
Labels: Click on this option
Alpha: Enter desired alpha level for t-test, 0.05
Output Range Click on cell or enter A9.

OK Click to perform calculations

Note: To obtain an analysis of the Form A/Form B ratios, perform the same sequence of
operations using the Ratio values (D1:D7) as Variable 1 and the Expected values (E1:E7)
as Variable 2. Choose output Range as E9.

Section 5.2.6 discusses how to construct a 95% confidence interval on the difference
between the proportions of headaches observed in two different groups of patients. The
calculation uses a normal approximation and incorporates a continuity correction.

The following Excel workbook shows how to carry out the calculations.

A B C D E F

1 Group I Group II alpha Z-value correction

2 Headaches 35 46 0.05 1.96 0.00491

3

4 N 212 196 difference se Z*se

5 P 0.165 0.235 0.070 0.03958 0.077575

6 Q 0.835 0.765

7 Cl_low Cl_high

8 �0.013 0.152

Workbook 5.2.6 Continuity-Corrected 95% Confidence Interval

Commands in Analysis
Data Entry: Enter Section 5.2.6 values into cells B2, C2, B4, C4, D2
Cell B5: � B2/B4 p � � / n
Cell C5: � C2/C4
Cell B6: � 1-B5 q � 1 � p
Cell C6: � 1-C5
Cell D5: � C5-B5 difference between p values

(group I-II)
Cell E2: � NORMSINV(1-D2/2) Critical Z-value for 95%

confidence interval
Cell E5: � SQRT(B5*B6/B4 � C5*C6/C4) se � (�(pq/n))1/2

Cell F2: � 0.5*(1/B4 � 1/C4) continuity correction � 0.5 (1/nI

� 1/nII)
Cell F5: � E2*E5
Cell D8: � D5 � (F5�F2) CI low � diff � [se*Z �

correction]
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Cell E8: � D5 � (F5�F2) CI high � diff � [se* Z �
correction]

Excel has utilities for performing linear regression analyses and creating graphs of the
results of such analyses. The power of these utilities can be seen in this next example
which uses tablet assay results from a stability study (Table 7.5).

In this workbook, linear regression is used to model the stability of tablet potency
over time. A 95% confidence interval about the stability line is constructed and the results
are graphically illustrated using Excel’s Chart Wizard.

Commands in Analyses
Columns A & B Enter Month and Assay values from Table 7.5
Main Menu Bar Tools → Data Analysis → Regression
Dialog Box

Input Y Range: Highlight or enter B1:B19
Input X Range: Highlight or enter A1:A19
Labels: Click on this option
Output Range Click on cell C1 or enter Results start in Column C.

C1.
OK Click to perform

calculations
Cell D16 � AVERAGE(A2:A19) Mean value for the X values
Cell D17 � 18*(VARP(A1:A19)) equal to �(Xi � mean)2

Open a second worksheet in this workbook. This sheet will be used to calculate the
predicted values for the stability regression line and the 95% confidence interval band
around the line. The measured potency values from Worksheet 1 and the predicted values
and their confidence bounds from this new worksheet (Worksheet 2) will be used to create
a stability trending graph.

Commands in Analyses
Column A Enter 0 & 1 into Cells A2 & A3, highlight & drag through

Cell A62 to obtain Month numbers 0 through 60.
Cells E2 and F2 Copy Slope and Intercept values from Worksheet 1
Cell E5 Enter 16, the residual df from ANOVA in Worksheet 1

equal to N-2
Cell F5 Enter or copy the SSQ—Diff value from Worksheet 1
Cell F8 Enter or copy the Month Mean value from Worksheet 1
Cell E8 � TINV(0.05,E5), t-value for two-sided, 95% confidence

interval
Cell E11 � SQRT(1.825), square root of residual MS from ANOVA

in Worksheet 1
Cell B2 � $F$2�A2*$E$2, intercept � month * slope
Cells B3-B62 Copy formula from B2 into these cells to obtain predicted

values
Cell C2 �$B2-$E$8*$E$11*SQRT(1/($E$5�2)�POWER(($A2-

$F$8),2)/$F$5)
Cells C3-C62 Copy formula from C2 to obtain 95% Conf. Interval lower

bound
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A B C D E F

1 Month Predicted 95% Cl Low 95% Cl Hi slope intercept

2 0 51.8 50.7 52.9 �0.26667 51.8

3 1 51.5 50.5 52.6

4 2 51.3 50.3 52.2 Df SSQDx

5 3 51.0 50.1 51.9 16 630

6 4 50.7 49.9 51.5

7 5 50.5 49.7 51.2 t-val Meanx

8 6 50.2 49.5 50.9 2.12 8

9 7 49.9 49.2 50.6

10 8 49.7 49.0 50.3 S_yx

11 9 49.4 48.7 50.1 1.351

12 10 49.1 48.4 49.8

13 11 48.9 48.1 49.6

14 12 48.6 47.8 49.4

Workbook 7.5 Linear Regression of Tablet Stability Results (Worksheet 2)
(Listing of first 14 rows of the 62-row worksheet)
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Cell D2 �$B2�$E$8*$E$11*SQRT(1/($E$5�2)�POWER(($A2-
$F$8),2)/$F$5)

Cells D3-D62 Copy formula from D2 into these cells to obtain 95% Conf.
Interval upper bound

Create graph

Highlight cells A1:B62, click Chart Wizard icon and choose XY scatter plot.
Click Next and choose the series tab.
Click on ADD.
Click in the Name box and enter 95% CI.
For X-values, choose A1:A62.
For Y-values choose C1:C62.
Repeat the process to add the graph of the 95% CI upper limits (D1:D62 values).
Next, repeat the process for the Month (X) and Assay (Y) values from Worksheet 1.
Click on Next and enter the title and axes labels for the graph.
Click on finish.

From the Main Toolbar Menu, choose Chart and then under that choose Location
Enter a Name so that the graph is placed as a chart separate from Worksheet 2.
The lines on the graph can now be edited by double clicking on each one.
Edit the predicted line to be solid with no symbols.
Edit the confidence interval curves to be smoothed, no-symbol, dashed.
The y and x axes can be edited (double click on each) to change the range of the

Scale.

The following Workbook uses the spectrophotometric calibration curve results of Table
7.6. While it employs only the basic mathematical functions of Excel, it provides a powerful
method for performing weighted linear regression analysis which can be used in situations
where a straight-line model is appropriate. In this example, the weight is the inverse of
concentration squared (1/X2), but the method can be easily adapted to other appropriate
weights (some function that is inversely proportional to the variance in y).

Commands in Analyses
Cells A2:B11 Enter the X and y values from Table 7.6
Cell C2 � 1/(A2�2) Weight, w, is inverse of concentration squared
Cells C3:C11 Copy the formula from Cell C2
Cell D2 � C2*A2*B2 wXy
Cells D3:D11 Copy the formula from Cell D2
Cell E2 � C2*A2 wX
Cells E3:E11 Copy the formula from Cell E2
Cell F2 � C2*B2 wy
Cells F3:F11 Copy the formula from Cell F2
Cell G2 � C2*A2�2 wX2

Cells G3:G11 Copy the formula from Cell G2
Cell A13 � SUM(A2:A11) �X
Cells B13:G13 Copy formula from Cell A13 �y, �w, �wXy, �wX,

�wy & �wX2

Cell B15 � (D13-E13*F13/C13)/(G13- slope
(E13�2)/C13)

Cell B17 � (F13/C13)-B15*(E13/C13) intercept



612 Appendix VIII

A B C D E F G

1 Conc (X) OD (y) 1/X^2 wXy wX wy wX^2

2 5 0.105 0.04 0.021 0.2 0.0042 1

3 5 0.098 0.04 0.0196 0.2 0.00392 1

4 10 0.201 0.01 0.0201 0.1 0.00201 1

5 10 0.194 0.01 0.0194 0.1 0.00194 1

6 25 0.495 0.0016 0.0198 0.04 0.000792 1

7 25 0.508 0.0016 0.02032 0.04 0.0008128 1

8 50 0.983 0.0004 0.01966 0.02 0.0003932 1

9 50 1.009 0.0004 0.02018 0.02 0.0004036 1

10 100 1.964 0.0001 0.01964 0.01 0.0001964 1

11 100 2.013 0.0001 0.02013 0.01 0.0002013 1

12 Sum(X) Sum(y) Sum(w) Sum(wXy) Sum(wX) Sum(wy) Sum(Wx^2)

13 380 7.57 0.1042 0.19983 0.74 0.0148693 10

14

15 Slope (b) � 0.01986

16

17 Intercept (a) � 0.00166

Workbook 7.6 Weighted (1/X2) Linear Regression Analysis

The next example shows how to use Excel to perform a series of calculations iteratively
across different parameter values of a function to determine which values give the best
fit to the observed values. In this example, using the method of least-squares, the best
estimates for the parameters (slope and intercept) of the function (regression line) occur
at the minimum sum of squares for the difference between the predicted values of the
regression line and the observed values. The regression line is defined by its slope (K)
and its intercept (C0) and there are three observed time (hour)-concentration values (mg/
L): (1,63), (2,34), and (3,22). These data are the stability results shown in Table 7.8.
It is first necessary to determine a plausible range of values for C0 and K. For C0, this
could be done graphically by plotting the data and then extrapolating the curve back to
0 time. A wide range of values should be selected around this estimate for the first iteration.
In the first worksheet, a range of 50–400 was chosen. An initial range of estimates for K
can be obtained in several ways: by using the estimate of C0 and then solving the equation
C � C0*Exp(�K*t) for each time (t)-concentration (C) pair in the data set. Alternatively,
the natural logarithm of each concentration can be plotted against time. The slope of the
line through the plotted points is an estimate of �K. In this example, K was found to be
close to 0.5 and a range of 0.1–0.7 was chosen for evaluation. The analysis requires the
calculation of the sum of squares (SSQ) of the deviations (DEV � observed-predicted)
for each of the three data points based on all combinations of the chosen C0 and K values.
The C0 and K values that result in the minimum SSQ represent the least-squares estimates.
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A B C D E F G H I

1 CO K 63.0 34.0 22.0 Dev_1 Dev_2 Dev_3 SSQ

2 400 0.1 361.9 327.5 296.3 �298.9 �293.5 �274.3 250755.3

3 200 0.1 181.0 163.7 148.2 �118.0 �129.7 �126.2 46667.7

4 100 0.1 90.5 81.9 74.1 �27.5 �47.9 �52.1 5759.7

5 50 0.1 45.2 40.9 37.0 17.8 �6.9 �15.0 589.7

6 400 0.3 296.3 219.5 162.6 �233.3 �185.5 �140.6 108637.2

7 200 0.3 148.2 109.8 81.3 �85.2 �75.8 �59.3 16510.9

8 100 0.3 74.1 54.9 40.7 �11.1 �20.9 �18.7 906.9

9 50 0.3 37.0 27.4 20.3 26.0 6.6 1.7 719.7

10 400 0.5 242.6 147.2 89.3 �179.6 �113.2 �67.3 49586.7

11 200 0.5 121.3 73.6 44.6 �58.3 �39.6 �22.6 5477.8

12 100 0.5 60.7 36.8 22.3 2.3 �2.8 �0.3 13.4 **

13 50 0.5 30.3 18.4 11.2 32.7 15.6 10.8 1428.7

14 400 0.7 198.6 98.6 49.0 �135.6 �64.6 �27.0 23302.8

15 200 0.7 99.3 49.3 24.5 �36.3 �15.3 �2.5 1559.8

16 100 0.7 49.7 24.7 12.2 13.3 9.3 9.8 360.4

17 50 0.7 24.8 12.3 6.1 38.2 21.7 15.9 2178.7

18 MIN 13.4

Workbook 7.8 Nonlinear Fit of Stability Data by the Method of Least-Squares
(first iteration)

Additional iterations are performed to refine the estimates to the desired level of precision.
In this example, precision to one decimal place for C0 and to three decimal places for K
was considered appropriate.

Commands in Analyses (Commands are repeated for each iteration)
Columns A and B Enter all possible combinations of the selected C0 and K

values.
Cell C2 � A2*EXP(�B2*1) Predicted Concentration at 1

hour
Cell D2 � A2*EXP(�B2*2) Predicted Concentration at 2

hour
Cell E2 � A2*EXP(�B2*3) Predicted Concentration at 3

hour
Cell F2 � 63-C2 1 hour deviation (observed-

predicted)
Cell G2 � 34-D2 2 hour deviation
Cell H2 � 22–E2 3 hour deviation
Cell I2 � SUMSQ(F2,G2,H2) Sum of squared deviations

(SSQ)
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Workbook 7.8 Nonlinear Fit of Stability Data by the Method of Least-Squares
(section of the worksheet to refine the estimates)

A B C D E F G H I

CO K 63.0 34.0 22.0 Dev_1 Dev_2 Dev_3 SSQ

130 0.4 87.1 58.4 39.2 �24.1 �24.4 �17.2 1473.1

115 0.4 77.1 51.7 34.6 �14.1 �17.7 �12.6 670.5

100 0.4 67.0 44.9 30.1 �4.0 �10.9 �8.1 201.7

85 0.4 57.0 38.2 25.6 6.0 �4.2 �3.6 66.8

130 0.5 78.8 47.8 29.0 �15.8 �13.8 �7.0 491.4

115 0.5 69.8 42.3 25.7 �6.8 �8.3 �3.7 128.0

100 0.5 60.7 36.8 22.3 2.3 �2.8 �0.3 13.4

85 0.5 51.6 31.3 19.0 11.4 2.7 3.0 147.6

130 0.6 71.3 39.2 21.5 �8.3 �5.2 0.5 96.5

115 0.6 63.1 34.6 19.0 �0.1 �0.6 3.0 9.4 **

100 0.6 54.9 30.1 16.5 8.1 3.9 5.5 110.9

85 0.6 46.6 25.6 14.1 16.4 8.4 7.9 401.1

130 0.7 64.6 32.1 15.9 �1.6 1.9 6.1 43.2

115 0.7 57.1 28.4 14.1 5.9 5.6 7.9 129.2

100 0.7 49.7 24.7 12.2 13.3 9.3 9.8 360.4

85 0.7 42.2 21.0 10.4 20.8 13.0 11.6 736.6

MIN 9.4

Workbook 7.8 Nonlinear Fit of Stability Data by the Method of Least-Squares
(further refining of the estimates)

(C0 range examined was 100–130, K range 0.50–0.70; only section with minimum is
shown)

A B C D E F G H I

C0 K 63.0 34.0 22.0 Dev_1 Dev_2 Dev_3 SSQ

104 0.53 61.2 36.0 21.2 1.8 �2.0 0.8 7.9

105 0.53 61.8 36.4 21.4 1.2 �2.4 0.6 7.4

106 0.53 62.4 36.7 21.6 0.6 �2.7 0.4 7.9

105 0.54 61.2 35.7 20.8 1.8 �1.7 1.2 7.5

106 0.54 61.8 36.0 21.0 1.2 �2.0 1.0 6.5

107 0.54 62.4 36.3 21.2 0.6 �2.3 0.8 6.6

107 0.55 61.7 35.6 20.5 1.3 �1.6 1.5 6.3

108 0.55 62.3 36.0 20.7 0.7 �2.0 1.3 5.9

109 0.55 62.9 36.3 20.9 0.1 �2.3 1.1 6.4

108 0.56 61.7 35.2 20.1 1.3 �1.2 1.9 6.8

109 0.56 62.3 35.6 20.3 0.7 �1.6 1.7 5.8 **

110 0.56 62.8 35.9 20.5 0.2 �1.9 1.5 5.8

111 0.56 63.4 36.2 20.7 �0.4 �2.2 1.3 6.8

110 0.57 62.2 35.2 19.9 0.8 �1.2 2.1 6.5

111 0.57 62.8 35.5 20.1 0.2 �1.5 1.9 6.0

112 0.57 63.3 35.8 20.3 �0.3 �1.8 1.7 6.5
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Workbook 7.8 Nonlinear Fit of Stability Data by the Method of Least-Squares
(C0 range evaluated was 108.0–110.0 by 0.2; K was 0.550–0.570 by 0.002)

A B C D E F G H I

C0 K 63.0 34.0 22.0 Dev_1 Dev_2 Dev_3 SSQ

108.0 0.552 62.2 35.8 20.6 0.8 �1.8 1.4 5.838

108.2 0.552 62.3 35.9 20.7 0.7 �1.9 1.3 5.804

108.4 0.552 62.4 35.9 20.7 0.6 �1.9 1.3 5.807

108.6 0.552 62.5 36.0 20.7 0.5 �2.0 1.3 5.850

108.4 0.554 62.3 35.8 20.6 0.7 �1.8 1.4 5.772

108.6 0.554 62.4 35.9 20.6 0.6 �1.9 1.4 5.756

108.8 0.554 62.5 35.9 20.6 0.5 �1.9 1.4 5.779

108.6 0.556 62.3 35.7 20.5 0.7 �1.7 1.5 5.766

108.8 0.556 62.4 35.8 20.5 0.6 �1.8 1.5 5.732

109.0 0.556 62.5 35.9 20.6 0.5 �1.9 1.4 5.735

109.2 0.556 62.6 35.9 20.6 0.4 �1.9 1.4 5.777

109.0 0.558 62.4 35.7 20.4 0.6 �1.7 1.6 5.733

109.2 0.558 62.5 35.8 20.5 0.5 �1.8 1.5 5.718 **

109.4 0.558 62.6 35.8 20.5 0.4 �1.8 1.5 5.741

109.2 0.560 62.4 35.6 20.4 0.6 �1.6 1.6 5.761

109.4 0.560 62.5 35.7 20.4 0.5 �1.7 1.6 5.727

109.6 0.560 62.6 35.8 20.4 0.4 �1.8 1.6 5.731

A B C D E F G H I

C0 K 63.0 34.0 22.0 Dev_1 Dev_2 Dev_3 SSQ

109.1 0.557 62.5 35.8 20.5 0.5 �1.8 1.5 5.723

109.2 0.557 62.6 35.8 20.5 0.4 �1.8 1.5 5.735

109.3 0.557 62.6 35.9 20.6 0.4 �1.9 1.4 5.755

109.1 0.558 62.4 35.7 20.5 0.6 �1.7 1.5 5.721

109.2 0.558 62.5 35.8 20.5 0.5 �1.8 1.5 5.718 **

109.3 0.559 62.5 35.7 20.4 0.5 �1.7 1.6 5.719

109.1 0.559 62.4 35.7 20.4 0.6 �1.7 1.6 5.744

109.2 0.559 62.4 35.7 20.4 0.6 �1.7 1.6 5.727

109.3 0.559 62.5 35.7 20.4 0.5 �1.7 1.6 5.719
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Columns C through I Copy Row 2 formulas
through rows 3–17

Cell I18 � MIN(I2:I17) Minimum of SSQ values
Cell J2 � IF(I2 � I$18,”**”,” “) Flags row if it contains

minimum SSQ
Cell J3-J17 Copy formula from Cell J2 Flags row with best C0 and

K estimates
Based on these results, it appears that the best estimate of C0 is near 100 and near 0.5.
The next iterations further refine the estimates.
Final Iteration: C0 range evaluated was 109.0–109.4 by 0.1; K was 0.556–0.560 by
0.001
The least-squares estimates, at the desired levels of precision, are C0 � 109.2 and
K � 0.558.
This next example uses Excel’s built-in two-factor ANOVA, without replication, to evalu-
ate the tablet dissolution data given in Table 8.9.

Commands in Analyses
Columns A, B, C, D Enter dissolution values from Table 8.9.
Main Menu Tools → Data Analysis → Anova: Two-Factor

without Replication
Dialog Box
Input Range: Highlight or enter A1:D9
Labels: Click on this option
Alpha: Enter 0.05
Output Range Click on or enter A11
OK Click to perform calculations

Cell F3 � ABS(D23-D25)/SQRT(2*D32/8) Calculate pair-wise t-test
Cell F4 � ABS(D24-D25)/SQRT(2*D32/8)
Cell G3 � TDIST(F3,C32,2) Determine pair-wise p-value
Cell G4 � TDIST(F4,C32,2)

This next example uses Excel’s built-in two-factor ANOVA, with replication, to evaluate
the replicate tablet dissolution data given in Table 8.12.

Commands in Analyses
Columns A,B,C,D Enter dissolution values from Table 8.12.
Main Menu Tools → Data Analysis → Anova: Two-Factor

with Replication
Dialog Box

Input Range: Highlight or enter A1:D17
Rows per sample: Enter 2
Alpha: Enter 0.05
New Worksheet Ply: Click on this option
OK Click to perform calculations
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A B C D E F G

1 LAB Generic A Generic B Standard

2 1 89 83 94 t-value p-value

3 2 93 75 78 A vs Std 0.09 0.927

4 3 87 75 89 B vs Std 2.23 0.043

5 4 80 76 85

6 5 80 77 84

7 6 87 73 84

8 7 82 80 75

9 8 68 77 75

10

11 Anova: Two-Factor Without Replication

12

13 SUMMARY Count Sum Average Variance

14 1 3 266 88.6666667 30.33333

15 2 3 246 82 93

16 3 3 251 83.6666667 57.33333

17 4 3 241 80.3333333 20.33333

18 5 3 241 80.3333333 12.33333

19 6 3 244 81.3333333 54.33333

20 7 3 237 79 13

21 8 3 220 73.3333333 22.33333

22

23 A 8 666 83.25 58.78571

24 B 8 616 77 10

25 STANDARD 8 664 83 45.14286

26

27

28 ANOVA

29 Source of SS df MS F P-value F crit
Variation

30 Rows 391.8333 7 55.9761905 1.931799 0.139436 2.764196

31 Columns 200.3333 2 100.166667 3.456861 0.060239 3.73889

32 Error 405.6667 14 28.9761905

33

34 Total 997.8333 23

Workbook 8.9 Two-Way Analysis of Variance of Tablet Dissolution Results
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A B C D

1 Lab Generic A Generic B Standard

2 1 87 81 93

3 91 85 95

4 2 90 74 74

5 96 76 82

6 3 84 72 84

7 90 78 94

8 4 75 73 81

9 85 79 89

10 5 77 76 80

11 83 78 88

12 6 85 70 80

13 89 76 88

14 7 79 74 71

15 85 86 79

16 8 65 73 70

17 71 81 80

Workbook 8.12 Two-Way ANOVA of Replicated Dissolution Results
(worksheet 1)

A B C D E F G

58

59 ANOVA

60 Source of Variation SS df MS F P-value F crit

61 Sample 783.6667 7 111.9524 4.569485 0.00231 2.422631

62 Columns 400.6667 2 200.3333 8.176871 0.001959 3.402832

63 Interaction 811.3333 14 57.95238 2.365403 0.030779 2.129795

64 Within 588 24 24.5

65

66 Total 2583.667 47

67

68 Drugs 400.6667 2 200.3333 3.456861 0.060239 3.73889

Workbook 8.12 Two-Way ANOVA of Replicated Dissolution Results (continued)
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A B C D E

1 Anova: Two-Factor With Replication

2

3 SUMMARY Generic A Generic B Standard Total

4 1

5 Count 2 2 2 6

6 Sum 178 166 188 532

7 Average 89 83 94 88.66667

8 Variance 8 8 2 27.86667

9–45 (Rows not shown) xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx)

46 8

47 Count 2 2 2 6

48 Sum 136 154 150 440

49 Average 68 77 75 73.33333

50 Variance 18 32 50 37.86667

51

52 Total

53 Count 16 16 16

54 Sum 1332 1232 1328

55 Average 83.25 77 83

56 Variance 65.26667 20.66667 59.6

(New Worksheet Ply)

Commands in Analyses

Cell A68 Enter ‘‘Drugs’’ Drugs effect is that for columns in the
ANOVA table

Cell B68 � B62 Drugs SS
Cell C68 � C62 Drugs degrees of freedom
Cell D68 � D62 Drugs MS
Cell E68 � D62/D63 F-ratio � Drugs MS/Interaction MS
Cell F68 � FINV(E68,2,14) p-value for Drugs F-ratio with 2 & 14

degrees of freedom
Cell G68 � FDIST(0.95,2,14) Critical F-distribution value with 2 & 14

degrees of freedom

Notes on Interpretation

The analysis for Drugs in row 68 is based on the assumption that Drugs is a fixed effect
and Laboratories (Rows) is a random effect. The analysis in row 62 for the Column (Drugs)
effect assumes that both Drugs and Laboratories are fixed effects. If the laboratories are
a random sample of all the available laboratories and the results are to be generalized to
all laboratories, then use the row 68 results. If the eight laboratories are the only ones of
interest, then the results in row 62 should be used.
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The next workbook shows how to perform an Analysis of Covariance using the data from
Table 8.18. In this example, two different analytical methods (I and II) were used to
determine the potency from final products produced from four different lots of raw mate-
rial.

A B C D E F

1 Method MI MII Meth2 Material Product

2 I 98.4 0 0 98.4 98.0

3 I 98.6 0 0 98.6 97.8

4 I 98.6 0 0 98.6 98.5

5 I 99.2 0 0 99.2 97.4

6 II 0 98.7 1 98.7 97.6

7 II 0 99 1 99.0 95.4

8 II 0 99.3 1 99.3 96.1

9 II 0 98.4 1 98.4 96.1

10

11 Mean 98.775

12 F-parallel p-value Adj Mean I 97.8639

13 0.010 0.925 II 96.3611

14 Diff (II-I) 1.50278

15 p-value 0.036637

16 Slope Intercpt I Intercept II

17 �0.81481 178.3472 176.8444

Workbook 8.18 Analysis of Covariance to Compare Two Methods
(worksheet 1)

Commands in Analyses
Columns A, E and F Enter Method, Material and Product values from

Table 8.18.
Column B Copy Method I values into rows 2–5, enter 0

elsewhere.
Column C Copy Method II values into rows 6–9, enter 0

elsewhere.
Column D Enter 0 for Method I row and 1 for Method II row.
Cell E11 � AVERAGE(E2:E9) Mean for Material values.
Main Menu Tools → Data Analysis → Regression (ANOVA for

separate lines)
Dialog Box

Input Y Range: Highlight or enter F1:F9
Input X Range: Highlight or enter B1:D9
Labels: Click on this option
New Worksheet Ply: Click on this box
OK Click to perform calculations
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Main Menu Tools → Data Analysis → Regression (ANOVA for
parallel lines)

Dialog Box
Input Y Range: Highlight or enter F1:F9
Input X Range: Highlight or enter D1:E9
Labels: Click on this option
New Worksheet Ply: Click on this box
OK Click to perform calculations

Cell A17 Copy slope (Material coefficient) from parallel lines
Worksheet

Cell B17 Copy Intercept coefficient from same Worksheet
Cell C17 � B17�coefficient for Meth2 from parallel lines

Worksheet
Cell F12 � B17�E11*A17
Cell F13 � C17�E11*A17
Cell F14 � F12-F13 Difference between adjusted Method

means
Cell F15 p-value for difference from Meth2 in parallel lines

Worksheet
Cell A13 � (SS resid. parallel lines – SS resid. separate lines)/

(SS resid separate/4)
Cell B13 � FDIST(A13,1,4)

A B C D E

10 ANOVA

11 df SS MS F

12 Regression 3 5.82575 1.941916667 2.916885718

13 Residual 4 2.663 0.66575

14 Total 7 8.48875

15

16 Coefficients Standard Error t Stat P-value

17 Intercept 188.4 134.2219351 1.403645386 0.233093906

18 MI �0.916666667 1.359891744 �0.674073264 0.537213

19 MII �0.733333333 1.216324153 �0.602909456 0.579083754

20 Meth2 �19.61 180.1993982 �0.108823893 0.918582825

Workbook 8.18 Analysis of Covariance to Compare Two Methods
(section of worksheet ply for separate lines)

Notes on Analyses (separate lines)

Cell C13 contains the residual SS for separate lines (2.663) to be used in the test for
parallelism (Cell A13 in Worksheet 1). The Intercept (188.4 in B17) is the intercept for
the Method I line. The slope for the Method I line is the coefficient for MI (�0.917 in
B18). The intercept for Method II is the addition of the coefficient for Meth2 (B20) to
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the Method I intercept (B17), which is 188.4–19.6 � 168.8. The slope for the Method
II line is the coefficient for MII (�0.733 in B19).

A B C D E

10 ANOVA

11 df SS MS F

12 Regression 2 5.819028 2.909514 5.449095

13 Residual 5 2.669722 0.533944

14 Total 7 8.48875

15

16 Coefficients Standard Error t Stat P-value

17 Intercept 178.3472 80.13591 2.225559 0.076591

18 Meth2 �1.50278 0.530852 �2.83088 0.036637

19 Material �0.81481 0.811906 �1.00358 0.361646

(section of worksheet ply for parallel lines)

Notes on Analyses (parallel lines)

Cell C13 contains the residual SS for parallel lines (2.67) to be used in the test for
parallelism (Cell A13 in Worksheet 1). The coefficient for the Intercept (178.3 in B17)
is the intercept for the Method I line. The coefficient for the intercept of Meth2 is the
difference between the intercepts for Methods I and II (value �1.50 in B18) which,
because the two lines are parallel, is also the difference between the two methods. We
estimate that Method II is 1.50 units lower than Method I with the p-value for this difference
(0.0366 in E18) being statistically significant at the 0.05 level. The common slope for the
parallel lines for the two methods is given by the coefficient for Material (�0.815 in
B19).

The next example is taken from Table 9.2. Here we analyze the results from a 23 factorial
experiment to determine the effect of three components upon the thickness of a tablet.

Commands in Analyses
Column H Enter response values from Table 9.2.
Columns A, B, C Enter a 0 where Table 9.2 has a ‘‘�’’ and a 1 where there is a

‘‘�’’
Cell D2 � 2*A2*B2 Design entry for Stearate-Drug

interaction
Cells D3-D9 Copy formula from D2
Cell E2 � 2*A2*C2 Design entry for Stearate-Starch

interaction
Cells E3-E9 Copy formula from E2
Cell F2 � 2*B2*C2 Design entry for Drug-Starch

interaction
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A B C D E F G H

1 Stearate (A) Drug (B) Starch (C) AB AC BC ABC Response

2 0 0 0 0 0 0 0 475

3 1 0 0 0 0 0 0 487

4 0 1 0 0 0 0 0 421

5 1 1 0 2 0 0 0 426

6 0 0 1 0 0 0 0 525

7 1 0 1 0 2 0 0 546

8 0 1 1 0 0 2 0 472

9 1 1 1 2 2 2 4 522

Workbook 9.2 Evaluation of Results from a 23 Factorial Experiment
(worksheet 1)

Cells F3-F9 Copy formula from F2
Cell G2 � 4*A2*B2*C2 Design entry for 3-way

interaction
Cells G3-G9 Copy formula from G2
Main Menu Tools → Data Analysis → Regression (Estimate Main Effects)
Dialog Box

Input Y Range: Highlight or enter H1:H9

A B C D E F

10 ANOVA

11 Df SS MS F Significance F

12 Regression 3 13768 4589.333 23.91835 0.005135

13 Residual 4 767.5 191.875

14 Total 7 14535.5

15

16 Coefficients Standard Error t Stat P-value Lower 95%

17 Intercept 465.25 9.794769 47.49984 1.18E-06 438.0553

18 Stearate (A) 22 9.794769 2.246097 0.088025 �5.19469

19 Drug (B) �48 9.794769 �4.90057 0.008041 �75.1947

20 Starch (C) 64 9.794769 6.5341 0.002834 36.80531

21 MS

22 A 968

23 B 4608

24 C 8192

Workbook 9.2 Evaluation of Results from a 23 Factorial Experiment
(main effects worksheet)
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Input X Range: Highlight or enter A1:C9
Labels: Click on this option
New Worksheet
Ply: Click on this box
OK Click to perform calculations

Rename New Worksheet ‘‘Main Effects’’
Main Menu Tools → Data Analysis → Regression (Estimate 2-Factor

Interactions)
Dialog Box

Input Y Range: Highlight or enter H1:H9
Input X Range: Highlight or enter A1:F9
Labels: Click on this option
New Worksheet
Ply: Click on this box
OK Click to perform calculations

Rename New Worksheet ‘‘Interaction’’
Repeat Regression Analysis with Input ‘‘X’’ Range as A1:G9 to obtain estimate for

A*B*C interaction

Commands in Analyses (Main Effects Worksheet)
Cell B22 � D18*D18*D13
Cell B23 � D19*D19*D13
Cell B24 � D20*D20*D13

A B C D E F

10 ANOVA

11 df SS MS F Significance F

12 Regression 6 605.5 100.9167 0.622942 0.7478876

13 Residual 1 162 162

14 Total 7 767.5

15

16 Coefficients Standard Error t Stat P-value Lower 95%

17 Intercept 14.25 11.90588 1.196887 0.443097 �137.02791

18 Stearate (A) �19 15.58846 �1.21885 0.437411 �217.06928

19 Drug (B) �15 15.58846 �0.96225 0.512246 �213.06928

20 Starch (C) �23 15.58846 �1.47545 0.379198 �221.06928

21 AB 5.5 9 0.611111 0.650783 �108.85535

22 AC 13.5 9 1.5 0.374334 �100.85535

23 BC 9.5 9 1.055556 0.482798 �104.85535

24 MS

25 AB 60.5

26 AC 364.5

27 BC 180.5

(2-factor interactions worksheet)
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Commands in Analyses (2 factor interactions worksheet)
Cell B25 � D21*D21*D13
Cell B26 � D22*D22*D13
Cell B27 � D23*D23*D13

A B C D E F G

11 Effect Estimate Df SS MS F p-value

12 A 22 1 968 968 7.2 0.0748

13 B �48 1 4608 4608 34.3 0.0099

14 C 64 1 8192 8192 61.0 0.0044

15 AB 5.5 1 60.5 60.5

16 AC 13.5 1 364.5 364.5 2.7 0.1981

17 BC 9.5 1 180.5 180.5

18 ABC 9 1 162 162

19 Error 3 403 134.3333

(worksheet 1 continued)

Commands in Analyses (ANOVA similar to Table 9.5)
Column A Enter Effect Names
Column B Values are coefficients from Main Effects & Interactions

Worksheets
Coefficient for ABC is from regression including all effects

(Wrksht not shown).
Column C Enter 1 for all effects except Error. Enter 3 for Error.
Cells E12-E17 Enter values from Main Effects & 2-Factor Interaction

Worksheets
Cell E18 Enter value for Residual MS from Cell D13 of 2-Factor

Interaction Worksheet
Cell D12-D18 Enter same values that are in Cells E12-E18
Cell D19 � SUM(D15,D17,D18) Error term is chosen to be sum of

AB, BC & ABC terms
Cell E19 � D19/C19 MS � SS/df
Cell F12 � E12/E$19 F � Effect MS/Error MS
Cells F13,F14,F16 Copy formula from F12
Cell G12 � FDIST(F12,1,3) p-value for Effect from F-

distribution
Cell G13,G14,G16 Copy formula from G12

Section 11.5 presents how to perform repeated measures Analysis of Variance. The meth-
ods used in the analysis are illustrated using the results of a comparison of two antihyperten-
sive drugs. One group of patients received the standard drug and a second group the new
drug. Diastolic blood pressure was recorded for each patient prior to treatment (baseline)
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Workbook 11.22 Comparison of Two Antihypertensive Drugs
(worksheet 1)

A B C D E F

1 Standard Drug

2 Patient Baseline Wk 2 Wk 4 Wk 6 Wk 8

3 1 102 106 97 86 93

4 2 105 103 102 99 101

5 5 99 95 96 88 88

6 9 105 102 102 98 98

7 13 108 108 101 91 102

8 15 104 101 97 99 97

9 17 106 103 100 97 101

10 18 100 97 96 99 93

14 Patient Wk 2 Wk 4 Wk 6 Wk 8

15 1 4 �5 �16 �9

16 2 �2 �3 �6 �4

17 5 �4 �3 �11 �11

18 9 �3 �3 �7 �7

19 13 0 �7 �17 �6

20 15 �3 �7 �5 �7

21 17 �3 �6 �9 �5

22 18 �3 �4 �1 �7

23

24 Standard

25 Sum �14 �38 �72 �56 �180

26

and then at 2, 4, 6, and 8 weeks after treatment. The results, presented in Table 11.22,
are analyzed in the following workbook.

Commands in Analyses
Cells A3-F10 Enter patient numbers and diastolic blood pressures from

Table 11.22
Cells A15-A22 Copy patient numbers from Cells A3:A10
Cell B15 � C3-$B3 Calculates change from

baseline
Cells B16-B22 Copy formula from Cell B15
Cells C15-E22 Copy formula from B15 through B22
Cell B25 � Sum(B15:B22) Sum of changes at Week 2
Cells C25-E25 Copy formula from Cell B25
Cell F25 � Sum(B25:E25) Sum of changes for all weeks
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Section for New Drug (not shown):

Cells H2:M2 Enter or Copy the headings in cells A2-F2
Cell K1 Enter heading ‘‘New’’ for New Drug
Cells H3-M11 Enter New Drug patient numbers and diastolic readings
Cell I15 � J3-$I3 Calculate changes from

baseline
Cells I16-I23 Copy formula from Cell I15
Cells J15-L23 Copy formulas from I15 through I23
Cell I25 � Sum(I15:I23) New drug sum of changes

Week 2
Cells J25-L25 Copy formula from Cell II5
Cell M25 � Sum(I25:L25) New drug sum of changes all

weeks

(section of analyses shown in Tables 11.24 and 11.25)

A B C D E F G

27 ANOVA Standard ANOVA New

28 Source SS df Source SS df

29 Rows 57.5 7 Rows 114.2222 8

30 Columns 232.5 3 Columns 486.9722 3

31 Error 255.5 21 Error 407.7778 24

32

33 Total 545.5 31 Total 1008.972 35

34

35 CT Source df SS MS F p-value

36 3750.368 Patients 15 171.72 11.45

37 Weeks 3 669.69 223.23

38 Drugs 1 196.16 196.16 17.13 0.0009

39 WK � Drug 3 49.78 16.59 1.13 0.3487

40 Error 45 663.28 14.74

41 Total 67 1750.63

Commands in Analyses
Main Menu Tools → Data Analysis → Anova: Two-Factor

Without Replication
Dialog Box

Input Range: Highlight or enter B15:E22
Alpha Level Enter or accept default value of 0.05
New Worksheet Ply: Click on this box
OK Click to perform calculations
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(Copy ANOVA values from new worksheet to
main Worksheet 1)

Cells B27-G33 Copy from cells A19-C25 of new worksheet to get
Source, SS & df

Main Menu Tools → Data Analysis → Anova: Two-Factor
Without Replication

Dialog Box
Input Range: Highlight or enter I15:L23 (New Drug data not

shown)
Alpha Level Enter or accept default value of 0.05
New Worksheet Ply: Click on this box
OK Click to perform calculations

(Copy ANOVA values from new worksheet to
main worksheet 1)

Cells E27-G33 Copy from Cells A19-C25 of new worksheet to get
Source, SS & df

Cells A35-G35 Enter Headings CT, Source, df, SS, MS, F and p-
value

Cells B36-B41 Enter Source names
Cell A36 � POWER(F25 � M25,2)/68 Correction Term
Cell C36 15 (Combined row df for Standard and New Drugs)
Cell C37 3 (number of weeks – 1)
Cell C38 1 (number of drugs – 1)
Cell C39 � 3*1 (Product of Week df and Drugs df)
Cell C41 � 4*17–1 (�Weeks *�Patients � 1)
Cell C40 � 67 � 15 � 3 � 1 � 3 (error df � Total-

Patients-Drugs-WeeksxDrugs)
Cell D36 � B29 � F29 (Combined Row SS for Standard and

New Drugs)
Cell D37 � (SUMSQ((B25 � I25),(C25 � J25),(D25 �

K25),(E25 � L25))/17)-A36
Cell D38 � F25*F25/32 � M25*M25/36 � A36
Cell D39 � B30 � F30–D37
Cell D40 � B31 � F31 (Combined Error SS for Standard and

New Drugs)
Cell D41 � SUM(D36:D40) (Total SS � Sum of all other SS)
Cell E36 � D36/C36 (MS � SS/df)
Cell E37-E40 Copy formula from Cell E36
Cell F38 � E38/E36 (F � MSeffect/MSerror Drugs uses MS

Patients as error term)
Cell F39 � E39/E40 (F value for Weeks x Drugs using

ANOVA error term)
Cell G38 � FDIST(F38,1,15) (p-value for F with 1 df & 15

df)
Cell G39 � FDIST(F39,3,45)

Table 12.2 shows the average weights of 50 tablets from 30 batches of a tablet product.
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In the next example, Excel is used to calculate the three-batch moving average for the
weights. These results are then used to construct a control plot of the moving averages
along with their upper and lower control limits.

Workbook 12.2 Average Weight of 50 Tablets from 30 Batches of a Product

A B C D E F G

1 Batch Average Move Ave Range Mean Low High

2 0 400.0 397.603 402.397

3 1 398.4 N/A

4 2 399.5 N/A

5 3 398.8 398.9 1.1

6 4 397.4 398.6 2.1

7 5 402.7 399.6 5.3

Rows 8–26 not shown

27 25 398.4 399.5 3.1

28 26 398.8 398.6 0.4

29 27 399.9 399.0 1.5

30 28 400.9 399.9 2.1

31 29 399.9 400.2 1.0

32 30 399.5 400.1 1.4

33 31 400.0 397.603 402.397

34 Mean 400.0 2.35

Commands in Analyses
Data Entry: Enter Batch numbers and averages from Table 12.2 into

columns A and B, adding a Batch 0 and 31 for graphing
purposes.

Cell C5 � Average(B3:B5) Average of first 3 batches
Cell C6-C32 Copy formula from Cell C5
Cell D5 � MAX(B3:B5)-MIN(B3: Range (Max-Min) of first 3

B5) batches
Cell D6-D32 Copy formula from Cell D5
Cell B34 � Average(B3:B32) Average of the 30 batches
Cell D34 Copy formula from Cell Average of moving ranges

B34
Cell E33 � B34
Cell F33 � $E$33 � 1.02*$D$34 Lower Limit using factor

(1.02) from Table IV.10
Cell G33 � $E$33 � 1.02*$D$34 Upper Limit using factor

(1.02) from Table IV.10
Cell E2 � E33
Cell F2 � F33
Cell G2 � G33
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Click on Chart Wizard and choose to create a XY scatter plot.
Click Next and then click on Series Tab, then on Add.
Click on worksheet icon for X-values.
Choose cells A2 through A33, click icon to accept this range.
For Y-values, click worksheet icon, choose cells C2 through C33.
Click Add for Series 2. X-values are A2 through A33. Y-values F2 through F33.
Click Add for Series 3. X-values are A2 through A33. Y-values are G2 through G33.
Click Add for Series 3. X-values are A2 through A33. Y-values are E2 through E33.
Click Next and add chart title, X and Y axes labels.
Click Legend tab and remove check mark on Show Legend (by clicking it).
Click tab for Gridlines and make sure all choices are blank.
Click Next and choose the name Plot for the New Worksheet for the chart.
Click on Plot Area and choose None for fill effects.
On Main Menu click Tools, Options & Chart.
Choose to plot empty cells as Interpolated.
Click on Lower & Upper limit points and set symbol to None and line to a dashed,

black, custom line.
Click on Mean point and set symbol to None and line to a solid, black, custom line.
Click on an X-axis number and then on the Scale tab.
Set Minimum � 0, Maximum � 31, Major Unit � 1.

In the next example, the assay results for a sample of theee tablets from four different
batches of a product, as shown in Table 12.9, are used to demonstrate how to calculate
the variance components. The experiment was a nested design in which the total variance
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Workbook 12.9 Determination of Variance Components in a Nested Design

A B C D E F G

1 Batch Tablet Assay1 Assay 2 Assay 3 SSQ df

2 A 1 50.6 50.5 50.8 0.046667 2

3 2 49.1 48.9 48.5 0.186667 2

4 3 51.1 51.1 51.4 0.06 2

5 B 1 50.1 49.0 49.4 0.62 2

6 2 51.0 50.9 51.6 0.286667 2

7 3 50.2 50.0 49.8 0.08 2

8 C 1 51.4 51.7 51.8 0.086667 2

9 2 52.1 52.0 51.4 0.286667 2

10 3 51.1 51.9 51.6 0.326667 2

11 D 1 49.0 49.0 48.5 0.166667 2

12 2 47.2 47.6 47.6 0.106667 2

13 3 48.9 48.5 49.2 0.246667 2

14 Total � 2.5 24

15 MS � 0.104167

16

17 A B C D

18 50.63 49.50 51.63 48.83

19 48.83 51.17 51.83 47.47

20 51.20 50.00 51.53 48.87

can be divided into its components of between batches, between tablets within batch, and
between assays within tablets.

Commands in Analyses
Column A,B,C,D,E Enter values from Table 12.9 into rows 1 through 13
Cell G2 Enter 2 Assay degrees of freedom for

Tablet
Cells G3-G13 Copy G2 value
Cell F2 � G2*VARA(C2:E2) Assay SS for Tablet
Cells F3:F13 Copy formula from F2
Cell F14 � Sum(F2:F13) Pooled within-tablet assay SS
Cells G14 Copy formula from F14 Pooled degrees of freedom

for assay
Cell F15 � F14/G14 MS � SS/df
Cell A18 � Average (C2:E2) Tablet 1, Batch A average
Cells A19:A20) Copy formula from A18 Tablets 2 & 3 averages,

Batch A
Cell B18 � Average(C5:E5) Tablet 1, Batch B average
Cells B19:B20) Copy formula from B18
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Cell C18 � Average(C8:E8) Tablet 1, Batch C average
Cells C19:C20) Copy formula from C18
Cell D18 � Average(C11:E11) Tablet 1, Batch D average
Cells D19:D20) Copy formula from D18

Workbook 12.9 Determination of Variance Components in a Nested Design
(continuation of worksheet)

A B C D E F G

32 ANOVA

33 Source of Variation SS df MS F P-value F crit

34 Between Groups 16.22917 3 5.409722 7.410578 0.01071 4.06618

35 Within Groups 5.84 8 0.73

36

37 Total 22.06917 11

38 Correct Correct

39 S2w 0.104167 SS MS

40 S2t 0.695278 Between 48.6875 16.22917

41 S2b 1.559907 Within 17.52 2.190

Commands in
Analyses

Main Menu Tools → Data Analysis → Anova: Single Factor
Dialog Box

Input Range: Highlight or enter A17:D20
Labels: Click on this option
Output Range: Highlight or enter A32
OK Click to perform calculations

Cell F40 � 3*B34 SS individual � 3 * SS of means
Cell F41 Copy formula from F40
Cell G40 � F40/C34 MS Between Batches
Cell G41 Copy formula from G40 MS Between Tablets (within batch)
Cell B39 � F15 Between-Assay (within tablet)

Variance
Cell B40 � (1/3)*(G41-B39) Between-Tablet (within batch)

Variance
Cell B41 � (1/9)*(G40-G41) Between-Batch Variance

In the next example, the Day 1 calibration curve results (Peak Area vs. Concentration)
from Table 13.8 are used to demonstrate how to obtain the weighted linear regression
analysis shown in Table 13.10.
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Workbook 13.10 Weighted Linear Regression Analysis

A B C D E F G H

1 X Y wt wt*X wt*X*X wt*Y wt*X*Y wt(Y-Ym)**2

2 0.05 0.003 400 20 1 1.2 0.06 0.000936

3 0.05 0.004 400 20 1 1.6 0.08 0.000112

4 0.20 0.016 25 5 1 0.4 0.08 0.003289

5 0.20 0.018 25 5 1 0.45 0.09 0.004536

6 1.00 0.088 1 1 1 0.088 0.088 0.006967

7 1.00 0.094 1 1 1 0.094 0.094 0.008005

8 10.00 0.920 0.01 0.1 1 0.0092 0.092 0.008381

9 10.00 0.901 0.01 0.1 1 0.00901 0.0901 0.008037

10 20.00 1.859 0.0025 0.05 1 0.0046475 0.09295 0.008598

11 20.00 1.827 0.0025 0.05 1 0.0045675 0.09135 0.008303

12

13 Sum 852.025 52.3 10 3.859425 0.8584 0.057164

14 Ym � 0.0045297

15 Slope 0.09154

16 Intercept �0.00109

17

Commands in Analyses
Columns A and B Enter Day 1 values from Table 13.8 (X � Conc, Y �

Areas)
Cell C2 � 1/(A2�2) Weight is 1/(X*X)
Cells C3-C11 Copy formula from C2
Cell D2 � C2*A2 Weight*X � 1/X
Cells D3:D11 Copy formula from D2
Cell E2 � D2*A2 Weight*X*X � 1
Cells E3:E11 Copy formula from E2
Cell F2 � C2*B2 Weight*Y � Y/X
Cells F3:F11 Copy formula from F2
Cell G2 � D2*B2 Weight*X*Y
Cells G3:G11 Copy formula from G2
Cell C13 � SUM(C2:C11) �wt
Cell D13 � SUM(D2:D11) �(wt*X)
Cell E13 � SUM(E2:E11) �(wt*X2)
Cell F13 � SUM(F2:F11) �(wt*Y)
Cell G13 � SUM(G2:G11) �(wt*X*Y)
Cell F14 � (SUM(F2:F12))/C13 Weighted mean for Y (Ym)
Cell H2 � C2*(B2-$F$14)�2 wt*(Y-Ym)2

Cells H3:H11 Copy formula from H2
Cell H13 � SUM(H2:H11) �(wt*(Y-Ym)2)
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Cell B15 � (G13-((D13*F13)/C13))/(E13-((D13*D13)/C13))
Cell B16 � (F13-(B15*D13))/C13

(continuation of worksheet)

A B C D E F G

18 X Y Yp wt(Y-Yp)**2 Yav wt(Yav-Yp)**2 wt(Y-Yav)**2

19 0.05 0.003 0.003 0.000095 0.003500 0.0000001 0.000100

20 0.05 0.004 0.003 0.000105 0.003500 0.0000001 0.000100

21 0.20 0.016 0.017 0.000037 0.017000 0.0000012 0.000025

22 0.20 0.018 0.017 0.000015 0.017000 0.0000012 0.000025

23 1.00 0.088 0.090 0.000006 0.091000 0.0000003 0.000009

24 1.00 0.094 0.090 0.000013 0.091000 0.0000003 0.000009

25 10.00 0.920 0.914 0.000000 0.910500 0.0000001 0.000001

26 10.00 0.901 0.914 0.000002 0.910500 0.0000001 0.000001

27 20.00 1.859 1.830 0.000002 1.843000 0.0000004 0.000001

28 20.00 1.827 1.830 0.000000 1.843000 0.0000004 0.000001

29

30 SUM 0.0002754 0.0000043 0.0002711

31

Commands in Analyses
Columns A and B Copy values from rows 2–11.
Cell C19 � $B$16 � $A19*$B$15 Predicted Y value (Yp)
Cell C20-C28 Copy formula from C19
Cell D19 � (1/(A19*A19))*(B19-C19)�2 wt*(Y-Yp)2

Cells D20:D28 Copy formula from D19
Cells E19 and E20 � (B$19 � B$20)/2 Average Y value: X � 0.05

(Yav)
Cells E21 and E22 � (B$21 � B$22)/2 X � 0.20
Cells E23 and E24 � (B$23 � B$24)/2 X � 1.00
Cells E25 and E26 � (B$25 � B$26)/2 X � 10.0
Cells E27 and E28 � (B$27 � B$28)/2 X � 20.0
Cell F19 � (1/(A19*A19))*(E19-C19)�2 wt*(Yav-Yp)2

Cells F20-F28 Copy Formula from F19
Cell G19 � (1/(A19*A19))*(B19-E19)�2 wt*(Y-Yav)2

Cells G20-G28 Copy Formula from G19
Cell D30 � SUM(D19:D28) �wt*(Y-Yp)2

Cell F30 � SUM(F19:F28) �wt*(Yav-Yp)2

Cell G30 � SUM(G19:G28) �wt*(Y-Yav)2
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Workbook 13.10 Creation of ANOVA Table 13.10

A B C D E F G

31

32 Source df SS MS F

33 Slope 1 0.056889 0.0568891 1652.7

34 Error 8 0.000275 0.0000344

35 Dev Reg 3 0.000004 0.0000014 0.03

36 Within 5 0.000271 0.0000542

37 Total 9 0.057164

38

Commands in Analyses
Cell C37 � 10-1 Number of (x,y) pairs – 1
Cell C33 Enter 1 Slope has a single degree of freedom
Cell C34 � C37-C33 Total df – Slope df
Cell C36 Enter 5 5 concentrations that have duplicate values
Cell C35 � C34-C36 Error df – Within df
Cell D37 � H13 �(wt*(Y-Ym)2)
Cell D34 � D30 �(wt*(Y-Yp)2)
Cell D33 � D37-D34 Total SS – Error SS
Cell D35 � F30 �(wt*(Yav-Yp)2)
Cell D36 � G30 �(wt*(Y-Yav)2)
Cell E33 � D33/C33 SS/df
Cells E34-E36 Copy formula from E33
Cell F33 � E33/E34
Cell F35 � E35/E36

The next set of programs are from Chapter 15, Nonparametric Methods. These programs
use only the basic mathematical and sorting functions of Excel.

The first of these examples uses the paired time to peak concentration results from
a comparative bioavailability study in 12 subjects. The analysis of the data, shown in
Table 15.3, is based on the differences between the results for two oral formulations of
a drug, A and B. The program implements the Wilcoxon Signed Rank Test shown in
Table 15.4.

Commands in Analyses
Columns A, B and C Enter values from Table 15.3.
Cell D2 � C2-B2 Calculates B-A difference
Cells D3-D13 Copy D2
Cell E2 � ABS(D2) Absolute value of difference
Cells E3-E13 Copy E2
Cell F2 � E2/D2 �1 if difference 
0; �1 if

difference �0
Cells F3-F12 Copy F2
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Workbook 15.4 Wilcoxon Signed Rank Test Analysis of Table 15.3 Data

A B C D E F

1 Subject A B B-A Abs(B-A) Sign(B-A)

2 1 2.5 3.5 1 1 1

3 2 3 4 1 1 1

4 3 1.25 2.5 1.25 1.25 1

5 4 1.75 2 0.25 0.25 1

6 5 3.5 3.5 0 0 #DIV/0!

7 6 2.5 4 1.5 1.5 1

8 7 1.75 1.5 �0.25 0.25 �1

9 8 2.25 2.5 0.25 0.25 1

10 9 3.5 3 �0.5 0.5 �1

11 10 2.5 3 0.5 0.5 1

12 11 2 3.5 1.5 1.5 1

13 12 3.5 4 0.5 0.5 1

(worksheet contined)

G H I J K L M

1 Index SortVal SortSign Rank SignRank Positive Negative

2 1 0.25 1 2 2 2

3 2 0.25 �1 2 �2 2

4 3 0.25 1 2 2 2

5 4 0.5 �1 5 �5 5

6 5 0.5 1 5 5 5

7 6 0.5 1 5 5 5

8 7 1 1 7.5 7.5 7.5

9 8 1 1 7.5 7.5 7.5

10 9 1.25 1 9 9 9

11 10 1.5 1 10.5 10.5 10.5

12 11 1.5 1 10.5 10.5 10.5

13 N� 11 Sum 59 7

14 Z� 2.312

15 p-value 0.021

Commands in Analyses
Column G Enter the count of the non-zero differences.
Cells H2-H12 Copy nonzero values from Cells E2-E13 using Paste

Special, Values option.
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Cells 12-I12 Copy corresponding values from cells F2-F13 (Paste
Special, Values).

Cells H2-I12 Highlight this Range of cells and under Data choose to sort
this selection by column H.

Cell J2-J12 Enter number in column G unless the number in column H
is tied with another in column H. Use the average G
number for the ties. For example, Cells J2, J3 and J4 get
the number 2 because their H value, 0.25, is a three-way
tie for index numbers 1, 2 and 3.

Cell K2 � I2*K2 Signed Rank
Cells K3-K12 Copy formula from K2
Cell L2 � IF(K2 
 0,J2,� �) Enters rank if sign is positive
Cells L3-L12 Copy formula from L2
Cell M2 � IF(K2 � 0,J2,� �) Enters rank if sign is negative
Cells M3-M12 Copy formula from M2
Cell I13 � COUNT(12:I12) Determines N, the number of

signed ranks
Cell L13 � SUM(L2:L12) Sum of ranks with positive

signs
Cell M13 � SUM(M2:M12) Sum of ranks with negative

signs
Cell L14 � ABS(L13-I13*(I13 � 1)/4)/SQRT(I13*(I13 �

0.5)*(I13 � 1)/12)
Cell L15 � 2*(1-NORMSDIST(L14))

Using the Peak Concentration (Cmax) results from a two-way, crossover Bioequivalence
study, a method for calculating a nonparametric confidence interval on the mean treatment
ratio is shown in the following example.

Commands in Analyses
Columns A, B, and C Enter values from Table 15.6 into rows 2–13.
Cell D2 � C2/B2

Calculates B/A Ratio
Cells D3-D13 Copy formula from D2
Cell D16 � 1/12 Power for Geometric Mean
Cell D15 � Product(D2:D13) Product of Ratios
Cell D17 � Power(D15,D16) Product to 1/12th power is

Geom. Mean Ratio
Cells E1-L1 Enter Column Labels.
Cells J2, J3 Enter 95% and 90%. Level of Confidence Interval

for row
Column E Start in row 2 (Subject) and enter number 1 twelve times, 2

eleven times, 3 ten times, 4 nine times, etc., until 12 is
entered into row 79. These numbers represent the first
Subject for each pair.

Column F Starting in row 2, enter Subject numbers 1–12, next
numbers 2–12, next 3–12, next 4–12, etc., until 12 is
entered into row 79. These represent the second Subject
for each pair.
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Workbook 15.6 Nonparametric Confidence Interval for Cmax

A B C D

1 Subject A B B/A

2 1 135 102 0.755556

3 2 179 147 0.821229

4 3 101 385 3.811881

5 4 109 106 0.972477

6 5 138 189 1.369565

7 6 135 105 0.777778

8 7 158 130 0.822785

9 8 156 125 0.801282

10 9 174 144 0.827586

11 10 147 133 0.904762

12 11 145 114 0.786207

13 12 147 167 1.136054

14

15 Product � 1.080296

16 1/12� 0.083333

17 Geometric Mean � 1.006457

Cell G2 � POWER($D$2*D2,0.5) Geometric mean of Subject 1
ratio paired with itself

Cells G3-G13 Copy G2 formula Geometric mean ratio of
Subject 1 with all others

Cell G14 � POWER($D$3*D3,0.5) Geometric mean of Subject 2
ratio paired with itself

Cells G15-G24 Copy G14 formula Geometric mean of Subject 2
with Subjects 3–12

Cell G25 � POWER($D$4*D4,0.5) Geometric mean of Subject3
ratio paired with itself

Cells G26-G34 Copy G25 formula Geometric mean of Subject 3
with Subjects 4–12

Cells G35-G79 Continue as above for remaining paired subject ratios.
Cells H2-H3 Enter index numbers 1 & 2 The number for the geometric

mean (after sorting)
Cells H4-H79 Highlight Cells H2–H3 and drag copy to obtain index

numbers 3–78
Column I Highlight Cells G2–G79

Choose Copy under Edit on Main Menu toolbar.
Place cursor in Cell I2 and then choose Paste Special under

Edit on Main Menu
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(worksheet contined)

E F G H I J K L

1 1st Subj 2nd Subj Geomean Index Sorted Confidence Low High

2 1 1 0.755556 1 0.755556 95% 0.800 1.247

3 1 2 0.787708 2 0.766586 90% 0.804 1.065

4 1 3 1.697082 3 0.770729

5 1 4 0.857182 4 0.777778

6 1 5 1.017243 5 0.778083

7 1 6 0.766586 6 0.781981

8 1 7 0.788454 7 0.786207

9 1 8 0.778083 8 0.787708

10 1 9 0.790751 9 0.788454

11 1 10 0.8268 10 0.789442

12 1 11 0.770729 11 0.790751

13 1 12 0.926473 12 0.793709

14 2 2 0.821229 13 0.799208

15 2 3 1.769301 14 0.799965

Rows 16–74 not shown

75 10 11 0.843404 74 1.857107

76 10 12 1.013834 75 1.925349

77 11 11 0.786207 76 2.080986

78 11 12 0.945079 77 2.284868

79 12 12 1.136054 78 3.811881

In Paste Special dialog box, choose to paste Values and
then click OK

Next Highlight all entries in Column I
Choose Sort under Data on Main Menu.
Choose to stay with the current selection when prompted

about expanding.
Choose Sort, Ascending for the column labeled ‘‘Sorted.’’
Click OK.

Use Table 15.5 to obtain the ranking numbers for the upper and lower confidence interval
limits

Cell K2 � I15 Lower 95% CI limit is 14th ranked geometric mean ratio
Cell L2 � I66 Upper 95% CI limit is 65th ranked geometric mean ratio
Cell K3 � I19 Lower 90% CI limit is 18th ranked geometric mean ratio
Cell L3 � I62 Upper 90% CI limit is 61st ranked geometric mean ratio

The next example demonstrates how to perform the Wilcoxon Rank Sum Test for compar-



640 Appendix VIII

Workbook 15.8 Wilcoxon Rank Sum Test for Differences Between Two Independent
Groups

A B C D E F G H

1 Apparatus Dissolved Index App Sorted Rank O Rank M Rank

2 O 53 1 O 50 1 1

3 O 61 2 O 52 2 2

4 O 57 3 O 53 3 3

5 O 50 4 O 54 4 4

6 O 63 5 M 55 5.5 5.5

7 O 62 6 M 55 5.5 5.5

8 O 54 7 M 56 7 7

9 O 52 8 O 57 9 9

10 O 59 9 O 57 9 9

11 O 57 10 M 57 9 9

12 O 64 11 M 58 11 11

13 M 58 12 O 59 12.5 12.5

14 M 55 13 M 59 12.5 12.5

15 M 67 14 O 61 14 14

16 M 62 15 O 62 15.5 15.5

17 M 55 16 M 62 15.5 15.5

18 M 64 17 O 63 17 17

19 M 66 18 O 64 18.5 18.5

20 M 59 19 M 64 18.5 18.5

21 M 68 20 M 66 20 20

22 M 57 21 M 67 21 21

23 M 69 22 M 68 22 22

24 M 56 23 M 69 23 23

25 N � 11 12

26 Sum � 105.5 170.5

27 Z � 1.631

28 p-value � 0.103

ing the differences between two independent groups. In this example, Excel is used to
perform the necessary calculations on the tablet dissolution results given in Table 15.8.
The results from a modified dissolution apparatus are compared with those obtained from
the original apparatus to see if they are statistically different from each other.

Commands in Analysis
Columns A & B Enter apparatus and dissolution results from Table 15.8.
Column C Enter the index numbers 1 through 23.
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Column D & E Copy values from Column A & B.
Highlight D2 through E24.
From Main Menu Toolbar, choose Data and then Sort.
Sort by column ‘‘Sort’’, in ascending order, indicating

there is a Header Row.
Cell F2 � C2 Rank for E2, a unique number in col.
Cell Fx Copy F2 formula for each row, x, for each Ex that is

unique.
Cells F6 & F7 � AVERAGE(C6:C7) Rank for tied E values (2).
Cell Fx & Fy Copy F6 formula to consecutive Ex & Ey ties of size 2.
Cells F9,F10,F11 � AVERAGE(C9:C11) Rank for tied E values (3).

Commands in Analyses (continued
Cell G2 � IF(D2��O�, F2, � �) Enters rank for original apparatus

O.
Cells G3:G24 Copy G2 formula
Cell H2 � IF(D2 ��M�, F2, � �) Enters rank for modified apparatus.
Cells H3:H24 Copy H2 formula
Cell G25 � COUNT(G2:G24) � of original apparatus values.
Cell H25 � COUNT(H2:H24) � of modified apparatus values.
Cell G26 � SUM(G2:G24) Original apparatus Rank Sum.
Cell H26 � SUM(H2:H24) Modified apparatus Rank Sum.
Cell G27 � (ABS(G26-(G25*(G25 � H25 � 1))/2))/

(SQRT(G25*H25*(G25 � H25 � 1)/12))
Cell G28 � 2*(1-NORMSDIST(G27)) 2-sided p-value for G27 Z-val

Next we analyze the time-to-sleep values (Table 15.10) from one group of rats given a
low dose (L) of an experimental drug, a second group a high dose (H), and a third a dose
of a control, sedative (C).

Commands in Analyses
Columns A & B Enter compound id & time-to-sleep values from Table 15.10
Column C Enter the index numbers 1 through 29
Cells D2-D30 Copy values from A2-A30
Cells E2-E30 Copy values from B2-B30.

Highlight D1 through E30.
From Main Menu Toolbar, choose Data and then Sort.
Sort by column ‘‘Sort’’, in ascending order,
indicating there is a Header Row.

Cells F2-F30 � Cn n � 1–30; If En is a unique value (e.g.
F13� C13)

� AVERAGE(Cx:Cy), for the Ex to Ey equal values
(ties)

e.g. F2-F7 � AVERAGE(C2:
C7).

Cells G2-G30 In first cell for a group of tied ranks in F, put � of tied values.
Cell E32 � COUNT(E2:E30) number of values.
Cell Hn � Gn*(Gn*Gn-1)/($E$32*($E$32*$E$32–1))

for each n, where there is an entry in cell Gn.
This is the correction factor for the group Gn of ties.
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Workbook 15.10 Kruskal Wallis Test (One-Way Anova) for Differences Between
Independent Groups (�2)

A B C D E F G H I J K

1 ID Time Indx Compnd Sorted Rank Tie Size Tie Corr Control Low High

2 C 8 1 C 1 3.5 6 0.009 3.5

3 C 1 2 C 1 3.5 3.5

4 C 9 3 L 1 3.5 3.5

5 C 9 4 H 1 3.5 3.5

6 C 6 5 H 1 3.5 3.5

7 C 3 6 H 1 3.5 3.5

8 C 15 7 H 2 7.5 2 0.000 7.5

9 C 1 8 H 2 7.5 7.5

10 C 7 9 C 3 10 3 0.001 10

11 L 10 10 H 3 10 10

12 L 5 11 H 3 10 10

13 L 8 12 H 4 12 12

14 L 6 13 L 5 13 13

15 L 7 14 C 6 15 3 0.001 15

16 L 7 15 L 6 15 15

17 L 15 16 H 6 15 15

18 L 1 17 C 7 18.5 4 0.002 18.5

19 L 15 18 L 7 18.5 18.5

20 L 7 19 L 7 18.5 18.5

21 H 3 20 L 7 18.5 18.5

22 H 4 21 C 8 22 3 0.001 22

23 H 8 22 L 8 22 22

24 H 1 23 H 8 22 22

25 H 1 24 C 9 24.5 2 0.000 24.5

26 H 3 25 C 9 24.5 24.5

27 H 1 26 L 10 26 26

28 H 6 27 C 15 28 3 0.001 28

29 H 2 28 L 15 28 28

30 H 2 29 L 15 28 28

31

32 Count 29 Sum 0.016 149.5 191.0 94.5

33 Correctn 0.984

34 n 9 10 10

35 R*R/n 2483.4 3648.1 893.0

36

37 Chi-Sq 6.89

38 p-value 0.032

39 Chi-Sq(c) 7.00

40 p-value 0.030
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Cells I2-I30 � IF(Dn � �C�,Fn,� �) n � 1 to 30; Rank for Control
rows.

Cells J2-J30 � IF(Dn � �L�,Fn,� �) n � 1 to 30; Rank for Low
Dose rows.

Cell K2-K30 � IF(Dn � �H�,Fn,� �) n � 1 to 30; Rank for High
Dose rows.

Cell H32 � SUM(H2:H30) Sum of correction factor for ties.
Cell H33 � 1-H32 Correction for ties.
Cell I32 � SUM(I2:I30) Rank Sum for Control.
Cell J32 � SUM(J2:J30) Rank Sum for Low Dose.
Cell K32 � SUM(K2:K30) Rank Sum for High Dose.
Cell I34 � COUNT(I2:I30) Number of Control Values.
Cell J34 � COUNT(J2:J30) Number of Low Dose Values.
Cell K34 � COUNT(K2:K30) Number of High Dose Values.
Cell I35 � I32*I32/I34 (Control Rank Sum Squared)/n.
Cell J35 � J32*J32/J34 (Low Dose Rank Sum Squared)/

n.
Cell K35 � K32*K32/K34 (High Dose Rank Sum

Squared)/n.
Cell I37 � (12/(E32*(E32 � Chi-Square Statistic

1))*(SUM(I35:K35))�3*(E32
� 1))

Cell I38 � 2*(1-NORMSDIST(I37)) P-value for I37 Chi-Square
Cell I39 � I37/H33 Statistic corrected for ties.
Cell I40 � 2*(1-NORMSDIST(I39)) P-value for I39 statistic

In the next Workbook, the tablet hardness results in Table 15.11 from five tablet formula-
tions (1–5) produced on four different tablet presses (A–D) are examined by nonparamet-
ric, two-way ANOVA to validate that all presses have statistically equivalent performance.

Commands in Analyses
Columns A & B Enter tablet press and hardness values from Table 15.11 in order

shown
Cell B23 Enter 5, the number of tablet formulations
Cell B24 Enter 4, the number of tablet presses
Column C Enter 5 groups of the index numbers 1–4 (one for each tablet

formulation)
Column D Enter the tablet formulation number for each value in column C
Cell E2 � 10*B2*D2

value is proportional to
hardness

Cells E3-E21 Copy formula from Cell E2
Column F Copy Column A values
Column G Copy Column E, using the Paste Special, values, option under Edit

Highlight Columns F and G, rows 1 through 21.
From Main Menu Toolbar, choose Data and then Sort.
Sort by column ‘‘ModVal’’, in ascending order,
indicating there is a Header Row.

Cells H2-H21 � IF(Fn� �A�,Cn,� �) n� 1 to 21; Enters ranks for
Press A values.
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Workbook 15.11 Friedman and Modified Friedman Tests (Two-Way Anova)

A B C D E F G H I J K

1 Press Value Index Tab ModVal Press SortMod A Rank B Rank C Rank D Rank

2 A 7.5 1 1 75 B 69 1

3 B 6.9 2 1 69 D 70 2

4 C 7.3 3 1 73 C 73 3

5 D 7.0 4 1 70 A 75 4

6 A 8.2 1 2 164 D 158 1

7 B 8.0 2 2 160 B 160 2

8 C 8.5 3 2 170 A 164 3

9 D 7.9 4 2 158 C 170 4

10 A 7.3 1 3 219 A 219 1

11 B 7.9 2 3 237 D 228 2

12 C 8.0 3 3 240 B 237 3

13 D 7.6 4 3 228 C 240 4

14 A 6.6 1 4 264 D 256 1

15 B 6.5 2 4 260 B 260 2

16 C 7.1 3 4 284 A 264 3

17 D 6.4 4 4 256 C 284 4

18 A 7.5 1 5 375 D 335 1

19 B 6.8 2 5 340 B 340 2

20 C 7.6 3 5 380 A 375 3

21 D 6.7 4 5 335 C 380 4

22

23 r � 5 Sum � 14 10 19 7

24 c � 4 SumR*R 706

25 Chi-Sqr 9.72

26 p-value 0.0211

27 A2 150

28 B2 141.2 CritDiff 5.90

29 T2 7.364

30 p-value 0.0047

Cells I2-I21 � IF(Fn� �B�,Cn,� �) n� 1 to 21; Enters ranks for
Press B values.

Cells J2-J21 � IF(Fn� �C�,Fn,� �) n� 1 to 21; Enters ranks for
Press C values.

Cells K2-K21 � IF(Fn� �D�,Fn,� �) n� 1 to 21; Enters ranks for
Press D values.
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Cell H23 � SUM(H2:H21) Rank Sum for Press A.
Cell I23 � SUM(I2:I21) Rank Sum for Press B.
Cell J23 � SUM(J2:J21) Rank Sum for Press C.
Cell K23 � SUM(K2:K21) Rank Sum for Press D.
Cell H24 � SUMSQ(H23:K23) Sum of Squared Rank Sums
Cell H25 � ((12*H24)/(B23*B24*(B24 Friedman �2

� 1)))-3*B23*(B24 � 1)
Cell H26 � CHIDIST(H25,B24–1) p-value for Friedman’s test
Cell H27 � SUMSQ(H2:K21) A2� Sum of squares for the 29

individual ranks
Cell H28 � H24/B23 B2� Average Squared Rank Sum
Cell H29 � ((B23 � 1)*(H28- Modified �2

(B23*B24*(B24 � 1)*(B24
� 1))/4)/(H27-H28)

Cell H30 � FDIST(H29, p-value for modified Friedman
B24–1,(B23–1)*(B24–1)) test

Cell K28 � TINV(0.05,(B23–1)*(B24–1))*SQRT((2*B23*(H27–H28))/
((B23–1)*(B24–1)))

Mnumum difference between any two Rank Sums that is significant
(p � 0.05)

The tablet harness values are used again to demonstrate how to perform the Quade Test
for randomized block designs as shown in Table 15.12.

Workbook 15.12 Quade Test on Table 15.11 Tablet Hardness Values

Commands in Analyses
Columns A, B, & C Enter press, formuation and hardness values from Table 15.11

in rows 2–21
Cell A24 Enter 4, the number of tablet presses (columns)
Cell A27 Enter 5, the number of tablet formulations (rows)
Cell D2 � MAX(B2:B5)-MIN(B2:B5) Determines range of tablet 1

hardness
Cells D6, D10, D14, � MAX(Bx:By)-MIN(Bx:By) for D6 x, y � 6, 9

D18 for D10 x, y � 10, 13
for D14 x, y � 14, 17
for D18 x, y � 18, 21

Cells B23–B27 Enter tablet formulation numbers 1–5
Cells C23–C27 Copy ranges for each formulation from cells D2, D6, D10,

D14 & D18
Cells D23–D27 Rank the ranges using the average rank for ties (e.g., tied

ranks 3 and 4 � 3.5)

Cells E2-E21 Enter 5 groups of index numbers 1–4 (one group per tablet
formulation)

Cell F2 � 10*B2*D2 modifies hardness value to obtain correct sorting
within press



646 Appendix VIII

Workbook 15.12 Quade Test on Table 15.11 Tablet Hardness Values

A B C D E F G H I J K L M

1 Press Value Tab Q Index Mod Press q SortMod A B C D

2 A 7.5 1 0.6 1 75 B 1.5 69 �2.25

3 B 6.9 1 2 69 D 1.5 70 �0.75

4 C 7.3 1 3 73 C 1.5 73 0.75

5 D 7.0 1 4 70 A 1.5 75 2.25

6 A 8.2 2 0.6 1 164 D 1.5 158 �2.25

7 B 8.0 2 2 160 B 1.5 160 �0.75

8 C 8.5 2 3 170 A 1.5 164 0.75

9 D 7.9 2 4 158 C 1.5 170 2.25

10 A 7.3 3 0.7 1 219 A 3.5 219 �5.25

11 B 7.9 3 2 237 D 3.5 228 �1.75

12 C 8.0 3 3 240 B 3.5 237 1.75

13 D 7.6 3 4 228 C 3.5 240 5.25

14 A 6.6 4 0.7 1 264 D 3.5 256 �5.25

15 B 6.5 4 2 260 B 3.5 260 �1.75

16 C 7.1 4 3 284 A 3.5 264 1.75

17 D 6.4 4 4 256 C 3.5 284 5.25

18 A 7.5 5 0.9 1 375 D 5 335 �7.50

19 B 6.8 5 2 340 B 5 340 �2.50

20 C 7.6 5 3 380 A 5 375 2.50

21 D 6.7 5 4 335 C 5 380 7.50

22 TAB Rng Rnk

23 k�c 1 0.6 1.5 Sum � 2.00 �5.50 21.00 �17.50

24 4 2 0.6 1.5

25 3 0.7 3.5 A 270 CritDiff

26 r 4 0.7 3.5 B 156.3 21.2

27 5 5 0.9 5 T 5.499

28 p-value 0.0131

29

Cells F3–F21 Copy F2 formula
Cells G2–G21 Copy cells A2-A21 press values
Cells H2–H21 Copy the D23-D27 tablet ranks for formulations in column C
Cells I2–I21 Copy F2-F21 values using the Paste Special option under Edit.

Highlight rows 2–21 of Columns G, H and I.
From Main Menu Toolbar, choose Data and then Sort.
Sort G2:I21 selection by column ‘‘SortMod’’, in ascending order.

Cells J2–J21 � IF($Gn� �A�,$Hn*($En- n � 2 to 21; Sij for Press A.
($A$24 � 1)/2),� �)
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Cells K2–K21 � IF($Gn� �B�,$Hn*($En- n � 2 to 21; Sij for Press B.
($A$24 � 1)/2),� �)

Cells L2–L21 � IF($Gn� �C�,$Hn*($En- n � 2 to 21; Sij for Press C.
($A$24 � 1)/2),� �)

Cells M2–M21 � IF($Gn� �D�,$Hn*($En- n � 2 to 21; Sij for Press D.
($A$24 � 1)/2),� �)

Cell J23 � SUM(J2:J21) Rank Sum for Press A.
Cell K23 � SUM(K2:K21) Rank Sum for Press B.
Cell L23 � SUM(L2:L21) Rank Sum for Press C.
Cell M23 � SUM(M2:M21) Rank Sum for Press D.
Cell J25 � SUMSQ(J2:M21) A � �Sij2

Cell J26 � (SUMSQ(J23:M23))/A27 B � �(�Sij)2/r)
Cell J27 � ((A27–1) Quade test statistic T � (r-1)B/

*J26)/(J25–J26) (A-B)
Cell J28 � FDIST(J27,A24–1,(A27–1) p-value from F3,12 distribution

*(A24–1))
Cell I26 � TINV(0.05,(A27–1)*(A24–1))*SQRT((2*A27*(J25–J26))/

((A27–1)*(A24–1)))
Difference between any two Rank Sums which is significant at p �

0.05.

In the next Workbook, a product made from four lots of raw material each with a different
potency (X) is assayed for its potency (Y) using two different analytical methods (I and
II). The results, shown in Table 15.13, are used to demonstrate the Quade Nonparametic
Covariance Analysis.

Commands in
Analysis

Columns A, C & D Enter method, Assay (Y) and Material (X) values into rows
2–9

Column B Enter observation numbers 1–8 into rows 2–9
Cells A12–A19 Enter Index numbers 1–8 which will be used as a guide when

ranking values
Cells B12–B19 Copy B2-B9 Observation numbers
Cells C12–C19 Copy D2-D9 X values
Cells F12–F19 Copy B2-B9 Observation numbers
Cells G12–G19 Copy C2-C9 Y values
Cell B21 � (A19 � 1)/2 Mean rank, 4.5, for 8

observations
Cells B12–C19 Highlight this section and sort in ascending order (indicate a

header row)
Cells F12–G19 Highlight this section and sort in ascending order (indicate a

header row)
Cells D12–D19 Rank sorted cells C12-C19, using the average for tied ranks
Cells H12–H19 Rank sorted cells G12-G19 using the average for tied ranks
Cell E12 � D12-$B$22 Center X rank by subtracting

the mean rank
Cells E13–E19 Copy formula from Cell E12 Center remaining X ranks
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Cells I12–I19 Copy formula from Cell E12 Center Y ranks by subtracting
the mean rank

Cells E2:E9 Enter centered Y rank, matching sorted Obs number with Obs
number in Col B

Cells F2:F9 Enter centered X rank, matching sorted Obs number with Obs
number in Col B

Workbook 15.13 Quade Nonparametric Covariance Analysis (ANCOVA)

(main worksheet ply)

A B C D E F G H I

1 Method Obs Y X Adj Ry Adj Rx

2 I 1 98.0 98.4 2.5 �3

3 I 2 97.8 98.6 1.5 �1

4 I 3 98.5 98.6 3.5 �1

5 I 4 97.4 99.2 �0.5 2.5

6 II 5 97.6 98.7 0.5 0.5

7 II 6 95.4 99.0 �3.5 1.5

8 II 7 96.1 99.3 �2 3.5

9 II 8 96.1 98.4 �2 �3

10

11 Index Sort Obs Sort X Rank X Adj Rx Sort Obs Sort Y Rank Y Adj Ry

12 1 1 98.4 1.5 �3 6 95.4 1 �3.5

13 2 8 98.4 1.5 �3 7 96.1 2.5 �2

14 3 2 98.6 3.5 �1 8 96.1 2.5 �2

15 4 3 98.6 3.5 �1 4 97.4 4 �0.5

16 5 5 98.7 5 0.5 5 97.6 5 0.5

17 6 6 99.0 6 1.5 2 97.8 6 1.5

18 7 4 99.2 7 2.5 1 98.0 7 2.5

19 8 7 99.3 8 3.5 3 98.5 8 3.5

23

20 (N�1)/2

21 4.5

Commands in Analysis (continued)
Main Menu Tools → Data Analysis → Regression

Dialog Box
Input Y Range: Highlight or enter E1:E9
Input X Range: Highlight or enter F1:F9
Labels: Click on this option
New Worksheet Ply: Enter ‘‘Regression’’
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Residuals Click on this option
OK Click to perform calculations

(regression worksheet ply)

A B C

20

21

22 RESIDUAL OUTPUT

23

24 Observation Predicted Rank Y Residuals

25 1 1.445122 1.054878

26 2 0.481707 1.018293

27 3 0.481707 3.018293

28 4 �1.20427 0.704268

29 5 �0.24085 0.740854

30 6 �0.72256 �2.77744

31 7 �1.68598 �0.31402

32 8 1.445122 �3.44512

33

Commands in Analyses (continued)
Main Worksheet Ply:
Cells G2:G9 Copy Predicted values from Cells B25–B32 of

Regression Worksheet Ply
Cells H2:H9 Copy Residual values from Cells C25–C32 of

Regression Worksheet Ply

(main worksheet ply)

G H I J

1 Predicted Residual Method I Method II

2 1.4451 1.0549 1.0549 0.7409

3 0.4817 1.0183 1.0183 �2.7774

4 0.4817 3.0183 3.0183 �0.3140

5 �1.2043 0.7043 0.7043 �3.4451

6 �0.2409 0.7409

7 �0.7226 �2.7774

8 �1.6860 �0.3140

9 1.4451 �3.4451

10
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Commands in Analyses (continued)
Cells I2–I5 Copy Residual values for Method I from Cells

H2–H5
Cells J2–J5 Copy Residual values for Method II from Cells

H6–H9
Main Menu Tools → Data Analysis → Anova: Single Factor
Dialog Box

Input Range: Highlight or enter $I$1:$J$5
Labels: Click on this option
New Worksheet Ply: Enter word ‘‘ANOVA’’
OK Click to perform calculations

(ANOVA worksheet ply)

A B C D E F G

1 Anova: Single
Factor

2

3 SUMMARY

4 Groups Count Sum Average Variance

5 Method I 4 5.795732 1.448933 1.119382

6 Method II 4 �5.79573 �1.44893 3.944294

7

8

9 ANOVA

10 Source of Variation SS df MS F P-value F crit

11 Between Groups 16.79525301 1 16.79525 6.633621 0.042018 5.987374

12 Within Groups 15.19102748 6 2.531838

13

14 Total 31.98628049 7

15

Note: The ANOVA Worksheet contains the results of the Analysis of Covariance.

The next Workbook shows how to perform an evaluation for comparability of baseline
disease severity (mild, moderate, or very severe) for patients randomized to one of two
treatment groups (A or B) in a clinical trial. The data are taken from Table 15.16 and the
analysis follows that shown in Table 15.17.

Workbook 15.16 Chi-Square Evaluation of a 2�3 Contingency Table

Commands in Analysis
Cells C4-E5 Enter the patient counts from Table 15.16
Cell A8 Enter the number of rows in Table
Cell A11 Enter the number of columns in Table
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Cell C6 � SUM(C4:C5)
Cells D6-E6 Copy formula from Cell C6
Cell F4 � SUM(C4:E5)
Cells F5-F6 Copy formula from Cell F4
Cell C12 � (C$6*$F4)/$F$6
Cells C13 & D12–E13 Copy formula from Cell C12
Cells C14-E14 Copy formula from Cells C6–E6
Cells F12-F14 Copy formula from Cells F4-F6
Cell C20 � (C4-C12)*(C4-C12)/C12
Cells C21 & D20-E21 Copy formula from Cell C19
Cell D22 � SUM(C20:E21)
Cell D23 � CHIDIST(D22,(A8–1)*(A10–1))

(patients categorized by disease severity and treatment)

A B C D E F

1 Observed

2

3 Severity: Very Moderate Mild Total

4 Treatment: A 13 24 18 55

5 B 19 20 12 51

6 Total 32 44 30 106

7 Rows:

8 2

9 Cols: Expected

10 3

11 Severity: Very Moderate Mild Total

12 Treatment: A 16.60 22.83 15.57 55

13 B 15.40 21.17 14.43 51

14 Total 32 44 30 106

15

16

17 (0-E)2/E

18

19 Severity: Very Moderate Mild

20 Treatment: A 0.782 0.060 0.381

21 B 0.844 0.065 0.410

22 X2 � 2.541

23 P � 0.281

The final Excel Workbook uses the results shown in Table 15.21 on the Incidence of
Carcinoma in Drug- and Placebo-Treated Animals to demonstrate the method of calculat-
ing exact confidence intervals for a 2 � 2 contingency table.
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Workbook 15.21 Fisher’s Exact Test for Carcinoma Results in Drug- and 
Placebo-Treated Animals

A B C D E F G

1 A values p-values

2 Carcinomas 0 0.03043

3 Present Absent 1

4 Placebo 0 12 12 2

5 Drug 5 9 14 3

6 5 21 26 4

7 p-value 0.03043 5 0.01204

8

9 Carcinomas Fisher’s p-value

10 Present Absent 0.04247

11 Placebo 5 7 12

12 Drug 0 14 14

13 5 21 26

14 p-value 0.01204

15

Commands in Analyses
Cells C6,D6,E4,E5 Enter marginal totals from (A � B), (C � D), (A �

Table 15.21 C), (B � D)
Cell E6 � SUM(E4:E5) N � A � B � C � D
Cell C4 Enter Placebo-Present count A
Cell C5 � C6-C4 B � (A � B)�A
Cell D4 � E4-C4 C � (A � C)�A
Cell D5 � E6-D4-C5-C4 D � Total�B�C�A
Cell D7 � (FACT(C6)*FACT(D6)*FACT(E4)*FACT(E5))/

(FACT(E6)*FACT(C4)*FACT(C5)*FACT(D4)*FACT(D5))
Note: The function FACT(x) returns the factorial of the

number x or the number in that cell if x is a cell reference
(e.g. x � C6).

Column F Enter all possible values for A (Placebo-Present count)
This is obtained by going from a count of 0 and increasing to

a count of A � B (cell C5) or A � C (cell D4), whichever
is smaller.

Cells B9-E14 Highlight and Copy Cells B2: creates a working table
E7

Set the value for A (Cell C11) to 0 in the working table. If the p-value in Cell D14 �
Cell D7 then copy that value (use Paste Special, value) to column G beside the appropriate
A value in column F. Continue through all the possible values for A shown in column F.

Cell G10 � SUM(G2:G8) p-value for Fisher’s Exact Test
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SAS Programs

The following programs written for the SAS System perform the same analyses as those
presented in the Excel Workbooks section of this appendix. As such, no commentary is
provided for these programs other than that needed to interpret the results of the SAS
output. It is assumed that the reader has a basic understanding of the SAS System and
knows how to operate SAS in his/her computer environment. The SAS programs utilize
only the basic mathematical and statistical functions and standard procedures available in
SAS/Base and SAS/STAT. The programs have been kept as simple as possible in hopes
that the reader will easily be able to follow each program’s logic. All data is contained
within the program itself (Cards Statement). The reader should be able to easily modify
the program code to input data from an external file.
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AN ALTERNATIVE SOLUTION TO THE
DISTRIBUTION OF THE INDIVIDUAL
BIOEQUIVALENCE METRIC*

The Office of Generic Drugs (OGD) of the Federal Drug Administration (FDA) has re-
cently published statistical guidelines for determination of bioequivalence (1), see above.
Included in that publication is a statistical approach to determining individual bioequiva-
lence (IB), as recommended by Hyslop et al. (1). Herewith, is a description of an alternative
approach. The probability density function (PDF) of the IB metric is determined and used
to construct a decision rule for acceptance. The acceptance criterion is based on an upper
95% confidence interval for the metric, defined as 2.4948. Here is shown the derivation
here for the reference-scaled metric. However, with minor modifications, this approach
is also applicable to the constant denominator metric and to population bioequivalence
described in the FDA Guidance (1). The following has been described in Chapter 11, but
is repeated here for the sake of continuity.

The reference-scaled metric is defined as:

(1)φ µ µ σ σ σ σ= − + + −[( ) ] /t r d t r r
2 2 2 2 2

or, equivalently as

(2)φ µ µ σ σ σ= − + + −[( ) ] /t r d t r
2 2 2 2 1

Here, �t is the mean of the parameter for the test product,
�r is the mean of the parameter for the reference product,
� 2

d � subject-product interaction variance,
� 2

t � within-subject test variance,
� 2

r � within-subject reference variance

For a four-period replicate design as described by Hyslop and in the FDA Guidance (1,2),
we can also define (3)

* Abstracted from a paper submitted to the Journal, Drug Development and Industrial Pharmacy,
Marcel Dekker.
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(3)σ σ σ σi d t r
2 2 2 20 5 0 5= + +. .

where � 2
i is the variance of (�t-�r)

Combining equations (2) and (3),

(4)φ µ µ σ σ σ= − + + −[( ) . ] / .t r i t r
2 2 2 20 5 1 5

The parameter estimates, X̄t X̄r, S 2
i , S 2

t and S 2
r , are computed using a mixed-effects

linear model as described in the FDA Guidance (1).
The analysis in the recent guidance is approximate, has reasonably good properties

(1,2), and is relatively simple to calculate. It appears to agree well with the results of the
previously used bootstrap simulation approach.

The following derivation results in a more direct approach to estimating the upper
confidence interval. The idea is to derive the probability density function (PDF) of the
metric. Once the PDF is known, the cumulative probability distribution function (CDF), the
95% confidence interval, as well as other parameters of interest can be easily determined.

DERIVATION AND RESULTS

In principle, the PDF of � can be determined if the joint distributions of the random
variables X̄t, X̄r, S 2

i , S 2
t , and S 2

r are known. In general, this would be a formidable task.
However, under the usual assumption of statistical independence of these variables (2),
it is quite feasible to compute the PDF of �. Further assumptions include (1) that the
random variables X̄t and X̄r are Gaussian after the usual logarithmic transformation, and
(2) that the variances are distributed as � 2

i �2/d.f. With these assumptions, which are
similar to those made by Hyslop (2), the PDF of � can be derived as shown below. In
the derivation we have used the formulae for computing the PDF of the sum of two
independent variables and the PDF of the ratio of two independent variables. These may
be found in reference 4.

For ease of notation, define the following random variables:

Y

Z

U S

V

i

t

r

= −

=

=

=

( )

.

X X

S

S

t r
2

2

2

2

0 5

In terms of these, define further the intermediate variables,

W Y Z

G W U

= +
= +

The metric may then be expressed as

φ = −G

V
1 5.

Since X̄t and X̄r are both Gaussian, their difference is also Gaussian. Let the mean
and standard deviation of (X̄t � X̄r) be � and �, respectively. Then the PDF of Y, p(y)
is given by
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p y y( ) exp( ) cosh( )= − + ≥1

2 2

1
0

2

2 2σ π
µ

σ
µ
σ

y

y

y

Let q(z) be the PDF of Z. Since Y and Z are independent, the PDF of W, r(w), is given
by the convolution of p(y) and q(z). Thus

r(w) p(y)q(w-y)dy= ∫0

w

Similarly, if s(u) is the PDF of U, then the PDF of the variable G, f(g), is given by

f(g) r(w)s(g-w)dw
g

= ∫0

Finally, let a(m) be the PDF of �. If t(v) is the PDF of V, then

a(m) vt(v)f[(m+1.5)v]dv= ∫0

w

A program was written in MATLAB (5) to evaluate a(m) using numerical integration
to compute the various integrals in the above derivation. If the parameters defining the
distributions of X̄t, X̄r, etc. were known, this would be an exact solution. In the absence
of such knowledge, an approximate solution is obtained by using the observed values of
the means and variances as the parameter values. Clearly, this solution would approach
the exact solution with large sample sizes. With the sample sizes usually used in BE
studies, we expect that the solution should be reasonably good. A preliminary spot check
of the results and decisions comparing this new approach to that of Hyslop is shown in
Table 1. Examples are shown where the decisions are borderline.

Table 1 Comparison of Results of Convolution Method to Hyslop Method for the
Parameter Values Shown

N Mean Difference S2i S2t S2r Hyslopa Convolutionb

122c 0 0.02 0.02 0.0125 �0.028 2.185
0 0.02 0.02 0.01 �0.001 2.46
0 0.02 0.03 0.01 �0.005 3.065
0.2 0.12 0.12 0.065 �0.023 3.175

26d 0.05 0.12 0.1 0.085 �0.008 2.43
0.05 0.198 0.02 0.1075 �0.0004 2.50
0.05 0.08 0.049 0.05 �0.005 2.68
0.2 0.12 0.12 0.095 �0.0205 2.96

16 0.05 0.05 0.05 0.05 �0.0085 2.24
0.05 0.02 0.02 0.02 �0.0014 2.41
0.05 0.05 0.1 0.05 �0.0296 3.395
0.05 0.03 0.02 0.02 �0.0623 3.725

12 0.05 0.02 0.02 0.01 �0.0014 2.79
0.05 0.02 0.022 0.03375 �0.0118 2.46
0 0.05 0.04 0.0475 �0.0144 3.56
0.07 0.05 0.04 0.0475 �0.0222 3.175

a Hyslop method passes for negative values.
b Convolution passes for values less than 2.498.
c Sequence sizes are 30,30,30,32.
d Sequence sizes are 6,6,6,8.
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ANSWERS TO EXERCISES

CHAPTER 1

1. (a) Tablet hardness, blood concentration of drug, creatinine in urine
(b) Number of patients with side effects, bottles with fewer than 100 tablets, white

blood cell count
(c) Any continuous variable, rating scale
(d) Race, placebo group in clinical study, number of bottles of syrup that are cloudy

2. None (This is a simple linear transformation; the C.V. is unchanged.)
3.

Interval Frequency

�99.5 to �83.5 1
�83.5 to �67.5 2
�67.5 to �51.5 10
�51.5 to �35.5 16
�35.5 to �19.5 26
�19.5 to �3.5 34
�3.5 to �12.5 33
12.5 to 28.5 24
28.5 to 44.5 8
44.5 to 60.5 2

4. �10.27
5. Approximately 82% between 95 and 105 mg (0.91–0.09); approximately 9% above

105 mg
6. (a) Mean � �12.65, S � 31.68; (b) X̄ � �7, S � 30.48 (read data in columns).

Differences probably not significant. The last set is more precise but the standard
deviations are virtually identical (the variability is probably not different in the two
sets of data).

722



723Answers to Exercises

7. Median � �16 � (�13 � 19)/2; range � 46 to �64 � 110
8. (a) Median � �16 as in Problem 7; range � 100 to �64 � 164

(b) Mean � �8.5, S � 40.09, S2 � 1607
10. Probably not unbiased
11. � � �2/3 � 0.816, S̄ � 0.6285
13. ��(X � x̄)2/(N � 1) � �(0.0001 � 0 � 0.0001)/2 � 0.01. The s.d. of 2.19;

2.20, and 2.21 is also 0.01. If a constant is added to each value (the constant added
here is 1), the s.d. is unchanged. Standard deviation depends on differences among
the values, not the absolute magnitude.

14. (a) 101.875; (b) 4.79; (c) 22.98; (d) 4.79/101.875 � 0.047; (e) 14; (f) 101.5
15. � Ni X 2

i � 1(90.5)2 � 6(70.5)2 � … � 16(29.5)2 � 3(49.5)2 � 137,219
� NiXi � 1(�90.5) � 6(�70.5) � … � 16(29.5) � 3(49.5) � � 1658
� Ni � 156
S2 � [137,219 � (�1658)2/156]/155 � 771.6
S � 27.79

16. 16.167, 9.865, 7.009
17. X̄w � (2 � 3 � 5 � 7 � 3 � 11 � 14 � 3 � 57)/10 � 17.9

Sw
2 7149 3204 1

9
438 3= − =.

.

CHAPTER 2

1.

2.
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3.

4.

5.

6.
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7.

CHAPTER 3

1. Larger sample, more representative, blinded, less bias, etc.
2. All patients with disease who can be treated by antibiotic
3. Preference for new formulation among 24 panelists; number of broken tablets in

sample of 100; race of patients in clinical study
4. 50,000 specked, but 20,000 are also chipped. Therefore, 30,000 are only specked.

Probability of speck or chip is 0.06 (60,000 tablets have either a speck or a
chip).

5. (a) P(A and B) � P(A|B)P(B). Let A � high blood pressure and B � diabetic.
Then P(A and B) � (0.85)(0.10) � 0.085.

(b) If independent, P(A) � P(A|B); 0.25 � 0.85; they are not independent.
6. (0.75)2(0.25)2 � 0.35163 � 6 � 0.21094. There are 6 ways of choosing 2 patients

out of 4 �44�.
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7. (0.6)3(0.4)3 � 0.013824 � 20 � 0.276. There are 20 ways of choosing 3 patients

out of 6 �64�.
8. 0.3697
9. (a) Approximately 0.8; (b) 0.2

10. Z � (170 � 215)/35 � 1.29; probability � approximately 0.10
11. Z � (60 � 50)/5 � 2,P(X � 60) � 0.977; Z � (40 � 50)/5 � �2,P(X � 40)

� 0.023; P(40) � X � 60) � 0.977 � 0.023 � 0.954
12. Not necessarily; the patient may have a cholesterol value in the extremes of the

normal distribution.
13. Z � (137 � 140)/2.5 � � 1.2, probability � Z � 0.115; Z � (142 � 140)/2.5

� 0.8, probability � Z � 0.788; P(137 � Z � 142) � 0.788 � 0.115 � 0.673
14. Z � (280 � 205)/45 � 1.67; probability � 0.952; probability Z 
 280 � 1 �

0.952 � 0.048
15. There are 36 equally likely possibilities, of which one is 2.
16. Yes! The order of heads and tails is not considered in the computation of probability.

17. P(0 defects) � �20
0 � (0.01)0(0,99)20 � 0.818; P(1 defect) � �20

1 �
(0.01)1(0.99)19 � 0.165; P(0 or 1 defect) � 0.818 � 0.165 � 0.983

18. �10
1 � (0.5)1(0.5)9 � 0.0098

19. �42� (0.01)2(0.99)2 � 0.00059. The probability is small; and two of four cures can

be considered unlikely. The probability of this event plus equally likely or less likely
events (three of four and four of four cures) is close to 0.00059. Thus, we conclude
that the new treatment is effective.

20. �(0.01)(0.99)20 � 0.445; �(0.01)(0.00)/20 � 0.022 (Problem 17)

�(0.01)(0.99)4 � 0.199; �(0.01)(0.99)/4 � 0.497 (Problem 19)
21. S � �(0.5)(0.5)/20 � 0.112; Z � (0.75 � 0.5)/0.112 � 2.24; P(Z 
 2.24) � 1

� 0.988 � 0.012

Drug is a promising candidate. The probability of observing such a large response
is small if the true proportion of responses is 50%.

22. P(0 defects) � 0.9930 � 0.7397; P(1 defect) � (30)(0.01)(0.99)29 � 0.2242; P(0
or 1 defect) � 0.7397 � 0.2242 � 0.9639; P(more than 1 defect) � 1 �0.9639
� 0.0361

23. 85 � 35 � 50 � 50 � 20 � 15 � 25 � P(ABC); P(ABC) � 10%

CHAPTER 4

1. Starting at the upper left corner,* going down in Table IV.1. Even numbers to A.
Patients assigned to A: 1, 2, 3, 5, 6, 8, 13, 14, 15, 16, 17, and 19.

* We started at the upper left and read down for convenience and for the purpose of illustration.
Otherwise, the starting point should be random.
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2. Start as in Problem 1. If the number is 1 to 3, assign to A; 4 to 6, assign to B; 7 to
9, assign to C; do not count zeros.

Patient Random number Treatment

1 4 B
2 8 C
3 2 A
4 5 B
5 8 C
6 4 B
7 9 C
8 2 A
9 1 A

10 5 B
11 5 B
12 5 B
13 4 B
14 6 B (8 B’s)
15 8 C
16 3 A
17 9 C
18 3 A
19 8 C
20 8 C
21 9 C (8 C’s)

Remaining patients (22, 23, 24) given A

(May also randomize in groups of three; e.g., the first three patients are B, C, A—ran-
dom numbers 4 and 8 refer to B and C.)

3. Start as above in Table IV.1. Use two-digit numbers between 1 and 30: 28, 24, 14,
6, 17, 29.

5. Placebo: 1, 2, 4, 5, 7, 8, 9, 10, 12, 18; Drug: 3, 6, 11, 13, 14, 15, 16, 17, 19, 20.
6. Take 20 tablets at a specific time every hour, all at the same time each hour (e.g.,

on the hour). Take 20 tablets each hour, but randomize the time the 20 are taken;
e.g., first hour, take the sample at 5 min past the hour; second hour, take at 25 min
past the hour; etc. Take tablets, one every 3 min during each hour. Take tablets at
random times during each hour.

7. (see also Problem 3) 44, 8, 28, 55, 88
10. X̄ � 300.7

CHAPTER 5

1. Z � (49.8 � 54.7)/2 � � 2.45; � 0.0071
2. 103 	 2.58(2.2)/�10 � 103 	 1.8 � 101.2 to 104.8
3. (a) 5.95 	 2.57(1.16/�6 � 5.95 	 0.17

(b) 0.024 	 1.96 �(0.024)(0.976)/500 � 2.4 	 1.34%
(c) (0.83 � 0.50) 	 1.06 �(0.83)(0.17)>sh>60 � (0.50)(0.50)/50 � 0.33 	

0.17
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4. (a) Z � |498 � 502|/(5.3/�6 � 1.85; not significant, � � 0.05; two tailed test
(b) t � (5.08 � 4.86)/�0.095(2/5 � 1.13; not significant at 5% level
(c) T � 4/�(15.2)/6 � 2.51; t5 � 2.57; just misses significance at 5% level; two-

tailed test.
5. (a) 0.098, larger

(b) 0.350 and 0.261, average s.d. � 0.305, pooled s.d. � 0.308
6. (a) X̄ � 10.66, s.d. � 0.932

(b) X̄ � 9.66, s.d. � 0.4696. t18 � 1/(0.738 �2/10 � 3.03; difference is significant
(c) Approximate test: Z � (0.7 � 0.2)/�(0.45)(0.55)(2/10) � 2.24; significant.

Chi-square test with correction � 3.23; not quite significant.

(d) 0.45 	 1.96 �(0.45)(0.55)(1/20) � 0.45 	 0.22
7. Paired t test; 3 d.f.; � � 0.05; two tailed test

(a) t � 0.07 �0.0039/4 � 2.23; not significant
(b) 0.07 	 3.18(0.0627)/�4 � 0.07 	 0.10

8. (a) Paired t test, 11 d.f.; t � 0.5/(0.612/�12 � 2.83; significant at 5% level
(b) 0.5 	 2.2(0.612/�12 � 0.5 	 0.39

9. 9/60 and 6/65 � 15/125 � 0.12; 80/1000 and 57/1000 � 137/2000 � 0.685
10. t � (16.7 � 15)/(3.87/�10 � 1.39; 10% level, one-sided test, this is significant
11. Chi-square � (3.5)2(2/12 � 2/88) � 2.32; not significant

12. Z � (|0.05 � 0.028| � 1/400)/�(0.028)(0.972)/200 � 1.67; not significant. 0.05
	 1.96 �(0.95)(0.05)/(200) � 0.5 	 0.03; 10 	 1.96 �(0.95)(0.05)(200) � 10
	 6

13. (a) 50 	 1.96 �(0.01)(0.99)(5000) � 50 	 13.79 in 5000 for 1,000,000 tablets;
10,000 	 2758

(b) (0.01 � 0.02)/�(0.02)(0.98)/5000 � �5.05; P #of 0.001; very unlikely

1.96 �(0.01)(0.99)/N � 0.001, N � (1.96)2(0.99)(0.01/10) � 38,032
14. Chi-square � (4.5)2(1/35.45 � 1/24.55 � 1/29.55 � 1.20.45) � 3.07; not signifi-

cant at 5% level. (40/60 � 25/50) 	 1.96 �(0.67)(0.33)/60 	 (0.5)(0.5)/50 �
0.167 	 0.183

15. Z � (|0.75 � 0.5| � 1/80)/�(0.5)(0.5)/40 � 3.0; P � 0.05
16. Z � (|0.45 � 0.2| � 1/40)/�(0.8)(0.2)/20 � 2.51; P � 0.05; 0.45 	 2.58

�(0.45)(0.55)/20 � 0.45 	 0.287
17. Chi-square � (3.5)2(1/13.85 � 1/86.15 � 1/13.15 � 1/81.85) � 2.10; not signifi-

cant
18. (1.8)2(1/7.2 � 1/7.8 � 1/52.8 � 1/57.2) � 0.98
19.

80 920

57 943
2 2= × table

�2 � 112(1/68.5 � 1/931.5 � 1/68.5 � 1/931.5) � 3.79; just misses significance
at 5% level

20. F9,9 � 0.869/0.220 � 3.94, P � 0.10 (Table IV.6). This is a two-sided test. A ratio
of 3.18 is needed for significance at the 10% level.

21. Correct �2 � 3.79; d’Agostino � 2.04
22. �2 � 28.6135 � 20.8591 � 7.75 (P � 0.05)

23. �2 �
9 � 5
0.711

� 63.29 � � 7.96
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24. �2 �
(7.8)2

18.49
� 95 � � 9.7

CHAPTER 6

1. 2(5/10)2(1.96 � 0.84)2 � 0.25(1.96)2 � approximately 5 per group
2. 2(5/10)2(1.96 � 0.84)2 � approximately 4 per group
3. [(0.8 � 0.2 � 0.9 � 0.1)/(0.1)2](1.96 � 1.28)2 � approximately 263 per group
4. [(0.5 � 0.5 � 0.5 � 0.5)/(0.2)2](1.96 � 1.28)2 � approximately 132 per group
5. (1.96)2(0.5 � 0.5)/(0.15)2 � approximately 43

(1.96)2(0.2)(0.8)/(0.15)2 � approximately 28
6. (10/10)2(1.96 � 2.32)2 � 2 � approximately 21 tablets

7. (a) Z	 � (3/5) �19/2 � 1.96 � �0.11; power is approximately 46%
(b) Z	 � (3/5) �49/2 � 1.96 � 1.01; power � 84%

8. (10/3)2(1.96 � 1.28)2 � approximately 117
9. Z	 � (0.2/0.25) �10 � 1.96 � 0.57; power is approximately 71%

10. 2(12/10)2(1.96 � 1.65)2 � 0.25Z2
� � approximately 39

11. Z	 � (15/40) �16 � 1.96 � �0.46; power � approximately 0.32
12. (1.96)2(0.90)(0.10)/(0.05)2 � 138.2 � approximately 139
13. N � 2(5/6)2(1.96 � 1.28)2 � 0.25(1.96)2 � 15.5 � approximately 16
14. 23 tablets per formulation

CHAPTER 7

1. (a) b � 40/10 � 4; a 12 � (4)(3) � 0
(b) S2

y,x � (164 � 16.10)/3 � 1.33; S2
b 1.33/10 � 0.133

t � 4/�0.133 � 10.95, significantly different from 0
(c) |4 � 5|/�0.133 � 2.74; d.f. � 3; not significant, 3.18 needed for significance
(d) 3 hr; Y � 4X � 12 	 3.18 �1.33 �1/5 � 0.10 � 10.36 to 13.64.

5 hr; Y � 4X � 20 	 3.18 �1.33 �1/5 � 4/10 � 17.16 to 22.84
(e) Y � 4(20) � 80 	 3.18 �1 � 1/5 � (20 � 3)2/10 � 80 	 20.1
(f) b � � Xy/� X2 � 220/55 � 4

2. (a) a � �0.073; b � 0.2159
(b) S2

y.x � 0.003377; S2
a � 0.001848; �1.69 (3 d.f.); not significant; may be

due to interfering impurity
(c) C � 7.98; confidence limits are 7.43 to 8.64; see Eq. (7.17)

3. (a) b � 27/41.2 � 0.655, a � 100 � 0.655(200.4) � �31.3
(b) Y � �31.3 � 0.655)(200) � 99.74

(c) 99.74 	 3.18 �0.0102 �1/5 � (200 � 200.42/41.2 � 99.74 	 0.46
4. (a) 0.9588

(b) t10 � 10.7; r is significantly different from 0 at 5% level
5. r � 0.6519; t8 � 1.84/0.76 � 2.43, significant at 5% level
6. r � �0.93135; t7 � 6.77, significant at 5% level
7. r � 0.2187; F � 6.54/1.067 � 6.135

rds � (6.135) � 1)/�(6.135) � 1)2 � 4(0.21872)6.135 � 0.728
t8 � 0.728 �8/�1 � 0.7282 � 3.00; p � 0.05; drug B is less variable
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8. Y � �3.90082 � 0.99607X; predicted values: 0.10049 (X � ln 5); 0.20043 (X �
1n 10), 0.49928 (X � ln 25), 0.99584 (X � ln 50), 1.98626 (X � ln 100).

9. (a) C � 2.5482 � 0.01209t; (b) 24.66 mos; (c) 23.27 mos; (d) 23.55 mos.
10. a � 0.5055

CHAPTER 8

1. For significance at the 5% level, t (8 d.f.) � 2.31 (two-sided test) A vs. B: t �
(101.2 � 99.4)/Sp �1/5 � 1/5 � 2.84 (P � 0.05); Sp � 1.0. A vs. C: t � (101.6
� 101.2)/(1.58 �1/5 � 1/5) � 0.40. B vs. C: t � (101.6 � 99.4)/(1.67

�1/5 � 1/5) � 2.08
2.

Source d.f. MS F

Between treatments 2 0.167 0.039
Within treatments 3 4.33

Treatments are not significantly different.
3. Pooled error term from ANOVA table (Table 8.3) � 2.10

A vs. B: t � 1.8/�2.10(2/5) � 1.96
A vs. C: t � 0.44
B vs. C: t � 2.40 (P � 0.05)
Pooled error results in different values of t. This is appropriate if F is significant
and/or tests are proposed a priori (use pooled error, i.e., WMS).

4. (a) H0: �1 � �2 � �3 � �4; Ha: �i � �j; � � 0.05
(b) Fixed
(c)

Source d.f. MS F

Between analysts 3 2.89 5.78 (�0.05)
Within analysts 8 0.50

LSD � 2.31 �0.5(2/3) � 1.33
A differs from B, C, and D; B differs from C and D

(d) Tukey test: 4.53 �0.5(3) � 1.85; only analysts A and C differ at 5% level
Scheffé test: �0.5(3)4.07(1/3 � 1/3) � 2.02; none of the analysts differ at
5% level

5. H0: �i � �j; Ha: �i � �j; � � 5%
(a)

Source d.f. MS F

Between clinics 6 16.425 8.21 (P � 0.05)
Within clinics 13 2

(b) Yes
(c) Fisher’s LSD method (for example) at the 5% level

LSD � 2.16 �2(1/3 � 1/3) � 2.49
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Clinic 1 � clinics 2, 5, 7; clinic 2 � clinics 3, 5, 6; clinic 3 � clinics 5, 7;
clinic 4 � clinic 5; clinic 5 � clinics 6, 7; clinic 6 � clinic 7
For comparisons to clinic 7, LSD � 2.16 �2(1/3 � 1/2) � 2.79

6. (a) Drugs fixed; (b) Machines fixed; (c) formulations fixed; (d) Machines random;
(e) Clusters chosen at random

7. H0: �1 � �2 � �3; � � 0.05

Source d.f. MS F

Between batches 2 115.2 10.26 (P � 0.05)
Within batches 12 11.24

t test shows that batch 3 is different from batches 1 and 2; e.g., batch 1 vs. batch 3:
t12 � (20.33 � 11.8)/�11.24(1/6 � 1/5

8. (a)
Source d.f. MS F

Row 5 1679.0
Column 2 8.22 0.34 (P � 0.05)
Error 10 23.96

(b)
Source d.f. MS F

Row 5 52.99
Column 2 26.06 5.37 (P � 0.05)
Error 10 4.86 (F2,10 � 4.10 for � � 0.05)

(c) Averages of drugs are: placebo � �0.33, drug 1 � �3.67, and drug 2 �
�4.17. Tukey test: 3.88 �4.86/6 � 3.49; therefore, drug 2 is different from
placebo. Newman–Keuls test: Drugs 1 and 2 different from placebo (P � 0.05).
Dunnett test: Drug 1 and drug 2 different from control (P � 0.05).

9. (a) If the six presses comprise all of the presses, the presses are fixed. Hours are
fixed (i.e., each hour of the run is represented).

Source d.f. MS F

Hour 4 11.95 6.76 (P � 0.05)
Presses 5 2.45 1.38 (P � 0.05)
Error 20 1.77

(b) Presses are not significantly different (5% level)
(c) ‘‘Hours’’ are significantly different.
(d) Assume no interaction
(e) Use Tukey test: 4.23 �1.77/6 � 2.30; hour 3 is significantly different from

hours 1, 2, and 5.
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10.
Source d.f. MS F

Rows 2 7.06 2.05
Columns 2 16.89 4.91 (P � 0.05)
Interaction 4 3.03 0.88
Within 9 3.44

(F2,9 � 4.26 for significance at 5% level.)

‘‘Presses’’ are significant. ‘‘Interaction’’ is not significant. Interaction means that
differences between presses depend on the hour at which tablets are assayed.

11. Average results: A � 2.90, B � 6.50, C � 6.07
If ‘‘sites’’ are random, use CR as error term.

5.04 �22.66/24 � 4.90 (no significant differences).
If ‘‘sites fixed,’’ use within error.

3.4 �3.215/24 � 1.24 A is lower than B and C)
12. ANOVA Table:

Source d.f. Sum-Squares Mean Square

C 2 14.29167 7.145834
B 2 9.125 4.5625
Error 3 7.083334 2.361
Total (Adj) 7 30.5

13. ANOVA Table:

Source d.f. Sum-Squares Mean Square F-Ratio Prob � F

A (Method) 1 6.438E-04 7.438E-04 7.15 0.0369
Error 6 5.406E-04 9.010E-05
Total (Adj) 7 1.184E-03

Method average
1 .9921655
2 .974223
P � 0.0366 from ANCOVA

CHAPTER 9

1. ANOVA Table:

Source d.f. MS F

Stearate 1 1.56 5.21
Mixing time 1 1.82 6.1
Stearate � mixing time 1 0.72 2.41
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Mixing time and stearate are significant at 5% level. Interaction is not significant.

2. Low starch, low stearate Low starch, high stearate
0.475 0.487
0.421 0.426

Av. � 0.448 Av. � 0.4565
High starch � low starch � 0.4565 � 0.4480 � 0.0085

3. ANOVA:

Source d.f. MS F

a 1 0.66 14.0*
b 1 0.06 1.3
ab 1 0.03 —
c 1 7.41 158**
ac 1 0.10 —
bc 1 3.s5 69**
abc 1 0.01 —

*P � 0.05; **P � 0.01.

Error � (0.03 � 0.10 � 0.01)/3 � 0.047; d.f. � 3
(a) a, c, bc
(b)

(c) When C is low, as B is increased, recovery is increased.
When C is high, as B is increased, recovery is decreased.

4. Synergism (or antagonism) would be evidenced by a significant AB interaction. If
the effects are additive, we would expect an increase of 12 for the AB combination
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beyond placebo (4 from A and 8 from B). This is close to the observed increase of
14 (35 � 21) for AB. The combination of A and B work better than either one
alone, but the evidence for synergism is not strong.

5. Weigh (1), ab, ac, bc: empty, a and b together, a and c together, b and c together.

Source d.f. MS F

A 1 2014 21.3a

B 1 356 3.8
AB 1 14 0.2
C 1 45 0.5
AC 1 741 7.9b

BC 1 121 1.3
ABC 1 36 —
D 1 5704 60.5a

AD 1 114 1.2
BD 1 226 2.4
ABD 1 128 —
CD 1 0.02 0
ACD 1 10 —
BCD 1 10 —
ABCD 1 271 —

15 9806

Estimate of error � 94.3
a P � 0.01
b P � 0.05

AC interaction is significant: at low C, the A effect is 52.2 � 43.3; i.e., changing
from low to high level of A has little effect when C is at the low level. At high C,
the A effect is 62.4 � 26.4.

CHAPTER 10

1. 1.00, 1.11, 1.60, 1.64, 1.74, 1.80, 2.06, 2.16, 2.30, 2.34, 2.36, 2.57, 2.70, 2.90, 2.90,
2.99, 3.10, 3.12, 3.18, 3,66

2. log Y � �0.127 � 1.068 log X
log 47 � �0.127 � 1.068 log X
log X � 1.685
X � 48.4 mg
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3. R̄ � 1.066, S � 0.281; (0.066)/(0.089) � 0.75 (not significant at 5% level). The t
test for log B � log A is identical except for sign as the t test for log A � log B.
This example shows the problems of using ratios. The average of A/B is not (in
general) the reciprocal of B/A.

4. (62 � 54)/(62 � 47) � 8/15 � 0.533. This is an outlier according to the Dixon
test. We probably should not omit this value without further verification. The outlier
could be due to analytical error and/or the presence of tablets with unusual high
potency.

5. Winsorized, 50.7; using all values, 51.4.

6. t � [2.8 � 0.6]/[1.732 �1/5 � 1/5] � 2.01
(Note the difference between the variances of the two groups.)
Use a square-root transformation:
Process 1: mean � 1.4363, s.d. � 0.960
Process 2: mean � 0.6, s.d. � 0.548
t � [1.4363 � 0.6]/[0.782 �1/5 � 1/5] � 1.69

CHAPTER 11

1. (b)
t �

107.2 � (� 3.05)

�1983.9(1/20 � 1/20)
� 7.83(t2 � F)

2.
Source d.f. MS F

Subjects 11 5.19
Treatment 1 0.04 0.005 Treatments are not
Order 1 2.04 0.25 significantly different.
Error 10 8.04

3.
Source d.f. MS F

Subjects 11 16.41
Treatments 1 155 13.19 (P � 0.01)
Order 1 177 9.96 (P � 0.05)
Error 10 11.75
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(22.3 � 17.3) 	 2.23 �11.75(1/12 � 1/12) � 5 	 3.12

Grizzle analysis: Residual effect �
(245)2 � (230)2

12
�

(475)2

24
� 9.375;

within MS � 17.11; F1,10 � 9.375/17.11 � 0.55; not significant at 5% level

4. A/B � 1.334, S2 � 0.238; t � (1.334 � 1.0)/�0.238(1/12) � 2.37; P � 0.05.
5. log X � 0.0954265; antilog � 1.246; S2 � 0.0309; t � 1.88 (not significant;

assume no order effect); 0.0954 	 2.20�0.031(1/12) � �0.016 to 0.207; antilogs:
0.96 to 1.61

6. Two-way ANOVAS:

Placebo Active Combined ANOVA

Source d.f. MS d.f. MS d.f. MS

Patients 5 2.866 5 2.742 10 2.804
Weeks 3 1.055 3 7.264 3 3.91
Patients � weeks 15 0.956 15 0.897 30 0.926
Drugs 1  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 15.1875
Drugs � weeks 3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4.41

For ‘‘drugs,’’ F1,10 � 15.1875/2.804 � 5.416 (P � 0.05); for ‘‘drugs � weeks,’’
F3,15 � 4.41/0.926 � 4.76 P � 0.05). From the accompanying plot and the F test
for interaction, the active effect increases with time while the placebo is relatively
constant.

7. N � 2(55/60)2 (1.96 � 1.28)2 � 1 �� 19

8. | � 4.75 � 7.6|/(3.433 �1/8 � 1/9) � 1.71 (P 
 0.05)
10. Suppose that we start in column 5 in the Blocks of 6 section of Table 11.1. We can

equate numbers 1 and 2 to Treatment A, 3 and 4 to Treatment B, and 5 and 6 to
Treatment C. The assignments are as follows:
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From Table 11.1

3 2 5 1 5
2 1 2 6 6
1 3 3 5 4
5 5 4 2 3
6 6 1 3 2
4 4 6 4 1
Subject Treatment Subject Treatment Subject Treatment

1 B 13 C 25 C
2 A 14 A 26 C
3 A 15 B 27 B
4 C 16 B 28 B
5 C 17 A 29 A
6 B 18 C 30 A
7 A 19 A
8 A 20 C
9 B 21 C
10 C 22 A
11 C 23 B
12 B 24 B

11. A � 3, B � 2. The effect of A in Period 2 � 3 (Direct effect) � 2 (carryover)
� 3 (period) � 8. The effect of B in Period 2 is 2 � 2 � 3 � 7. A � B � 8
� 7 � 1.

12. N � 2(0.8)(1 � 0.8) �(1.65 � 1.28)/0.16�2 � 108 per group.

CHAPTER 12

1. X̄ � 9.95; limits are 9.95 	 1.88(0.10) � 9.95 	 0.19
R̄ � 0.10; for N � 2, limits are 0 to (3.27)(0.10) � 0.33

2. � � �0.02(0.98)/1000 � 0.004427; 3� � 0.0133; 0.02 	 3� � 0.0067 to 0.0333
3. X̄ control chart is centered at 47.6 with limits 47.6 	 1.02(1.2) � 47.6 	 1.22. R

chart has a target of 1.2 with lower limit of 0 and upper limit of 2.57(1.2) � 3.1
(see Table IV.10).

4. P � 1%; accept if 0 or 1 rejects. Probability 0 rejects � 0.99100 � 0.366.
P(1 reject) � 0.370; P(batch rejected) � 1 � 0.736 � 0.264.

5. X̄ � 10.02; limits: 10.02 	 0.31(0.38) � 10.02 	 0.12
R � 0.38; limits: lower is 0.22(0.38) � 0.08; upper is 1.78(0.38) � 0.68
Many means are out of limits. Either find cause or, if not possible, use moving
average if means are well within official limits.
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6. p � 50/100,000 � 0.005 � probability of reject; q � 0.9995; therefore, probability
of passing batch � 0.9995100 � 0.951

7.
Source d.f. MS

Between 3 483.3
Within 8 87.83

Between-analyst component � (483.3 � 87.83)/3 � 131.8; within-analyst compo-
nent � 87.83
Three analysts perform four essays:

S2 4 131 8 87 83

12
51 3= + =( . ) .

.

Four analysts perform two assays:

S2 2 131 8 87 83

8
43 9= + =( . ) .

.

Cost is $24 for both procedures. The latter procedure (four analysts) is more precise.
8. Limits are 399.6 	 1.02(3.48) � 399.6 	 3.55

9. X̄ � 10.21, R̄ � 0.24, S̄ � �0.052 � 0.23
Limits for X̄ � 10.21 	 1.88(0.24) � 10.21 	 0.45
Limits for R̄ � 0 to 3.27(0.24) � 0 to 0.78

10. N � 4; limit � 2.28, R̄ � 2.28(12.5) � 28.5 (0 is lower limit)
11. 6.25 vs. 3.8
13. (a) 90 � 1.71(0.3/2 � 0.5 � 4/20)1/2 � 91.58

110 � 1.71(0.3/2 � 0.5 � 4/20)1/2 � 108.42
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(b) 90 � 1.71(0.3 � 0.5 � [4/20]/2)1/2 � 91.62
110 � 1.71(0.3 � 0.5 � [4/20]/2)1/2 � 108.38

Consider the advantages and disadvantages of different kinds of replication.

CHAPTER 13

1. R̄ � 3.375; upper limit � 3.375 � 2.57 � 8.7
2. X̄ � 106.5; R̄ � 5.4; limits � 106.5 	 1.02(5.4) � 106.5 	 5.5
3. S 2

1 � 15.67; S 2
2 � 2.83; S 2

3 � 3.94
S̄2 � 7.48
X 2

2 � 72.440 � 61.958 � 10.482 (P � 0.05)
4. R̄ � 2.38; upper limit � 2.38 � 3.27 � 7.78
5. X̄ � 102.4; R̄ � 3.3; limits � 102.4 	 3(3.3)/1.128 � 102.4 	 8.8

CHAPTER 15

1. t � 0.583/0.6685 �1/12 � 3.02; P � 0.05; parametric t test shows significance
2. (a) 9 of 12 comparisons are higher for B: not significant

(b) t � 0.5/(0.61 �1/12) � 2.83; P � 0.05
3. � Ranks for A � 11 (or 67); � ranks for B � 67; N � 12, � � 0.05

Z P=
−

= <
67 12 13 4

12 12 5 13 12
2 20 0 05

( ) /

( . )( ) /
. ; .

4. Use the Wilcoxon signed-rank test. � R � 13.5 (or 22.5); P 
 0.05 (not significant).
5. Use the Wilcoxon rank sum test.

Z P

t

=
− + +

+ +
= <

= −

74 10 10 10 1 2

10 10 10 10 1 12
2 34 0 05

4 35 2 09

( ) /

( ( ) /
. ; .

. .

33 816 1 10 1 10
2 59 0 05

. ( / / )
. ; .

+
= <P

6. Use the Kruskal-Wallis test. Sum of ranks � 63.5, 40.5, and 16.

χ2
2 12

15 16
1133 3 3 15 1 8 67 0 05= − + = <

( )
( . ) ( ) . ; .P

There is a significant difference (batch 3 has lowest dissolution).
7. Sum of ranks � 31, 21.5, and 19.5.

χ2
2 2 2 212

36 3 1
31 21 5 19 5 3 12 4 6 29 0 05=

+
+ + − = <

( )
( . . ) ( )( ) . ; .P

The standard has the highest Cmax (standard is greater than B, P � 0.05; see Ref.
2).

8.
0 1 2 Total

A 50 (38.9) 50 (61.1) 75 (75) 175
B 20 (31.1) 60 (48.9) 60 (60) 140
Total 70 110 135 315

X 2
2 � 11.69; P � 0.01. The distribution of scores for A and B is different.
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9.
Capping

Yes No Total

Yes 13 (1.8) 45 (56.2) 58
Specks No 18 (29.2) 924 (912.8) 942

Total 31 969 1000

(a) S 2
1 � 73.7 (corrected); P �� 0.01; not independent

(b)
Z �

|0.714 � 0.5| � 1/126

�0.5(0.5)/63
� 3.27; P � 0.01

The difference is significant at the 1% level.
10. The probability of the fourfold table is 0.0304:

12 5 14 21

0 12 5 9 26
0 0304

! ! ! !

! ! ! ! !
.=

The only least likely table has five tumors in the controls and zero tumors in the
treated group. This table has a probability of 0.012.4. Therefore, the probability of
the given table � more unlikely tables is 0.0304 � 0.01204 � 0.0421. The �2 test
(corrected) is equal to 3.98, which is equal to P � 0.0460.

11. The median is 303.25. There are nine runs. According to Table IV.14, fewer than
6 or more than 15 runs are needed for significance at the 5% level. Therefore, the
sequence is not significantly nonrandom for both one- and two-sided tests.

14. �2 � 5.44 (P � 0.05)
15.

Source d.f. Sum–Squares Mean Square

A (Treatment) 1 2.485E-04 2.485E-04
B (Subject) 11 .637813 .057983
Error 11 1.138684 .1035167
Total (Adj) 23 1.776746

90% C.I.: (4.9615 � 4.9551) 	 1.8 �0.1035167/6 � 0.0064 	 0.2364 � 0.795
to 1.275

16. Sequence 1: P1 � T1 � P2 � T2

Sequence 2: P1 � T2 � P2 � T1

Seq. 1 � Seq. 2 � 2(TP � T2)

17. Sequence

Period

:
( ) /

( ) /
. .

:
(

73 8 8 9 1 2

8 9 8 9 1 12
0 096 0 5

54 8

− + +

× + +
= >

−

P

88 9 1 2

8 9 8 9 1 12
1 73 0 10

+ +

× + +
= <

) /

( ) /
. .P
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18. Answer: p � 0.012

Source d.f. Sum–Squares Mean Square F-Ratio Prob � F

A (Press) 3 .9815 .3271667 5.64 0.012
B (Formula) 4 5.288004 1.322001
AB 12 .6959966 5.79E-02
Total (Adj) 19 6.965501

19.
Source d.f. Sum–Squares Mean Square

Formulation 4 0 0
Press 3 156.3 52.1
Error 12 113.7 9.475
Total (Adj) 19 270

LSDX = +





=2 18 9 475
1

5

1

5
4 244. . .

Sum � 5 � 4.244 � 21.22

CHAPTER 16

1. (a) ′X1 � 0; ′X2 � 1; ′X3 � 0; Y � 10.725 � 2.225 � 12.95
(b) ′X1 � 1; ′X2 � 1; ′X3 � 0.6; Y � 15.36

2. See Eq. (16.4). ′X1 � (1 � 1)/1 � 0; ′X2 � (0.5 � 0.5)/0.5 � 0; ′X3 � (2.5 �
2.5)/2.5 � 0

3. Y � (9.7 � 7.2 � 8.4 � 4.1)/4 � (�9.7 � 7.2 � 8.4 � 4.1)X1/4 � (�9.7 �
7.2 � 8.4 � 4.1)X2/4 � (9.7 � 7.2 � 8.4 � 4.1)X1X2/4 � 7.35 � 1.7X1 �
1.1X2 � 0.45X1X2

4. A′ � (8.75 � 7.5)/2.5 � 0.5; B′ � (100 � 75)/25 � 1.0; Y � 7.35 � 1.7(0.5)
� 1.1(1) � 0.45(0.5) � 5.725

5. Y � 19.75 � 4.25(St) � 3.25(M) � 2.25(M)(St). Note: M and St are coded. One
possibility is (St) � �0.23 and (M) � �1. This is equivalent to 15 min of mixing
and 0.539% stearate, for a 15-min dissolution time.

6. Y � 10A � 15B � 30AB; let B � 1 � A. Y � 10A � 15(1 � A) � 30A(1 �
A) � �30A2 � 25A � 15; dY/dA � � 60A � 25 � 0; A � 0.417 � 41.7%

7. (a) Y � 292A � 5.6B � 50.4C � 492.8AB � 186.8AC � 49.6BC � 54.6ABC
(b) 100% B is 5.6 min. Combinations between 50 and 100% B and 0 and 50% A

may give a fast dissolution (e.g., 0.6 of B and 0.4 of A � less than 2 min).
(c) There are many combinations. For example, 35% of A and 65% of C results

in a dissolution of approximately 92 min.
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Acceptance sampling (see Quality control,
sampling plans)

Accuracy, 24, 25, 428
check, 432, 433

Alias, 281
Allergy test, 495–496
alpha error (see also Hypothesis testing),

110ff, 120
Alternative hypothesis (see Hypothesis

testing)
Analgesics, 248, 317
Analysis of covariance (ANCOVA), 250,

318, 362
assumptions in, 253
computations, 252, 254ff
covariate in, 250
nonparametric, 485
parallelism, 254
stability analysis, 256ff

Analysis of variance (ANOVA), 215
in assay procedure, 215
assumptions in, 220
comparisons in

penalty, 222ff
planned vs. unplanned, 222

computations, 217
degrees of freedom in, 219
difference from baseline, 320
error terms, 238, 246–247
F distribution in, 220

743

[Analysis of variance (ANOVA)]
in factorial designs, 279
fixed model, 232–234
hypothesis in, 218
incorrect analysis, 221
interaction in, 236, 238, 239, 245, 246
interpretation, 245
missing data, 247
model, 216

fixed and random, 232
multiple comparisons, 222ff

contrasts, 227
correlated outcomes, 230ff
Dunnett, 229
experiment-wise, 222, 223, 226
LSD, 225, 228
multiple range test, 226, 227
Newman-Keuls, 228
penalty, 222ff
planned vs. unplanned, 222
Scheffe method, 227
studentized range, 227
Tukey, 226

nested, 400
one-way, 215, 396

assumptions in, 233
computations, 217
fixed and random models, 232, 233, 234
nonparametric (Wilcoxon rank sum

test), 473
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[Analysis of variance (ANOVA)]
nonparametric test, Kruskal-Wallis, 479
random effect, 396, 397
summary, 221
unequal sample sizes, 232

power in, 166ff
randomized block (see also 2 way

ANOVA), 234
regression, 431, 545
Repeated Measures, (see also Repeated

measures), 235
sum of squares (see also Sum of squares),

217ff
residual, 236

table, ANOVA, 219
test of hypotheses, 219ff
test of hypotheses, 218
three factor, 360, 431
treatment sum of squares, 218, 219
treatment mean square, 218, 219
total sum of squares, 218
two way, 234, 236, 242, 250

computations for, 237
degrees of freedom in, 237
error terms, 234, 236
factorial, 242
fixed model, 236, 238, 239
interaction in, 236, 238, 242
interpretation, 245
missing data in, 247
nonparametric test, Friedman, 481
nonparametric test, Wilcoxon signed

rank, 469
random model, 236, 238, 239
replicates, 238, 240
sums of squares, 236, 237
binomial outcome, 499
replication in, 240, 250
tests, 238
unequal sample sizes in, 247
within cell sum of squares, 240

within treatment sum of squares, 217ff
in validation, 430ff
variance pooled, 223

Analytical methods comparison, 126, 218,
234, 251, 293, 442

statistical methods in development, 391
Greenbriar, 391
standard curve, 178
transformations in, 293

Anesthetic, 517
Antagonistic, 268

Antianginal, 317
Antibiotic, 54, 160, 438
Antihypertensives, 105, 116, 163
Anti-inflammatory, 46, 545
AQL (see quality control)
Arcsine transformation, 298
Area under curve (AUC) (see also

Crossover), 127
Arthritis, 498
Assay, 2, 25, 88, 177, 178, 251, 293, 384,

396, 408
averaging, 594
and Barr decision, 405
composite, 305, 405, 580
outliers, 301, 303
single failure (see Barr decision)
USP test, 408

Assay development, 391
automated procedure, 487
statistical methods, 178
transformation in, 293
validation, 428ff

Asthmatics, 88, 243
Attributes, 3, 464, 465

inspection for, 152
AUC (see also bioequivalence), 127, 128,

209, 325
Averaging assays and Barr Decision, 594

assay, 582, 594
content uniformity, 594
replicates, 582, 594

Average (see also Mean), 12

Bar graph, 32, 43
column chart, 45
row chart, 43

Barr Decision, 404, 407, 411, 578, 585, 594
inconsistencies in outlier tests, 581

Bartlett’s test, 142, 427
Baseline readings, 318

differences from, 250, 320, 360, 362
Beer’s law, 173
Behrens-Fisher method, 123, 289
Bernoulli trial, 439
Beta error (see also Hypothesis testing), 110,

152, 154, 162
Bias, 24, 26, 86, 125, 250, 312, 462
Binomial (see also Probability), 54ff, 385,

386, 496
distribution, 54, 55
normal approximation to, 74
in quality control, 391
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[Binomial (see also Probability)]
continuity correction, 76
expansion, 58
hypothesis tests, 59, 129
parameters, 55
randomized blocks, 499
simulation, 439
standard deviation (see also Standard

deviation), 56, 61
in sign test, 468
summary of properties, 61
test, 129
trial, 55, 439

Bioanalytical method (see Validation)
Bioassay, 545
Bioavailability, 127, 128, 165, 297, 321, 325
Bioequivalence (see also Crossover designs),

126
carryover in (see Crossover)
confidence interval in (see also

Confidence intervals), 339, 346, 471
designs, 126, 129, 157, 321, 325ff, 345
dichotomous outcome, 358, 359
individual, 349ff
interaction in (see Crossover)
log transformation in, 342
long half life, 326
non-absorbed drug, 358
nonparametric, 476
outliers in, 4
power in, 343
sample size in, 157, 168, 343, 359
variable drugs, 342

Biological Variation, 19
Bivariate normal, 204
Blends, 418

in composite, 582
Blend sampling and Barr Decision, 485
Blinding, 312, 385
Block, 234, 314

binomial outcome, 499
Blood pressure, 11, 105, 118, 126
Bootstrap, bootstrapping, 355, 437, 458
Bonferroni, 224, 230
Bracketing, 185, 186
Bulk powder sampling, 91

Calibration curve, 193, 428ff
Cancer, 359
Carryover (see also Crossover design), 314,

323, 477
Categorical variables, 3, 464, 489

Censored data, 248
Central Limit Theorem, 73, 440, 441, 448,

459
Change from baseline, 126, 235, 250, 255,

362
Chi-square

distribution, 78, 134, 462
d.f. in test, 136
test (see also Proportions), 134ff

Cholesterol, 4, 71ff, 270, 302
Clinical(pre), 479
Clinical significance, 317
Clinical trials (see also Experimental

designs), 152, 230, 248, 311, 360,
453

ANOVA in post treatment results, 320
controlled, 311
experimental design in (see Experimental

designs)
general principles, 312
guidelines, 312
multiclinic (see Multiclinic studies)
random assignment in, 85ff, 315
in factorial designs, 269, 270

Cmax (see also Bioequivalence), 325
Cochran, 248, 499
Coding, 22–24
Coefficient of variation, 19–21
Column charts (see Graphs)
Completely randomized design, 215
Components of variance (see Variance)
Composite designs (see Optimization), 359
Composite (tablets), 305
Computer Intensive Methods, 437ff

Bootstrapping, 437, 458–463
Monte Carlo, 437–458
packages for, 463
simulation, 437ff

Concomitant variable, 250
Conditional probability, 53
Confidence Intervals (see also

Bioequivalence), 96ff
in ANOVA, 223
asymmetric, 103
Bioequivalence, 96ff, 129, 168, 339
coefficients, 97–98
construction of, 100
in crossover studies (see Crossover design)
for log-transformed data, 298
means, difference of, 122, 448
Monte Carlo simulation, using, 448
nonparametric, 471, 472
one-sided, 103, 104, 191
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[Confidence Intervals (see also
Bioequivalence)]

overlapping, 124
proportions, 101, 137

continuity correction, 138
differences of, 138, 450, 453

ratios, 128
in regression, 189ff

slope and intercept, 192
x at given y, 190
y at given x, 189

standard deviation known, 97, 98, 101
statistical test, 116
t distribution for, 100, 116
for variance (see also Variance), 142
Westlake, 103, 104

Confounding (see also Factorial designs), 59,
127, 269, 330

Consumer risk, 388
Content uniformity, 143, 151, 306, 579

USP test, 143, 408
Contingency tables (see also Chi square and

Four-fold tables), 465, 489
chi-square tests in, 489, 491
four-fold tables (2 x 2 tables), 489, 492

combined sets, 497
related samples, 495, 496

Mantel-Haenszel test, 498
RXC tables, 489
expected values in, 492
multiple comparisons in, 492

Continuity correction, 76, 130, 133, 134,
136, 138, 456

Contour plot, 522
Contrasts, 227
Control Charts (see Quality control)
Controlled study, 311
Control group, 127, 236

in paired t test, 126
positive control, 317

Correction factor (see Continuity correction)
Correction Term, 17, 218
Correlation, 200

coefficient, 202
comments, 206
diagrams (see also Scatter plot), 40, 201
and independence, 206
interpretation, 203
matrix, 231
misuse, 206
multiple correlated outcomes, 230

[Correlation]
multiple, 555
r squared, 203
test of zero, 204

Correlated outcomes, multiple, 230
Counts, 134
Covariance (see Analysis of covariance)
Covariate, 250
Critical region, 112
Crossover design (see also Bioequivalence),

126, 321
add-on studies, 344
advantages and disadvantages, 321
analysis of variance, 329
AUC, 325, 327, 331, 229, 345
average bioequivalence, 349
in bioequivalence studies, 321ff, 331
carryover, differential, 321, 323, 324, 326,

330, 332, 334, 335–337
carryover, Grizzle analysis, 324, 335
carryover in, 321, 330
carryover, test for, 335
Cmax, 325, 327, 331, 339, 345
confidence intervals, 334, 339
confidence interval, nonparametric, 471,

472
confounding, 346
dichotomous data, 358
geometric mean, 342
in groups, 344
Hyslop method for IB, 355
individual bioequivalence (IB), 349ff

components of variance, 355
IB metric, 353, 354
IB scaling, 354, 355
IB statistical analysis, 355ff

interactions in, 321, 323, 326, 344, 346
log transformation, 334, 339, 342
long half-life drugs, 326
missing data in, 323, 325
mixed model in, 349
nonparametric analysis, 476
nontransformed data, 340
outliers in, 345
period, 321, 327, 337, 334
power in, 333, 343
precision in, 322
replicate designs, 323, 345, 347, 349
sample size in, 342, 343
sequence effect, 326, 330, 332, 337
75–75 rule, 334, 342
statistical analysis, 329
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[Crossover design (see also Bioequivalence)]
time to peak (tmax), 327
two one-sided t tests, 334
Westlake, 341
highly variable drugs, 342, 343
variance (within and between), 322, 332,

346, 354
visits, 321
wash-out, 323, 326

Cumulative probability (see Probability)

Data characteristics, 464ff
Defects, 133, 389
Degrees of Freedom, 19, 77, 79, 100, 116,

136, 219
Dependent variables, 32
Destructive testing, 583
Descriptive plots, 31, 32
Design (see Experimental design)
Detection limit, 428
Difference to be detected, 152
Discrete variables, 50
Dissolution, 25, 41, 121, 157, 232, 236, 265,

267, 408, 409, 536
FDA guidance, 408
USP test, 409

Distributions, 4, 458
chi square (see also Chi square), 78
continuous, 63
cumulative, 4, 66
discrete, 54
F (see also F distribution), 79, 139
frequency, 4, 458
normal (see also Normal), 63
Poisson, 76
t, 77
tails, 61
Uniform, 440

Dixon test for outliers, 302
Dose response, 173, 545
Double Blind, 105, 13
Double dummy, 313
Drug content, 88
Dunnet’s Test, 229

ED50, 3, 55
Efficiency, 90

systematic, 313
Estimation, 96–97

point, 97
EVOP, 531
Excel, Microsoft, 438ff, 599ff

Excipients, 506
Exercise test, 243
Expected number (see also Chi square test

for proportions), 135
Experimental designs (see also Analysis of

variance), 215
balanced incomplete block, 315
in clinical trials, 311

analysis of covariance, 319
analysis of variance, 318
baseline values, 318
change from baseline, 318, 319
crossover designs (see Crossover

designs)
error, 289
general principles, 312
one-way ANOVA, 317ff
parallel, 317
patients, choice of, 314
power, 322
randomization, 313, 315
repeated measures (see Repeated

measures)
Experimental error, 234, 280
Expiration date, 184, 188ff
Exploratory data analysis, 195, 295

F Distribution (see also Distribution), 79,
140, 220

Factorial experiments, 242
Factorial designs (see also Optimization),

265
advantages, 269, 270
aliases, 281
analysis of variance in, 279

calculations, 275ff
Yates method, 278

antagonism, 268
confounding in, 269, 281, 282
defining contrast, 285
definitions, 265
effects, 266

main (effects), 276, 277, 280
error pooling, 280
example of, 270, 275
factors in, 265, 273

choice of, 274
fractional, 281, 517

aliases in, 281
half replicate, 282

incomplete, 270
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[Factorial designs (see also Optimization)]
interaction in, 266, 268, 273, 277, 278,

280
interpretation, 280
levels in, 265, 274
notation, 265ff, 273
orthogonal, 269
performing, 273
quadratic response, 267
recommendations in performing, 273
replicates in, 275, 279, 282
runs in, 266
synergism, 268
variation, 274
worked example, 270, 275
Yates analysis, 278

FDA, 86, 96, 184, 256–260, 307, 311, 315,
329, 332, 339, 345–347, 349, 353,
355, 358, 365, 367, 404, 407, 411,
412, 416, 428, 442, 453, 467, 477,
578, 585–586, 598, 712

guidance, 186, 332, 349, 408, 411, 442,
711

Fieller’s Theorem (see Relative potency)
First order kinetics, 294
Fisher-Behrens (see Behrens-Fisher)
Fisher’s exact test, 492–495
Fisher LSD in nonparametric tests, 485
Fisher LSD in parametric tests, 225
Fixed model (see ANOVA)
Fixed margins in Fisher’s test, 493
Formulation, 325
Formulations, optimization, 506–507, 523
Fourfold table (see also Contingency tables)

related samples, 495, 496
Fractional factorial designs (see Factorial

designs)
in validation, 425

Frequency Distribution, 4, 6, 8
cumulative, 8, 10
table, 6ff, 32

Friedman nonparametric test, 481, 482
individual comparisons, 482, 483
modified, 482, 483
Quade test, 483

Gauss-Markov, 254
Generic, 236
Geometric mean, 14, 292, 342
GMPs, 417, 419, 586
Granulations, 141

Graphs, 31
bar charts, 43
column charts, 45
connecting points in, 9
construction, 32–40
deception in, 35, 36
histogram, 32
key, 35
labeling, 32–40
pie charts, 45
scatter plot, 40
semi-log, 42
standard deviation in, 39

Greenbriar procedure, 391, 396
Grizzle (see Crossover design)
Group Sequential analysis (see Interim

analysis)

Half-normal plot, 516
Harmonic mean, 14
Headache, 132, 138, 450–452
Heteroscedasticy, 289, 430
Histogram (see also Graphs), 8, 32, 65, 440,

443
intervals in, 32

Hypergeometric distribution, 493
Hypnotic drugs, 127
Hypothesis testing, 96, 104

alpha error (see also Alpha), 110
alternate hypothesis, 107, 109, 128
assumptions, 112
beta error (see also Beta), 110
binomial, 59, 129

chi-square tests, 129
degrees of freedom, 136
expected values in, 135
single sample, 129

Monte Carlo simulation approach to, 446ff
null hypothesis, 106, 109, 128
one-sample, 114ff
one-sided, 113, 114
paired test, 126
planning test (see also Planning), 109
proportions, test for, 129
related samples, 126
significance level (see Significance)
summary, 124
two independent groups, 131
two independent groups t test, 118, 120

assumptions, 118ff, 124
planning, 118, 125

two-sided, 109, 113–115
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[Hypothesis testing]
variances known, 118
variances unequal, 123
variances unknown, 120

Hyslop (see Individual bioequivalence)

Incomplete block, 315
Incomplete three way design, 360
Independence, 24, 53, 55, 233, 240, 489, 497

test for, 491–494, 497
Independent variable, 32, 55
Individual bioequivalence (see

Bioequivalence)
In-house limits (see Release limits)
Inspection for attributes, 88, 388
Intent to treat, 315
Interaction (see also ANOVA and Factorial

designs), 236, 522
Interim analysis, 367

group sequential, 367
Interval scale data, 467

Key (graphs), 35
Kinetic study, 294
Kruskal-Wallis, nonparametric test, 479, 480

pairwise comparison in, 480
ties, corrections for, 480, 481

Last value carried forward (LVCF), 248
Latin square, 322

randomization in, 322
LD50, 3, 55
Least significant difference (LSD) (see also

ANOVA), 225
Levels in factorial designs (see Factorial)
Limits (see Release limits)
Least squares line (see Regression), 176
Linearity, 430, 431, 545

test for, 546
in coefficients, 554
transformation in, 545

Linear Regression (see also Regression), 173
Linearize, 299
Logarithm, 14, 42, 290ff, 545

transformation (see also Transformation)
Lognormal, 197, 291
Log transformation (see also

Transformation), 127, 170, 193, 197,
289f

Lund (see Outliers), 307

Main effects (see Factorial designs)
Mann-Whitney U-test (see Wilcoxon rank

sum test), 549
Mantel-Haenszel test, 498 (see also

Contingency tables)
Marginal totals, 135
Matrix, 185, 186
McNemars’s test (see also Fourfold tables,

related samples), 496
Mean (see also Average), 12

geometric, 14
harmonic, 14
standard error of, 19
variance of, 19
weighted, 12, 13, 14

variance of, 21
Measurements

objective, 125
subjective, 125

Median, 14–15, 387, 467
Mil-Std (see also Quality control), 151
Missing data, 247, 304, 325, 366
Mixing time in validation (see Validation)
Mixture designs (see Optimization, simplex)
Mode, 16
Model, 216, 329, 249–250

in multiple regression, 555ff
reduced and full, 250

Monte Carlo methods, 438
Moving range (see Control charts)
Moving average (see Control charts)
Mu, 11
Multiclinic studies, 365

interaction, 366
Multiple comparisons (see also Analysis of

variance), 222ff
in RXC tables, 492

Multiple correlated outcomes, 230
Multiple regression (see Regression)
Mutually exclusive, 51, 55

Nesting, 400
Neuman-Keuls test, 228
Nominal values, 3, 464, 467

scale, 3
Nonlinear regression (see also Regression),

197
Nonlinearity, 431, 546ff
Nonparametric tests, 464

confidence interval, crossover, 471
covariance analysis, 485
crossover, in, 476



750 Index

[Nonparametric tests]
introduction, 464
ties, 468
tests (listed under individual names)
tolerance interval, 500

Normal Distribution, 8, 49, 63
areas under, 65
binomial, approximation to, 74, 129, 131
cumulative, 68
deviate, 112
standard, 66, 443
symmetry, 71
transformation (Z), 68ff, 112

Null hypothesis (see Hypothesis testing)

Observed number (see Chi square test for
proportions), 135

Odds, 50, 51, 58
Ointment, 130
One-at-a-time experiments, 270, 273
One-sided confidence interval, 191
Operating characteristic (see Quality control,

acceptance sampling)
Optical density, 32
Optimization, 417, 506

check point, 513
center point, 513, 516
combination drug product, 517
composite design, 518ff
coding in, 514, 520, 521
constraints in, 528
contour plot in, curvature in, 522
extra-design points in, 520
orthogonality in, 511, 514, 519
curvature, 513, 518, 519
experimental error in, 507, 515, 522
extra-design point, 513, 516, 528
factorial designs in, 508

check points in, 514
coefficients, solution for, 512ff
combination drug product, 517
replication in, 517
response surface in, 514

fractional factorial in, 517
grid, 514
linearity, 509
mixture designs, 523
planning, 507
polynomial equations in, 509, 519
prediction, 508, 513
regression in, 508
replication in, 507, 515, 516, 530

[Optimization]
response surface, 514, 522
response equation, 508, 515, 527
sample size, 516
sequential, 531ff
simplex lattice, 506, 523ff

constraints, 528, 529
contour plot, 527
extra design points, 525, 528, 530
formulations and, 523, 528, 529
four components, 526
polynomial responses, 524, 525
prediction in, 525, 528
response surface, 525
sequential, 531ff
solubility diagram, 524
three-four components, 525
transformation, 528
variables, 507

Ordinal measurements, 465, 474
Origin, line through, 179
Orthogonal (see also Factorial designs), 512,

514
Out of Specification (OOS), 411, 578

when average conforms, 596
Outliers, 300ff

in Barr decision, 411, 412
in bioequivalence, 345, 583
in biological assays, 581
and chemical assays, 578
in content uniformity, 583
in destructive testing, 583
in dissolution, 583
Dixon test, 302
in homogeneous samples, 582
inconsistencies, 581
Lund’s test, 307
Overall view, 304
Rejecting a batch, 585
Statistical criteria, 301ff
T procedure, 303
in tablet properties, 583
Winsorizing, 304

P value, 120
Pain, 166, 224

pairwise comparisons, 226–232, 480
Paired comparisons, 480
Paired t test (see t test)
Pairing, 127
Parallel groups, 105, 118, 215, 317, 359
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Parallelism (see Slopes, comparison of), 364
Parameter, 11, 19, 55
Particle Size, 13, 15
Percentile, 15
Pharmacodynamic, 325
Pharmacokinetics, 42, 173, 325
Pie chart, 45
Placebo, 105, 236, 313, 317, 360, 453, 493
Plackett-Burman designs (see Screening)
Planning of experiments, 109, 507
Point estimate, 96
Poisson distribution, 76
Polynomial, (see also Optimization), 509
Pooled standard deviation (see also Standard

deviation), 122
Pooling proportions, 132
Population, 9, 11, 18, 19, 85

examples, 11
Power, 125 151, 162ff, 183, 247, 260, 318,

343, 359, 458
curve, 164, 389
example, 165–166
for more than 2 treatments, 166

Precision, 24, 216, 250, 314, 428
Preclinical test, 133, 493
Preference test, 55, 130
Preclinical test, 133, 493
Prediction interval in regression, 191
Preference test, 55, 130
Probability, 49ff

binomial (see also Binomial distribution),
54

chi-square (see Chi-square distribution)
continuous distribution, 63
cumulative, 66, 494
definitions, 50
density, 63
distributions (see also Individual

distributions, binomial, F, normal, t),
52ff

multiplicative law, 52
mutually exclusive, 51
odds, 50
sampling, 83
theorems, 50ff

Producer risk, 388
Proportions (see also Hypothesis tests), 62,

453, 465
chi-square test, 134
comparison to known proportion (one

sample test), 129, 130
normal distribution test, 129

[Proportions (see also Hypothesis tests)]
simulated for probability, 439, 450,

453–458
two independent groups test, 131

Quade test (see Friedman test)
Quadratic equation, 197, 274, 432
Quality control, 51, 90, 160, 161, 373

100% sampling, 373, 388
acceptance sampling, 388
assay of tablets, 374
and Barr Decision, 404
control charts, 374ff

assignable cause in, 376, 379
average (mean), 375, 376
constructing, 374
cusum, 387
difference charts, 383
for individuals, 381
in validation, 417
interbatch variation, 380, 381
limits in, 376, 377

action limits, 376
warning, 376
moving range, 381
outlier in, 380
proportions, for, 385
range, 375, 378, 379
runs in, 387
3 sigma, 377
standard deviation, 377
statistical control, 374, 379
subgroups in, 374, 375, 380
to calculate, 377, 379
trends in, 375
Xbar chart, 375

Mil Std–105E and 414D, 388, 389,
391–395

moving average, 380
in validation, 422, 428, 434

moving range, 381, 434
operating characteristic, 389
outlier in, 380
pooling, 377
producer and consumer risks, 388
proportions, for, 385
range, 375ff, 424

calculation, 379
replicates, 377
research and development, in, 384
runs in, 387
sampling in validation, 417, 418
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[Quality control]
sampling plans

acceptance number, 388
acceptance sampling, 388
AQL, 389
attributes, for, 388
levels of inspection, 389
multiple, 391
operating characteristic, 389
power, 389
reduced, 390
variables, for, 388, 391

Shewhart, 374
standard deviation, 375, 378
statistical control, 374, 379
trends in, 375

Quantitation limit, 429
Quartiles, 16

R squared, 202, 203
RXC Tables, 136, 489
Random, 51, 83

in nonparametric, 486
numbers, 84ff
number table, 84, 91
sampling, 83
variables, 1, 54

categorical, 3
continuous, 2
discrete, 3
nominal, 3

Randomized block (see also ANOVA), 234,
250, 314, 315, 483, 499

Randomizing (see also Experimental design),
86, 125, 126, 127, 313, 315

patients in clinical trial, 86ff
Random model (see ANOVA)
Range (see also Quality control), 16
Ranking, 465, 467, 470ff
Rating Scale, 2
Ratios, 128, 256, 296, 340–342
Ratio scale, 467
Reassay, 306
Regression, 173, 293

assumptions in, 179, 180
confidence intervals in, 189

for intercept, 192
one-sided in stability, 191
prediction interval, 191
for slope, 192
X at given Y, 190
Y at given X, 189

[Regression]
hypothesis tests, 179

assumptions in, 179, 180
intercept, a, 176, 181
test of intercept, 182
test of slope, 183
linearity, test, 548ff

multiple, 514, 551
coefficients, 553ff
combinations of variables, all possible,

554
interactions in, 552
interpretation in, 555
stepwise, 555

nonlinear, 197ff
prediction interval, 191
residuals, 195
shelf life, 184
slope, b, 176, 181

comparison of, 254, 255, 257, 545
parallelism test for, 254, 255, 548ff
pooling, 256

stability, 183
through origin, 179
weighted, 193
variance in, 181

Rejecting a batch, 585
sampling and testing for outlier, 585ff

Rejection region (see Critical region)
Relative potency, 545

assumptions, 545
confidence limits in, 550
Fieller’s Theorem, 550

Release limits, 401–404
components of variance in, 400, 401
risks in, 401

Repeatability, 428
Repeated Measure designs (see also

ANOVA), 235, 360
analysis of variance, 362
assumptions in, 362
design, 360
features of, 361
interactions in, 364, 365, 366
interpretation of, 364

Replicate crossover designs, 345–358
Replication in two-way ANOVA (see

ANOVA)
replicates in factorial designs, 275
replicates in optimization, 507, 517
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Replicates, 546, 582
when averaging, 582
in tablet assay, 397

Representative, 91
Reproducibility, 428
Resampling, 412, 458, 582

computer packages for, 463
Retesting, 412, 582
Residuals, 195, 295, 486

Residual sum of squares in ANOVA, 236,
250

Residual variation, 274
Response surface (see Optimization)
RSD, 143, 418
Runs test, 486

test for randomness, 387

Sample, 9, 18, 82, 125, 453
authoritative, 83
choosing, 82, 125
choosing and Barr, 404
examples, 11
haphazard, 83
judgment, 83
probability, 83
nonprobability, 83
random, 83, 125
representative, 83, 91
statistics, 11
with replacement, 18, 460

Sample Size, 74, 109, 110, 111, 125, 151ff,
162, 166, 452ff

alpha error in computation, 152
beta error in computation, 152, 162
comparison of means in 2 groups, 125
dichotomous variables in bioequivalence,

170, 359, 453
difference to be detected, 152, 159
examples, 156ff, 160, 161
for comparative experiments, 153
for confidence interval of specified width,

161
for 1 and 2 sample binomial tests, 159
in analysis of variance, 166ff
in binomial tests (proportions), 159, 452
in bioequivalence (see also

Bioequivalence), 168, 343
in clinical trials, 151ff, 453–458
in t test, 125
in validation, 425
more than 2 treatments, 166
paired and single sample, 153

[Sample Size]
standard deviation unknown, 155
two-independent sample tests, 156ff

Sampling, 82
authoritative, 83
cluster, 89

two-stage, 89
error, 62, 543
fraction, 90
judgment, 83
nonprobability, 83
100%, 82, 373, 388
plans (see Quality control)
probability, 83
quality control, in, 90
random, 83

with replacement, 18
representative, 90, 91
stratified, 88, 419
systematic, 88
in validation, 418, 425

Satterthwaite, 402, 404, 406
Scatter Plots, 40, 201
Scheffe test (see also ANOVA), 227
Screening designs, 425, 506, 535

for drugs, 384
interaction in, 536
Plackett Burman designs, 535

Sedative, 479–480
Semi-logarithmic plots, 42, 295
Semi-logarithmic graph paper, 43
Sensitivity, 126, 274, 467
Sequential analysis, 367
75–75 Rule (see Crossover designs), 342
Shelf life, 184 –188
Side effects, 103, 132
Sign test, 467, 468
Significance

borderline, 120
level, 110, 113, 120
overlapping confidence intervals and, 124
practical, 106, 122
statistical, 96, 106, 110ff, 117

Significant figures, 27
Simplex Lattice (see Optimization)
Simulations, 437ff
Slope (see Regression)

comparison of, 365, 545
parallelism test for, 545
pooling slopes and intercepts, 256

Slopes, pooling in stability (see Stability)
Significance level (see also Alpha), 110, 113
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Solubility (see Optimization, simplex lattice)
Solubility phase diagram, 524
SOP, 404
Spectrophotometric analysis, 194, 274
Spheronization, 282ff
Split plot design (see Repeated measures

design)
Stability, 42, 103, 126, 173, 183, 256ff, 294,

295
accelerated, 256
bracketing, 186
expiration date, 183, 184, 256
limits, when setting, 401, 403
matricing, 185
one-side confidence interval, 191
optimal designs in, 184
pooling slopes and intercepts, 256ff

Standard curve, 178
Standard deviation, 16, 122

on graphs, 39
Standard error of mean, 19, 20
Standard scores, 24
Stem and Leaf plot, 7
Stick diagram, 46
Strata, 88
Studentized range, 227
Studentized residuals, 307
Subgroups (see Quality control)
Subsample, 89, 90
Sum of Squares, 27, 217ff

between, 217ff
deviation, 546
interaction, 236ff
regression, 547, 548
total, 217 ff
within, 217ff

Symmetry, 216
Synergistic, 268

t distribution (see also Distributions and
Hypothesis testing), 77, 115

modified, 467
paired sample t test, 126, 234, 297, 476
in regression, 182, 183
one sample t test, 114
planning, 125
steps in design, 118
summary of procedure, 124
two independent groups t test, 118, 318,

476, 542

T procedure (see Outliers)
Tablets, 2, 8–13, 83

assay, 88, 109, 402, 501
blends, 406, 418, 580
components of variance, 400, 401, 405
content uniformity (see also Content

uniformity)
defects, 50ff, 84, 61, 386
dissolution (see Dissolution)
excipients (see Optimization)
formulation, 187, 275, 424, 523
hardness, 265, 482, 528
homogeneity, 139, 425
inspection, 385ff
optimization, 523
physical properties, 373
potencies, 20, 66–69, 425
presses, 482
quality, 373
sampling, 84ff
stability, 184, 187
weight, 65, 70, 71, 91, 165, 201, 374, 376,

487
Time to peak (Tmax) (see also

Bioequivalence), 326, 468
Tolerance Interval, 144ff, 306, 590, 591

nonparametric, 500, 501
Topical products, 321, 500
Transformation, 290, 428, 545

arcsine, 298
linearizing, 290
log dose, 545
logarithmic, 290
proportions, 295
reciprocal, 300
square root, 290, 300
standard normal (see Normal)
summary, 300

Trapezoidal rule, 39, 327, 329
Triplicates and outliers, 303
Tukey, 226
Two by two tables (see Chi-square and

Contingency tables)
Two, one-sided t test, 334, 341
Two-sided test (see Hypothesis testing)

Ulcers, 359
Unbiased, 18, 22–23, 125, 274
Uniformity, 418
Universe, 9
USP, 70, 306, 408, 578, 580, 581

weight test, 70
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Vaccine, 162
Validation, 384, 416

analytical, 428
ANOVA in, 427
between and within, 420, 421
bioanalytical, 442
blend, 418
bulk, 420, 427
concurrent, 416–417
control charts in, 417, 422–424,

433
critical steps in, 425, 435
definitions, 428
finished product, 424
interaction, 431
mixers, 427
mixing time, 427
moving average in, 422
outliers in, 431
process, 416, 417
prospective, 416–417, 424
QC samples in, 418, 428
retrospective, 416–417, 419
sample size in, 418
sampling in, 417–418, 419, 425

Variables, 1–4
continuous, 2, 63
dependent, 32, 507
discontinuous, 50
discrete, 3, 50

attributes, 3
categorical, 3
nominal, 3

independent, 32, 507
random (see also Random), 1, 54
Relationships, 31

Variance, 16–18
analysis of (see Analysis of variance)
between and within, 318–320, 422
between batch, 422
comparison in related samples, 208
comparison in validation, 420, 421
comparison of (see also Hypothesis

testing), 120, 123
comparison of more than two, 141, 142

[Variance]
components of, 396ff, 542, 543

in assay development, 400
in bioequivalence, 357
limits, determining in-house, 405

confidence limits for, 142
linear combination of independent

variables, 543
means, of, 25, 398
pooled in ANOVA, 223, 247
pooling, 542
properties of, 542
of slope, 183
weighted average, 21, 543
within batch, 422

Variation, 1, 2
biological, 19
interindividual, 216
random, 1

Weighted, 289
analysis, 289, 429
average, 21
regression (see also Regression), 193

Weight (see Tablet)
Westlake, 103, 104, 341
Wilcoxon rank sum test (2 independent

groups), 473–476
correction for ties in, 476
efficiency of, 476
normal approximation in, 475
ties in, 476

Wilcoxon signed rank test, 469
confidence interval using, 471–473
normal approximation in, 471
power in, 469
ties in, 470

Winsorizing (see Outliers), 304

Yates, 130
Yates analysis in factorial designs, 278
Yates continuity correction, 130, 134

Z transformation (see Normal
distribution)
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